»

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "»"

Transcription

1 Leçon 1 Nombres enters En lsant avec attenton le lvre Le calcul et la géométre au temps des pharaons de M. ROUSSELET, Thomas apprend que «Les premers nombres qu ont été écrts en Égypte datent de ans. La numératon égyptenne utlse sept symboles pour écrre les nombres : pour 1 2 pour 10 3 pour pour pour pour pour Ces héroglyphes représentent, dans l ordre, un bâton, une voûte, une corde enroulée, une fleur de lotus, une dogt ponté, un têtard et un deu qu lève les bras vers le cel. Lorsqu on écrt un nombre, les héroglyphes sont juxtaposés dans n mporte quel ordre mas le même héroglyphe ne peut être dessné plus de neuf fos. Pour lre un nombre, on addtonne les valeurs de tous les héroglyphes qu ont été utlsés dans son écrture. Par exemple, » Il s amuse alors à écrre des nombres à l ade de ces héroglyphes : 5

2 Il remarque qu on peut mettre les symboles dans n mporte quel sens. «Tens», se dt-l, «ce n est pas comme avec nos chffres». Pour écrre les nombres, on utlse dx chffres : 0 ; 1 ; 2 ; 3 ; 4 ; 5;6;7;8;9. Dans l écrture d un nombre, chaque chffre a une seule sgnfcaton et changer la poston d un chffre change sa sgnfcaton centane 2 dzanes 3 untés (1 100) + (2 10) + (3 1) centanes 3 dzanes 1 unté (2 100) + (3 10) + (1 1) centanes 1 dzane 2 untés (3 100) + (1 10) + (2 1) La numératon arabe donna un apport révolutonnare aux mathématques : le zéro. D alleurs, voc les chffres «vértablement» arabes de 0à9: Exercce 1 Dans les nombres suvants, chaque chffre a été remplacé par un symbole. Indquer le sens du chffre caché derrère le carré Compléter : Exercce 2 ( ) + ( ) + (8 100) + (4 10) + (1 1) =... (2 10) + (5 1) + (3 100) + ( ) =... ( ) + ( ) + (7 10) + (5 1) =... (7 100) + ( ) + (6 1) =... 6

3 Addton de nombres enters Exercce 3 Ce matn, j avas tmbres. J en a obtenu 79 nouveaux par mon grand-père. Comben en a-je ce sor? Dans une addton, les nombres s appellent les termes et le résultat s appelle la somme La somme de 345 et est et sont les termes de cette somme. Exercce 4 Poser et effectuer les addtons suvantes : L addton des nombres enters est une opératon qu possède de nombreuses proprétés : Proprété Dans un calcul ne comportant que des addtons, on peut regrouper des termes ou les échanger. On utlse prncpalement cette proprété pour le calcul mental : } 17 {{ + 8} = = = 32 }{{ + 8} +26 }{{ + 14} = = 80 Ces proprétés sont également utles pour prévor ou vérfer rapdement la vrasemblance d un résultat. Pour cela, on utlse des nombres enters proches 7

4 de ceux que l on souhate addtonner. Par exemple, la somme va êtreprochede = La somme exacte est = Exercce 5 On consdère les nombres pars à deux chffres (10 ; 12 ; 14...). Quelle est la somme de tous ces nombres? Explquer la réponse. Soustracton Exercce 6 Un transporteur part de Pars avec kg de marchandses. À Djon, l dépose 750 kg de marchandses. Il ne s arrête plus jusqu à Besançon. Quelle masse de marchandses a-t-l à son arrvée à Besançon? Sot m et n deux nombres tels que m sot plus grand que n. Pour trouver le nombre que l on dot ajouter à n pour obtenr m, on effectue la dfférence m n. n+? = m? = m n? }{{} n }{{} m La dfférence de et de 345 est et sont les termes de cette dfférence. La soustracton est donc étrotement lée à l addton = = = 38

5 Exercce 7 Poser et effectuer les soustractons suvantes : Attenton à ne pas échanger l ordre des calculs dans une soustracton Multplcaton Exercce 8 Un fermer élève 78 vaches qu lu donnent chacune 16 ltres de lat par jour. Comben obtent-l de lat par jour? Dans une multplcaton, les nombres s appellent les facteurs et le résultat s appelle le produt Le produt de 19 par 48 est et 48 sont les facteurs de ce produt. Exercce 9 Poser et effectuer les multplcatons suvantes : La multplcaton des nombres enters, tout comme l addton, est une opératon qu possède de nombreuses proprétés : Proprété Dans un calcul ne comportant que des multplcatons, on peut regrouper des facteurs ou les échanger. 9

6 On utlse prncpalement cette proprété pour le calcul mental : = = 10 8 = = = 70 4 = 280 Lorsqu on multple un nombre enter par 0, le produt obtenu est 0. Exercce 10 Compléter les égaltés suvantes : 120 = = = = = = = = = Dvson eucldenne Exercce 11 Dans un collège, l y a 162 élèves. On souhate consttuer des équpes de 13 joueurs. Comben peut-on fare d équpes? Y-at-l des élèves sans équpe? Un nombre non nul est un nombre dfférent de 0. Sot a un nombre enter et b un nombre enter non nul. La dvson eucldenne de a par b permet de trouver le nombre enter q de paquets de b untés que l on peut mettre dans la quantté a et s l exste éventuellement un reste r. a = q b + r (r < b) Le nombre q s appelle le quotent enter de a par b * 172 est le dvdende ; * 9 est le dvseur. 172 = et 19 9 < 172 < 20 9

7 Attenton au reste : l faut toujours penser à vérfer s l est ben plus pett que le dvseur. Exercce 12 Poser et effectuer les dvsons eucldennes suvantes : Parfos, lorsqu on effectue une dvson eucldenne, l arrve que le reste sot nul. Par exemple, c est le cas de : On peut alors écrre que = et dre que est dans la table de multplcaton de 15. C est pourquo on utlse le vocabulare suvant : Sot a un nombre enter et b un nombre enter non nul. Lorsqu on fat la dvson eucldenne de a par b, s le reste est nul alors on dt que : * a est un multple de b ; * b dvse a ; * b est un dvseur de a. Avec la dvson eucldenne c-dessus, on peut également affrmer que est un multple de 311. Exercce 13 Est-ce que 399 est un multple de 19? Est-ce que 421 est un multple de 34? 11

8 Parfos, l y a plus smple pour savor s un nombre enter est un multple d un autre nombre enter. Par exemple, 0 ; 14 ; 28 ; 42 ; 56 ; 70 sont des multples de 14, car ls sont dans la table de multplcaton de 14. Ic, l n y a pas beson de poser des dvsons eucldennes. De plus, l exste des méthodes rapdes pour savor s un nombre enter est un multple de 2 ; de 3 ; de 4 ; de 5 ou de 9. On les appelle crtères de dvsblté. Proprété Pour savor s un nombre enter est dvsble par 2, on regarde son chffre des untés : s celu-c est 0 ; 2 ; 4 ; 6 ou 8, alors ce nombre est dvsble par 2, snon l ne l est pas. Comme 2 est le chffre des untés de 342, alors 342 est dvsble par n est pas dvsble par 2 car son chffre des untés n est n 0 ; 2 ; 4 ; 6 ou 8. On dt auss que l on repère les nombres pars avec cette méthode. Proprété Pour savor s un nombre enter est dvsble par 5, on regarde son chffre des untés : s celu-c est 0 ou 5, alors ce nombre est dvsble par 5, snon l ne l est pas. Comme 325 a 5 comme chffre des untés, alors 325 est dvsble par n est pas dvsble par 5 car son chffre des untés n est n 0 n 5. En regroupant les deux proprétés précédentes, on obtent un crtère de dvsblté smple et ben connu : pour savor s un nombre enter est dvsble par 10, on regarde son chffre des untés : s c est 0, alors ce nombre est dvsble par 10, snon l ne l est pas. Savor s un nombre est un multple de 4 est tout auss smple... Consdérons le nombre On peut l écrre sous la forme 2532= Or, = = C est déjà un multple de 4. Est-ce que 32 est un multple de 4? Évdemment ou Donc est un multple de 4. Seul 32 a posé problème : on peut étendre cette méthode à tous les nombres et donner la proprété suvante :

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

Guylaine Faubert. Enseignante en mathématique et informatique au secondaire Le petit relais scolaire. (gfaubert)

Guylaine Faubert. Enseignante en mathématique et informatique au secondaire Le petit relais scolaire. (gfaubert) Guylane Faubert Ensegnante en mathématque et nformatque au secondare - - A ADDITION - 6 - ARBRE DE FACTEURS - - ARRONDIR UN NOMBRE - 6 - C CALCULER LE POURCENTAGE - 6 - COMMUTATIVITÉ - 6 -, - 7 - CONVERSION

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

Exercices d arithmétique

Exercices d arithmétique DOMAINE : Arthmétque NIVEAU : Intermédare CONTENU : Exercces AUTEUR : Noé DE RANCOURT STAGE : Cachan 011 (junor) Exercces d arthmétque Exercce 1 - Énoncés - a) Trouver tous les enters n N qu possèdent

Plus en détail

5. Relations d équivalences

5. Relations d équivalences 5. Relatons d équvalences Il est naturel de classfer des choses et on le fat tout le temps. Les nombres naturels sont de deux sortes : ceux qu sont pars et ceux qu sont mpars. On consdère Par et Impar

Plus en détail

Les Nombres. A.Balan 4 août 2017

Les Nombres. A.Balan 4 août 2017 Les Nombres A.Balan 4 août 2017 1 Les nombres enters naturels 1.1 Défnton On appelle c nombres enters naturels N les cardnaux des ensembles fns [J]. En partculer 0 est le cardnal de l ensemble vde, 1 est

Plus en détail

Fractions rationnelles

Fractions rationnelles Bblothèque d exercces Énoncés L Feulle n 8 Fractons ratonnelles Exercce Décomposer + 4 Décomposer + + + Décomposer + + + 4 Décomposer 4 + + 5 Décomposer 4 6 Décomposer 5 + 4 + 7 Décomposer 5 + 4 + ( )

Plus en détail

Module Mathématiques pour l Informatique_ partie 10

Module Mathématiques pour l Informatique_ partie 10 Module Mathématques pour l Informatque_ parte 0 Zahra Royer-SafouanaTabou Rappel : On appelle ans les ensembles de nombres : (cf. Wpéda), ensemble des enters naturels., ensemble des enters relatfs., ensemble

Plus en détail

Mathématiques B30. Les nombres complexes Module de l élève

Mathématiques B30. Les nombres complexes Module de l élève Mathématques B30 Les nombres complexes Module de l élève 00 Mathématques B30 Les nombres complexes 10 y axe magnare Module de l élève 4+6 x -10 10 axe réel --4 Bureau de la mnorté de langue offcelle 00-10

Plus en détail

Leçon 1. Statistiques

Leçon 1. Statistiques Leçon 1 Statstques Lors d une séance de saut en hauteur, le professeur d EPS a relevé, en centmètres, les performances c-dessous : 110-115-10-110-100-110-15-15-100-95-135-105-1-110-95-100-110-85-85-105-140-15-100-135-105-1-135-115-10-135

Plus en détail

Chapitre I Les pourcentages. Exemples : Il y a 20 arbres dans le verger, donc 30% de poiriers. Combien y a-t-il de poiriers? =6 Il y a 6 poiriers.

Chapitre I Les pourcentages. Exemples : Il y a 20 arbres dans le verger, donc 30% de poiriers. Combien y a-t-il de poiriers? =6 Il y a 6 poiriers. Chaptre I Les pourcentages Extrat du programme : - Expresson en pourcentage d une augmentaton ou d une basse. / coeff multplcateur - Augmentatons et basses successves - aratons d un pourcentage. - Pourcentages

Plus en détail

Nombres premiers et décomposition primaire

Nombres premiers et décomposition primaire [htt://m.cgeduuydelome.fr] édté le 10 jullet 2014 Enoncés 1 ombres remers et décomoston rmare Exercce 1 [ 01219 ] [correcton] Montrer que les nombres suvants sont comosés : a) 4n 3 + 6n 2 + 4n + 1 avec

Plus en détail

Anneaux et corps Bachelor Semestre 4 Prof. E. Bayer Fluckiger 16 mars Quiz 3

Anneaux et corps Bachelor Semestre 4 Prof. E. Bayer Fluckiger 16 mars Quiz 3 Anneaux et corps Bachelor Semestre 4 Prof. E. Bayer Fluckger 16 mars 2016 Quz 3 Queston 1. Est-ce que les anneaux Z et Q sont somorphes? Non. Par exemple, on a montré Sére 2, Ex.3.1. qu l exste un seul

Plus en détail

1 ère S Exercices sur les dérivées des fonctions de référence

1 ère S Exercices sur les dérivées des fonctions de référence ère S Eercces sur les dérvées des onctons de réérence ans chaque cas, donner la dérvée de la oncton. n se contentera d écrre '.... ) est la oncton déne sur par 0. ) est la oncton déne sur par 6.. ) est

Plus en détail

Nombre dérivé d une fonction (2) Plan du chapitre

Nombre dérivé d une fonction (2) Plan du chapitre Nombre dérvé d une foncton (2) Plan du captre Introducton : Nous poursuvons l étude des tangentes en procédant par pettes touces. Dans le captre précédent, nous avons défn la noton de nombre dérvé d une

Plus en détail

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Les nombres complexes. Défnton............................................................... Opératons...............................................................3 Parte réelle

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

L ANOVA (complements)

L ANOVA (complements) L ANOVA (complements) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA 1. L applcaton

Plus en détail

L ANOVA ( ceci est un complément)

L ANOVA ( ceci est un complément) L ANOVA ( cec est un complément) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA

Plus en détail

UE MAT234. Notes de cours sur l algèbre linéaire

UE MAT234. Notes de cours sur l algèbre linéaire UE MAT234 Notes de cours sur l algèbre lnéare Matrces - Systèmes lnéares - Détermnants - Dagonalsaton Dans tout ce document, K désgne ndfféremment le corps des nombres réels IR, ou celu des nombres complexes

Plus en détail

CHAPITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS

CHAPITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS Chaptre 7 : Calcul des ndcateurs du souten aux consommateurs CHAITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS 313. À l nstar du chaptre 6, le présent chaptre décrt en détal la méthode à applquer

Plus en détail

Probabilités. Définition : Chacun des résultats possible d une expérience aléatoire est appelée issue de l expérience.

Probabilités. Définition : Chacun des résultats possible d une expérience aléatoire est appelée issue de l expérience. Probabltés A) Vocabulare.. Expérence aléatore. Défntons : Une expérence est dte aléatore s elle vérfe tros condtons : Elle condut à des résultats possbles qu on est capable de nommer. On ne sat à l avance

Plus en détail

Fiche technique : diagonalisation, trigonalisation.

Fiche technique : diagonalisation, trigonalisation. Fche technque 4 : dagonalsaton trgonalsaton - - Fche technque : dagonalsaton trgonalsaton Dagonalsaton de matrces le prncpe pour dagonalser en pratque une matrce est smple : calculer les espaces propres

Plus en détail

Cinématique Newtonienne

Cinématique Newtonienne Cnématque Newtonenne 1. Chronophotographe du mouvement d un pont moble M : 1.1. nécessté de chosr un référentel : Vor l anmaton «changement de référentel» page 10 sur le ste www.phsquepovo.com Défnr ce

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

Chapitre 10 Les systèmes de particules

Chapitre 10 Les systèmes de particules 0.0 Introducton. Chaptre 0 Les systèmes de partcules Dans l expérence sur les collsons vous avez constaté que le centre de masse du système se déplace en lgne drote à vtesse constante. Pourquo? Parce que

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

2. Loi de propagation des erreurs (cas simples)

2. Loi de propagation des erreurs (cas simples) Lycée Blase-Cendrars/Physque/Labos/DC///04 Labos de physque : Mesures - Propagaton d erreurs - Mesures répéttves - Statstques. Prncpe de la mesure en physque Une mesure est toujours mprécse. La précson

Plus en détail

10 I. INTRODUCTION À LA THÉORIE DES GROUPES

10 I. INTRODUCTION À LA THÉORIE DES GROUPES 10 I. INTRODUCTION À LA THÉORIE DES GROUPES () Pour tout x H, x 1 H Cela sgnfe que la restrcton de à H H que l on note encore mas qu l faudrat en toute rgueur désgner par H donne une lo nterne de H et

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

Leçon 3 Les statistiques, révisions

Leçon 3 Les statistiques, révisions Leçon 3 Les statstques, révsons Pour cette parte, je reprends d abord toutes les notons vues en seconde. Il y a un vocabulare de base à connaître. Les statstques sont utlsées dans tous les domanes, scences,

Plus en détail

Chap. C1 : structure et arithmétique dans Z (fin)

Chap. C1 : structure et arithmétique dans Z (fin) Chap. C1 : structure et arthmétque dans Z (fn) The aftermath of Gauss... or the math after Gauss (P. Rbenbom, My Number My frends). V Nombres premers 1) Proprétés élémentares a) Défnton : () Termnologe

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

Méthodes en Sciences-Physiques. Programme de Première S.

Méthodes en Sciences-Physiques. Programme de Première S. Méthodes en Scences-Physques. Programme de Premère S. Comment réalser et utlser les tableaux d avancement en Premère S Équaton de la réacton 3Ag + aq + AsO 3 4 aq Ag 3 AsO 4 s quanttés de matère en mol

Plus en détail

A =

A = Exercces avec corrgé succnct du chaptre 2 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

AGRAFEUSE ELECTRIQUE

AGRAFEUSE ELECTRIQUE Nom de l élève :... Classe :... Date :... Matérel ressource : La platne agrafeuse Un ordnateur équpé d un modeleur volumque 3D Documents ressources : Documentaton technque de l agrafeuse Le dosser ressource

Plus en détail

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver

Plus en détail

Accompagnement niveau 1

Accompagnement niveau 1 GUITRE acoustque ccompagnement nveau 1 Une gutare n est pas l autre Les gutares peuvent être de dfférentes formes et couleurs, mas on en dstngue généralement tros genres prncpaux : la gutare «classque»

Plus en détail

Chapitre 9 : Un système chimique évolue spontanément vers l état d équilibre

Chapitre 9 : Un système chimique évolue spontanément vers l état d équilibre Classe de TS Parte CChap 9 Chme PRTIE C : LE SENS «SPONTNE D EOLUTION D UN SYSTEME ESTIL PREISILE? LE SENS D EOLUTION D UN SYSTEME CIMIQUE PEUTIL ETRE INERSE? Chaptre 9 : Un système chmque évolue spontanément

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous UTILS MATHEMATIQUES L1 SVG 1 Paul Broussous Chaptre II. Nombres complees Défnton. L ensemble C des nombres complees est formé des epressons de la forme +, et nombres réels avec les règles : (Egalté) +

Plus en détail

Utilisation du solveur d Excel

Utilisation du solveur d Excel Cycle ICM : 1A Pôle nformatque Cours applcatons nformatques Auteur : Bertrand Jullen 22/12/04 Utlsaton du solveur d Excel Le but de ce TP est de famlarser les élèves avec la foncton Solveur d Excel, dans

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

Méthodes d étude des circuits linéaires en régime continu

Méthodes d étude des circuits linéaires en régime continu Méthodes d étude des crcuts lnéares en régme contnu Cadre d étude : n réseau électrque (ensemble de dpôles électrocnétques relés par des conducteurs flformes de résstance néglgeable) consttue un crcut

Plus en détail

Cours 2. Méthode des différences finies Approche stationnaire

Cours 2. Méthode des différences finies Approche stationnaire Cours Méthode des dfférences fnes Approche statonnare Technque de dscrétsaton en D Constructon du système Prse en compte des condtons aux lmtes Noton de convergence Extenson au D Verson 09/006 (E.L.) NF04

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

> 0 donc nous avons un OUTPUT net < v i. < 0 donc nous avons un INPUT net

> 0 donc nous avons un OUTPUT net < v i. < 0 donc nous avons un INPUT net L'ensemble de producton est noté Z n : l s'agt de l'ensemble des paners de producton possbles dans l'économe (= ce que l'on peut produre) On chost des paners de producton : l s'agt d'une sute ordonnée

Plus en détail

L onglet Mode Plan est sélectionné dans la barre des onglets. Les règles ne sont plus visibles et chaque paragraphe est précédé d un rond grisé.

L onglet Mode Plan est sélectionné dans la barre des onglets. Les règles ne sont plus visibles et chaque paragraphe est précédé d un rond grisé. Plans et tables Plans et tables Word 2010 Créer un plan en utlsant les styles prédéfns Actvez le mode d affchage Plan : clquez sur l onglet Affchage pus sur le bouton Plan vsble dans le groupe Affchages

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

Matériel. But du jeu. Nombre de manches

Matériel. But du jeu. Nombre de manches atérel 110 cartes, dont 37 cartes Voyelle jaunes et 73 cartes onsonne bleues ans que 21 jetons. u recto de chaque carte on trouve une lettre centrale reprse sur les quatre cons, et au verso, une couleur

Plus en détail

Circuits en courant continu

Circuits en courant continu Crcuts en courant contnu xercce On consdère les tros montages suvants : montage montage montage ) Montrer que le premer montage équvaut à une résstance unque eq telle que : + eq ) Montrer que le deuxème

Plus en détail

Loi binomiale - Echantillonnage

Loi binomiale - Echantillonnage Lo bnomale - Echantllonnage I Epreuve de Bernoull Lo de Bernoull 1. Epreuve de Bernoull Une épreuve de Bernoull est une expérence aléatore qu n'a que deux ssues : - S appelé succès avec une probablté p.

Plus en détail

1 ère S Exercices sur les limites (3)

1 ère S Exercices sur les limites (3) ère S Exercces sur les lmtes () n donne c-dessous la courbe représentatve d une oncton déne sur l ntervalle ]0 ; + [ Dre s : - l axe des ordonnées semble asymptote à la courbe ; - la drote semble asymptote

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN REPERGE DNS LE PLN I. Repère du plan 1. Repère et coordonnées Tros ponts dstncts deux à deux, I et J du plan forment un repère, que l on peut noter (, I, J). L orgne et les untés I et J permettent de graduer

Plus en détail

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1 EXERCICE 1. Détermner (x + y ), représentaton cartésenne du nombre complexe : 1.1. (5 ) ; ( + ) ; (1 5 ). 1.. (5 )( + 6 ); ( + ) ( ). 1.. 1.. 1.5. 1+ ; 1 ; +. 1+ 7 + + + 1. 1+ α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

TP Reseaux i UTILISATION D'UN SIMULATEUR DE RESEAUX INTRODUCTION

TP Reseaux i UTILISATION D'UN SIMULATEUR DE RESEAUX INTRODUCTION UTILISATION D'UN SIMULATEUR DE RESEAUX INTRODUCTION Le smulateur de réseaux que nous allons utlser au cours de ce TP a été développé par Perre Losel et est dsponble gratutement c : http://www.reseaucerta.org/outls/smulateur/.

Plus en détail

C 15/03/2017. Cahier Technique E. Tests de conformité 1/7

C 15/03/2017. Cahier Technique E. Tests de conformité 1/7 Indce de Révson Date de mse en applcaton C 15/03/017 Caher Technque E 1/7 Table des matères TABLE DES MATIERES... 1 1 PRICIPE... CRITERES DE COFORMITE DE LA VALEUR THERMIQUE DECLAREE....1 TEST DE COFORMITE

Plus en détail

Une introduction à la théorie de la NP-Complétude

Une introduction à la théorie de la NP-Complétude Chaptre 8 Une ntroducton à la théore de la P-Complétude. Introducton: u chaptre, nous avons dscuté l mportance d avor des solutons de complexté polynomale. Dans l étude de la complexté des problèmes, le

Plus en détail

Travaux pratiques de Mathématiques. Ajustement

Travaux pratiques de Mathématiques. Ajustement I.U.T de Sant-azare Département de Géne cvl E LETTRES CAPITALES OM(S) : PRÉOM(S) : GROUPE : Travaux pratques de Mathématques Ajustement Travaux pratques de Mathématques joseoun.fr Page 1 / 7 Travaux pratques

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

1 ère S Fonctions de référence

1 ère S Fonctions de référence ère S Fonctons de référence Cette méthode est dffcle à mettre en œuvre pour certanes fonctons ; nous étuderons un ben melleur moyen cette année. 4 ) Tableau de varaton (pour mémore) bectfs : - Revor et

Plus en détail

Récurrence ; Sommes, produits

Récurrence ; Sommes, produits Récurrence ; Sommes, produts ECE3 Lycée Carnot 7 septembre 0 Pour ce trosème chaptre, un peu de théore, pusque celu-c va nous permettre de défnr quelques notatons et méthodes supplémentares qu nous seront

Plus en détail

ça s écrit comme ça se prononce la classe 3

ça s écrit comme ça se prononce la classe 3 ça s écrt comme ça se prononce! PRÉSENTATION Ça s écrt comme ça se prononce! est un outl de producton de mots. Il a pour but de rendre les élèves capables, dès la fn de la Grande Secton de maternelle,

Plus en détail

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1.

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1. Trgonométre Défnton du snus et cosnus d'un réel quelconque. (révson de seconde) Len avec la défnton du snus et du cosnus d'un angle agu (dans un trangle rectangle) vue au collège. S O J C I Cette généralsaton

Plus en détail

Mécanique : dynamique. Chapitre 6 : Travail et puissance d'une force

Mécanique : dynamique. Chapitre 6 : Travail et puissance d'une force e B et C 6 Traval et pussance d une orce 56 Mécanque : dynamque Les eets des orces et les modcatons mécanques des systèmes sont souvent décrts à l ade du concept de l énerge mécanque. Or, les transmssons

Plus en détail

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1 NOMBRES COMPLEXES EXERCICE 1 Détermner (x + y ), représentaton cartésenne du nombre complexe : 11 (5 ) ; ( + ) ; (1 5 ) 1 (5 4 )( + 6 ); (4 + ) (4 ) 1 14 15 ; 1 ; + 7 + + + 1 α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles Clôture transtve (accessblté) Problème G = (S, A) graphe (orenté) Calculer H = (S, B) où B est la clôture réflexve et transtve de A. Clôture transtve des graphes et tous les plus courts chemns Note : (s,t)

Plus en détail

Dipôle RC : Exercices

Dipôle RC : Exercices Dpôle : xercces xercces 1 : QM Un condensateur est placé dans un crcut. Le schéma ndque les conventons adoptées. hosr dans chacune des phrases suvantes, la proposton exacte. On donne q A = q 1. la tenson

Plus en détail

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction TP 6: Crcut C, charge et décharge d'un condensateur - Correcton Objectfs: Savor utlser un multmètre. Savor réalser un crcut électrque à partr d'un schéma. Connaître l'nfluence d'un condensateur dans un

Plus en détail

Méthode des résidus pondérés

Méthode des résidus pondérés Produt propre d un opérateur Méthode des résdus pondérés Ecrture d un opérateur u avec Ω les coordonnées spatales x, y, z p dans Ω Pour un opérateur lnéare u u u u avec α, β des nombres quelconques Pour

Plus en détail

Chapitre 3 Analyse statistique de données Première S

Chapitre 3 Analyse statistique de données Première S Chatre Analyse statstque de données Premère S Le vocabulare relatf au statstques La statstque est la scence qu consste à réunr des données chffrées, à les analyser, à les crtquer Une étude statstque se

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

2. Simplification d un rapport de nombres complexes.

2. Simplification d un rapport de nombres complexes. chaptre. Calcul du module et de l argument d une pussance d un nombre complexe.. Smplfcaton d un rapport de nombres complexes. 3. Pour montrer qu un nombre complexe est réel. 4. Pour montrer qu un nombre

Plus en détail

Application du premier principe à la réaction chimique

Application du premier principe à la réaction chimique Applcaton du premer prncpe à la réacton chmque Le premer prncpe de la thermodynamque étude les transferts d énerge (transfert de chaleur d un corps à un autre), les transformatons d un type d énerge en

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Correction Mines PC 2 : Problème de Waring

Correction Mines PC 2 : Problème de Waring Correcton Mnes PC : Problème de Warng Glbert Prmet glbertprmet@9onlnefr 9 ma 6 Merc d adresser vos éventuelles remarques et correctons à l adresse c-dessus A Proprétés élémentares du Wronsken On pose d)

Plus en détail

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 :

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 : Termnales S Exercces sur les nombres complexes Page sur 6 Exercce : ) Calculer, et 05 06 07 ) En dédure, et ) Détermner les enters n pour lesquels n est a) un réel, b) est un magnare pur, c) égal à Exercce

Plus en détail

AL1 Complexes Séance de TD - Corrigés des exercices -

AL1 Complexes Séance de TD - Corrigés des exercices - AL1 Complexes Séance de TD - Corrgés des exercces - 1 QCM GI FA 01 Test calcul et rotaton GI FA 015 Test 1 Complexes et rotaton GI FC186 015 Test Complexes et cercle 5 GI FC18/6 01 Test - Complexes et

Plus en détail

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d etour au menu éseaux lnéares Défntons Un réseau électrque lnéare est un ensemble de dpôles lnéares, relés par des conducteurs de résstance néglgeable. On suppose que le réseau content au mons un générateur.

Plus en détail

II MOMENTS - TORSEURS

II MOMENTS - TORSEURS II OENTS - TORSEURS Le torseur est l'outl prvlégé de la mécanque. Il sert à représenter le mouvement d'un solde, à caractérser une acton mécanque et à formuler le PFD (prncpe fondamental de la dynamque),

Plus en détail

Fractions rationnelles

Fractions rationnelles Unversté Claude Bernard Lyon 1 L1 de Mathématques : Math. II Algèbre (parcours prépa.) Année 2013 2014 Fractons ratonnelles I On fxe un corps K. On connaît l anneau des polynômes K[X], dont l arthmétque

Plus en détail

Texte Urnes et particules

Texte Urnes et particules Unverstés Rennes I Épreuve de modélsaton - Agrégaton Externe de Mathématques 2009. Page n 1. Texte Urnes et partcules À la fn du 19 ème sècle et au début du suvant, la tempête fat rage autour de la théore

Plus en détail

EