ESPACES VECTORIELS FAMILLES DE VECTEURS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "ESPACES VECTORIELS FAMILLES DE VECTEURS"

Transcription

1 ESPACES VECTORIELS FAMILLES DE VECTEURS A. ESPACES VECTORIELS 1) Défto O aelle esace vectorel sr o esace vectorel o esace vectorel réel tot esemble E m : 1) D e lo de comosto tere, aelée addto et otée +, c est-à-dre telle qe E v E v E Possédat les rorétés svates : a) L addto est assocatve das E : E v E w E ( v w) ( v) w As o orra écrre v w sas arethèse b) l addto est commtatve das E : E v E v v c) l addto admet das E élémet etre oté : E 0E 0E d) Por tot élémet de E, l exste sel élémet de E, aelé oosé de et oté (-), tel qe ' ' ) D e lo de comosto extere à oératers das, aelée mltlcato extere ar réel otée., c est à dre telle qe E. E Possédat les rorétés svates : a) E 1., v E.( v).. v b), E ( )... c), E.(. ) ( ). d) ) Remarqes : a) O dt ass qe,,. E o qe E a e strctre d esace vectorel sr. b) Les élémets de E sot aelés vecters (o et les oter avec o sas flèche) et les élémets de sot aelés scalares. 3) Coséqeces de la défto : a) E 0. b).0 0 E E c) Soet vecter et scalare ; s. alors 0 o =0E E 1. d) Le vecter 1. est l oosé d vecter c est à dre 1

2 4) Esaces vectorels sels (A CONNAITRE) : 1) Por tot eter atrel o l est - esace vectorel ) Por tos eters atrels o ls et, M, ( ) est esace vectorel réel. 3) Sot e arte D o vde de, l esemble des foctos défes sr D à valers D, o D est esace vectorel sr das oté E artcler,, oté ass, l esemble des stes réelles défes sr est esace vectorel réel. REMARQUE IMPORTANTE : Por motrer q esemble m d e addto et d e mltlcato ar réel est -esace vectorel, l y a 10 rorétés à vérfer! IL FAUT TROUVER MIEUX! 5) Sos esaces vectorels a) Défto Sot E,,. esace vectorel et F e arte o vde de E. F est sos- esace vectorel de E s F,,. est esace vectorel réel b) Caractérsatos Sot E,,. esace vectorel Caractérsato 1 Tote arte F o vde d esace vectorel de E est sos-esace vectorel de E S et selemet s, v F v F (stablté or l'addto) E. F (stablté or la mltlcato extere) Caractérsato Tote arte F o vde d esace vectorel de E est sos-esace vectorel de E S et selemet s, v F. v F (stablté ar combaso léare) Coclso : Por rover q esemble F est esace vectorel, o motre qe c est sos esace vectorel d esace vectorel co E F E C est-à-dre o dot motrer qe F, v F. v F

3 B. FAMILLE DE VECTEURS. Sot E esace vectorel réel. Sot eter atrel o l. Sot S =,..., 1 e famlle fe de vecters de E 1) Combasos léares a) Défto U vecter de E est e combaso léare des vecters de la famlle S s l exste réels,..., 1 tels qe b) Sos-esace egedré ar e famlle fe de vecters L esemble des combasos léares des vecters de S est sos-esace vectorel de E. Il est aelé sos-esace egedré ar S et est oté,..., 1,..., 1 Vect S Vect Vect. O a doc Vect S E /,..., tel qe... P Exemle mortat : U sos-esace egedré ar vecter est otévect o. O a docvect v E / tel qe v. S alors Vect S alors Vect ) Famlles géératrces Sot S =,..., 1 e famlle fe de vecters de E a) Défto est la drote vectorelle dot est vecter drecter S est e famlle géératrce de E s tot vecter de E est combaso léare des vecters de S C est à dre E,,..., 1 tel qe C est à dre Vect S E b) Théorème 1 Tote famlle fe de vecters de E q cotet e famlle géératrce de E est e famlle géératrce de E. 3

4 c) Théorème : Sot S =,..., 1 e famlle géératrce de E. Sot j Soù l eter j aartet à1,..., S j est e famlle géératrce de E s et selemet s j est combaso léare des atres vecters de S O a alors E Vect S Vect S j. Ce théorème s alqe ar exemle s l des vecters de S est le vecter l o s dex vecters de S sot égax. Remarqe très tle : Sot réel o l 1,..., 1,...,... 1,..., Vect Vect Vect 3) Famlles lbres o lées a) Défto S =,..., 1 est e famlle lbre s 1 1 E 1,..., 1 (... 0 ) (... 0). S S est e famlle lbre, les vecters de S sot dts léaremet déedats. So la famlle S est dte lée et les vecters de S sot dts léaremet déedats. Pls récsémet : S =,..., 1 est e famlle lée s 1,..., 0,...,0, tel qe E C est-à-dre S =,..., 1 est e famlle lée s Il exste réels,..., 1 o tos ls tel qe b) Prorétés La famlle est lbre La famlle est lée E Ue famlle est lée s et selemet s l a mos des vecters de cette famlle est combaso léare des atres vecters de cette famlle. Remarqe : Dex vecters de l esace vectorel E léaremet déedats sot dts coléares o roortoels 4

5 C est-à-dre, soet dex vecters et v dex vecters de E et v coléares tel qe v OU tel qe v O et ajoter : S, alors o a : et v coléares k tel qe v k Il est sovet «évdet de vor» s dex vecters sot coléares o o Coséqeces mortates : Tos les vecters cosdérés sot élémets d même esace vectorel S le vecter l aartet à e famlle de vecters alors cette famlle est lée ; doc s e famlle est lbre alors elle e cotet as le vecter l. S e famlle cotet dex vecters égax alors cette famlle est lée ; doc s e famlle est lbre alors tos les vecters de cette famlle sot écessaremet dstcts à. Tote famlle o vde clse das e famlle lbre (o dt «sos-famlle» d e famlle lbre) est elle-même lbre et tote famlle coteat e famlle lée (o dt «sr-famlle d e famlle lée) est elle-même lée. Cas artcler Ue famlle de olyômes o ls de degrés dstcts à (o dt ass de degrés écheloés) est lbre Sot avec Ue famlle P0, P1,..., P de X est dt écheloée e degré s 1,,0 deg P 1 deg P 5

6 BASES ESPACES VECTORIELS DE DIMENSION FINIE 1) Défto d e base : Sot E esace vectorel réel Ue famlle de vecters de E est e base de E s elle est e famlle à la fos géératrce de E et lbre. Coséqece : Tote famlle o vde extrate d e base de E est lbre et tote famlle coteat e base est géératrce de E. Exemles sels: a) Por tot eter atrel o l, la famlle de vecters 1,..., e 0,..,1,.,0 de e e où 1, (sele la ème comosate est égale à 1, les atres lles) est e base.o l aelle base caoqe de b) Por tot eter atrel o l, la famlle de vecters E1,1 ; E1, ;...; E, 1 ; E, 1,..., 1,..., j, E j coloe est égal à1, les atres ls) est e base de, de M, (Sel le terme de la ème lge et jème M.O l aelle base caoqe c) Por tot eter atrel, la famlle de vecters1,,..., O l aelle base caoqe de X d) Por tot eter atrel, la famlle de vecters est e base de ) Théorème : 0, P : x x x.o l aelle base caoqe de X X est e base de P0,..., P où x. où X. S esace vectorel admet e famlle géératrce de cardal ( eter atrel o l) alors tote famlle lbre de cet esace a a ls or cardal. O ce q est éqvalet : 6

7 S esace vectorel admet e famlle géératrce de cardal ( eter atrel o l) alors tote famlle de ls de vecters est lée. 3) Défto d esace vectorel de dmeso fe : O dt qe l esace vectorel E est de dmeso fe s l exste e famlle géératrce de E coteat ombre f de vecters. 4) Exstece de bases : Tot esace vectorel E et de dmeso fe admet a mos e base. 5) Théorème de la dmeso : Das esace vectorel E et de dmeso fe, totes les bases ot le même cardal. Le cardal d e base qelcoqe de E s aelle la dmeso de E. O le ote dm E (ar coveto : s E dm E=0). Exemles sels : A CONNAITRE dm, dm X 1, dm x 1, dm M doc dm M, 6) Théorèmes : or les esaces vectorels de dmeso fe Sot E - esace vectorel de dmeso ( eter atrel o l). S e famlle de vecters de E S S est géératrce de E alors Card S S S est lbre alors Card S De ls Les roostos svates sot éqvaletes : a) S est e base de E. b) S est e famlle géératrce de E et Card S =. c) S est e famlle lbre et Card S =. Sot E esace vectorel de dmeso fe. Tot sos esace F de E est de dmeso fe et dm F dm E. De ls s dm F dm E alors F=E. 7) Rag d e famlle de vecters Sot E - esace vectorel de dmeso ( eter atrel o l).,..., * F f1 f Sot e famlle de vecters de E Le rag de la famlle F f,..., 1 f est la dmeso de l esace vectorel Vect ( f1,..., f ) 7

8 Remarqe : rag d e matrce Le rag d e matrce est le rag de la famlle de ses vecters coloes Ces vecters coloes sot des vecters de M,1 O admet qe, or tote matrce t AM,, rg A rg A Sot e matrce AM, rg A A est versble 8) Caractérsato d e base Sot E - esace vectorel de dmeso ( eter atrel o l). Sot B e1,..., e e famlle de E. B est e base de E s et selemet s tot vecter de E s écrt de maère qe comme combaso léare des vecters de B. Coséqece : Sot B ( e1,..., e ) e base ragée de E. E!,..., tel qe e... e. O a Les réels 1,..., sot les coordoées d vecter das la base B. 1 La matrce coloe à lgesu est la matrce des coordoées de das la base B ; o ote U M Remarqe : B Por tos vecters et v, M v M M v et or tot réel, M. M B B B Matrce d e famlle : Sot,..., 1 e famlle ragée de vecters. Soet,1 ;...;, les coordoées de La matrce de la famlle,..., 1 das la base B (or tot 1,..., das la base B est M B1,..., A la éme coloe sot lacés vertcalemet les coordoées de B ). das la base B 1,1 1,,1, B. 8

9 Proosto : Sot B ( e1,..., e ) e base ragée de E. Sot S =,..., 1 e famlle ragée de vecters. S est e base de E s et selemet s = et MBS est versble Das ces codtos MBS est aelée matrce de assage de la base B à la base S et otée PB S. Ue matrce de assage est doc versble Proosto : Soet B et B dex bases de E. Por tot vecter, o a B BB. ' B ' M P M 9

f(t) g(t)dt f²(t)dt g²(t) dt a a a

f(t) g(t)dt f²(t)dt g²(t) dt a a a PCSI Chatre 4 : Produts scalares-résumé Das ce chatre E est u -ev. Produts scalares. Défto et exemles de référeces Def: O aelle rodut scalare sur E toute alcato de E² das est bléare. est symétrque: x,ye,

Plus en détail

L Analyse Factorielle des Correspondances

L Analyse Factorielle des Correspondances Aalyse de doées Modle 5 : L AFC M5 L Aalyse Factorelle des Corresodaces L aalyse factorelle des corresodaces, otée AFC, est e aalyse destée a tratemet des tableax de doées où les valers sot ostves et homogèes

Plus en détail

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i)

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i) Esaces vecorels eucldes Groue orhogoal ESPACES VECTORIELS EUCLIDIENS GROUPE ORTHOGONAL Produ scalare Défo O aelle esace euclde ou coule ( E, φ, où E es u esace vecorel réel de dmeso fe e φ ue forme bléare

Plus en détail

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES SOMMAIRE. Normes sur u espace vectorel E 2.. Défto d'ue orme. Cter l'égalté tragulare reversée. 2.2. Normes usuelles

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

Suites arithmétiques et suites géométriques Bilan et croissances

Suites arithmétiques et suites géométriques Bilan et croissances Sites arithmétiqes et sites géométriqes Bila et croissaces I Bila sr les sites arithmétiqes et géométriqes ) Tablea de formles Défiitio Relatio etre dex termes coséctifs Calcl d terme 4 ) Ue qestio de

Plus en détail

ANALYSE DES CORRESPONDANCES SIMPLES

ANALYSE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez MESURE DE LIAISON ENTRE DEUX VARIABLES QUALITATIVES KHI-DEUX Mesure de la laso etre deux varables qualtatves

Plus en détail

sont distincts 2 à 2.

sont distincts 2 à 2. Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque

Plus en détail

Vecteurs dans le plan

Vecteurs dans le plan Vecters dans le plan 1. Définition d n vecter : (classe de seconde) Soient A et B dex points d plan. La translation transformant A en B est la transformation qi transforme tot point M en n point M tel

Plus en détail

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre.

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre. - De la réducto des edomorphsmes - Ce cours a été rédgé e ovembre 994 alors que e préparas l'agrégato de mathématques et ms à our e u et ullet 2. Das le cas où l comporterat des erreurs, merc de me les

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectorels ormés Marc SAGE 13 avrl 006 Table des matères 1 Sommes de fermés et d ouverts U sev strct est d téreur vde 3 U crtère de cotuté pour les formes léares 3 4 Dstace à u fermé 3 5 Covergece

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

Estimation des incertitudes sur les erreurs de mesure.

Estimation des incertitudes sur les erreurs de mesure. Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

Automates 1 Présentation

Automates 1 Présentation Automates Présetatio Présetatio d u automate 2 Ue maière de désiger l automate de l exemple 3 Défiitio géérale 4 U exemple d automate 5 Mot costruit sur l alphabet C 6 L esemble de tous les mots das u

Plus en détail

GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace

GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace GEOETRIE DNS L ESPCE ant tot, rappelons ne propriété fondamentale : Tot théorème de Géométrie plane s appliqe dans n importe qel plan de l espace. Les exemples de ce chapitre se réfèrent a dessin ci-contre

Plus en détail

6. RADIERS 6.1. GÉNÉRALITÉS

6. RADIERS 6.1. GÉNÉRALITÉS 6. RADIERS 6.. GÉNÉRALITÉS U raer est ue alle plae, évetuellemet ervurée, costtuat l'esemble es foatos 'u bâtmet. Il s'éte sur toute la surface e l'ouvrage. Ce moe e foato est utlsé as eux cas : lorsque

Plus en détail

CHAPITRE III PROBABILITES

CHAPITRE III PROBABILITES HAPITRE III PROBABILITES I re B math I chatre III Probabltés Table des matères OURS A) Aalyse combatore ) Les trages au sort ) Trages avec ordre et avec réétto. 3 3) Trages avec ordre et sas réétto. 4

Plus en détail

Étudier si une famille est une base

Étudier si une famille est une base Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction :

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction : Bc lc TS : corrcto : E : octo st l somm d octo lér dérl por tot rél t d l octo rs dérl s doc st dérl sr ] ; [ mértr st polôm s scod dgré q por rcs rélls : t sl post st l scod t : s O ott doc l tl st :

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h ECOLE DE HUTES ETUDES COMMERCILES DU NORD Cocors d'admissio sr classes préparatoires MTHEMTIQUES Optio scietifiqe Mardi 9 mai 6 de 8h à h La présetatio, la lisibilité, l'orthographe, la qalité de la rédactio,

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

Repérage et vecteurs

Repérage et vecteurs Repérage et ecters Chapitre 10 page 241 Introdction : Rappels por démarrer : Page 241 I-Egalité de ecters 1- Détermination d'n ecter. Un ecter non nl est déterminé par : - sa direction ; - son sens ; -

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Partie I. Les données qualitatives

Partie I. Les données qualitatives Variables qualitatives : aalyse des corresodaces Jea-Marc Lasgouttes htt://www-rocqiriafr/~lasgoutt/aa-doees L aalyse factorielle des corresodaces But O cherche à décrire la liaiso etre deux variables

Plus en détail

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1 Momet d'ue force Théorème du momet ciétique Théorème du momet ciétique référetiel iertiel repère fixe /réf. o poit o fixe / repère m M V dt = d P OM dt = OM d P d OM P = d OM P OM d P = V dt m V OM d P

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

TRANSLATION ET VECTEURS

TRANSLATION ET VECTEURS TRNSLTION ET VETEURS 1 sr 17 ctivité conseillée ctivités de grope La Translation (Partie1) http//www.maths-et-tiqes.fr/telech/trans_gr1.pdf La Translation (Partie2) http//www.maths-et-tiqes.fr/telech/trans_gr2.pdf

Plus en détail

Les emprunts indivis. Auteur : Philippe GILLET

Les emprunts indivis. Auteur : Philippe GILLET Les emruts dvs Auteur : Phle GILLET Emrut dvs et emrut oblgatare Emrut dvs Emrut oblgatare Souscrt ar ue ou luseurs baques Pluseurs souscrteurs Dvsé e arts : oblgatos Oblgatos cotées Grad ombre de souscrteurs

Plus en détail

T.P. Le redressement commandé : le pont mixte.

T.P. Le redressement commandé : le pont mixte. I Introdcton : T.P. Le redressement commandé : le pont mxte. Précédemment, nos avons v qe nos povons réalser la converson d'ne tenson alternatve snsoïdale t =U 2sn t en ne tenson contne grâce à l'tlsaton

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

CNAM-UPMC MASTER 2010-2011 Recherche Opérationnelle MODELES DE LOCALISATION ET APPLICATIONS Marie-Christine Costa

CNAM-UPMC MASTER 2010-2011 Recherche Opérationnelle MODELES DE LOCALISATION ET APPLICATIONS Marie-Christine Costa CNAM-UPMC MASTER 200-20 Recherche Opératoelle MODELES DE LOCALISATION ET APPLICATIONS Mare-Chrste Costa I INTRODUCTION Avertssemet: ce polycopé e cotet que les résultats prcpau. Les démostratos et complémets

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Apport de la technique de décomposition de domaine en réduction modale de branche

Apport de la technique de décomposition de domaine en réduction modale de branche Apport de la techque de décomposto de domae e réducto modale de brache Perre-Olver LAFFAY, Olver QUEMENER *, Etee VIDECOQ, Ala NEVEU Laboratore de Mécaque et d Eergétque d Evry (LMEE) 40, Rue du Pelvoux

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Analyse de régression

Analyse de régression Itroducto à la régresso Aalyse de régresso La régresso est utlsée pour estmer ue focto f( ) décrvat ue relato etre ue varable explquée cotue,, et ue ou pluseurs varables explcatves,. = f(,, 3,, )+ε Remarque

Plus en détail

MICROECONOMIE APPROFONDIE ET CALCUL INTERTEMPOREL

MICROECONOMIE APPROFONDIE ET CALCUL INTERTEMPOREL 3èm aé r smstr II Alcatos à la gsto d ortfull. L modèl CAPM. a. Préfércs tr tmorlls t otmsato sur érods.. rdmt d actf t rsqu. msur sml du rdmt d u actf r avc d + d rx du ttr à la f d la érod cosdéré rx

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

ENQUETE SUR L OFFRE DE "TEXTILE DURABLE" EN FRANCE EXIGENCES ENVIRONNEMENT ET ENERGIE

ENQUETE SUR L OFFRE DE TEXTILE DURABLE EN FRANCE EXIGENCES ENVIRONNEMENT ET ENERGIE TEXTILE & DEVELOPPEMENT DURABLE ENQUETE SUR L OFFRE DE "TEXTILE DURABLE" EN FRANCE EXIGENCES ENVIRONNEMENT ET ENERGIE SUSTAINABLE TEXTILE :SURVEY MARKET IN FRANCE / ENVIRONMENT AND ENERGY REQUIREMENTS

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S IREM Secto Matque Goupe Lycée QCM pou la classe de Temale S QCM : Calculatce o autosée Pou chaque questo, seules ou popostos sot vaes. Recope la ou les popostos vaes. Sot f la focto défe su IR pa f ( )

Plus en détail

Synthèse de cours PanaMaths (CPGE) Arcs paramétrés

Synthèse de cours PanaMaths (CPGE) Arcs paramétrés Synthèse de cors PanaMaths (CPG Arcs aramétrés Préamble Certains aters réfèrent à «arc aramétré» la dénomination de «corbe aramétrée» ans ce docment, nos tiliserons la remière dénomination éfinitions Arc

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT nalyse des sgnax et des crcts électrqes Mchel Po Chaptre 2 Los générales de l électrcté en régme contn. Théorèmes de sperposton, Thévenn et Norton. dton 11/03/2014 Table des matères 1 POUQUOI T

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Calcul des pertes du distributeur

Calcul des pertes du distributeur Clcul des pertes du dstrbuteur Jver 007 Clcul des pertes du dstrbuteur Tros étpes : Clcul des pertes techques pr tpe d ouvrge Modélsto des pertes o techques (PNT) Modélsto d ue courbe de tpe P²+bP+c ou

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Guides d installation 300-012-581 Rév. 03

Guides d installation 300-012-581 Rév. 03 EMC Matériel VNXe3300 dans les environnements compatibles NEBS Gides d installation 300-012-581 Rév. 03 Les composants d système de stockage EMC VNXe3300 sivants ont passé avec sccès la site de tests de

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique Uiversité de Picardie Jules Vere 006-007 Faculté de Mathématiques et d Iformatique Licece metio Mathématiques - Deuxième aée - Semestre 4 Probabilités Elémetaires Exame du ludi 4 jui 007 Durée h00 Documet

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Produit scalaire. Chap. 11 : cours complet. 1. Produit scalaire réel.

Produit scalaire. Chap. 11 : cours complet. 1. Produit scalaire réel. Produ scalare Chap : cours comple Produ scalare réel Défo : produ scalare sur u -espace vecorel, espace préhlbere réel Théorème : eemples classques Théorème : égalé de Cauchy-Schwarz Défo : forme bléare

Plus en détail

Devoir surveillé n o 2 niveau 2 Mercredi 27 novembre de 13h à 17h. sint t + x dt.

Devoir surveillé n o 2 niveau 2 Mercredi 27 novembre de 13h à 17h. sint t + x dt. Lycée Ponts de Tyard 3/4 ECS Devoir srveillé n o nivea Mercredi 7 novembre de 3h à 7h La qalité de rédaction, de notation et de présentation prendra ne large part dans la note finale. Le sjet comporte

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

6GEI300 - Électronique I. Examen Partiel #1

6GEI300 - Électronique I. Examen Partiel #1 6GEI3 Électroque I Autome 27 Modalté: Aucue documetato est permse. Vous avez drot à ue calculatrce o programmable. La durée de l exame est de 3h Cet exame compte pour 2% de la ote fale. Questo 1. Questos

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

Chaîne de Markov - Télétrafic - Files d'attente

Chaîne de Markov - Télétrafic - Files d'attente ITRODUCTIO UX TLCOMMUICTIOS Chaîe de Marov - Télétrafc - Fles d'attete Verso 5 Mchel Terré lectroque L terre@camfr lectroque B ITRODUCTIO UX TLCOMMUICTIOS Raels de robablté Le dmesoemet d'u réseau de Télécommucatos

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

x deux caractères de G. Le produit xx est défini par la formule : PREMIeRE COMPOSITION DE MATHEMATIQUES

x deux caractères de G. Le produit xx est défini par la formule : PREMIeRE COMPOSITION DE MATHEMATIQUES 74 Écoles Normales Supérieures Ulm et Lyo optio M lère compositio 1/6 PREMIeRE COMPOSITION DE MATHEMATIQUES (Sujet commu ENS : ULM et LYON) DURÉE : 6 heures Lc cadidat peut traiter l ue quelcoque des parties

Plus en détail

Cécile Lardon. Professeur en classe préparatoire au lycée du Parc à Lyon. Jean-Marie Monier

Cécile Lardon. Professeur en classe préparatoire au lycée du Parc à Lyon. Jean-Marie Monier Mathématiques Méthodes et eercices ECS e aée Cécile Lardo Professeur e classe préparatoire au lycée du Parc à Lyo Jea-Marie Moier Professeur e classe préparatoire au lycée La Martiière-Moplaisir à Lyo

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

MODULE 2 : Estimation par intervalle de confiance

MODULE 2 : Estimation par intervalle de confiance Echailloage M MODULE : Esiaio ar iervalle de cofiace Il s agi das ce odle de rover e esiaio ar iervalle de cofiace d araère θ, c es-à-dire de cosrire e «forchee de valers éries erea de sier» θ avec e robabilié

Plus en détail

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques IFT393 Qualté du logcel et métrques Chaptre 7 Collecte et aalyse des métrques Pla du cours Itroducto Qualté du logcel Théore de la mesure Mesure du produt logcel Mesure de la qualté du logcel Études emprques

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail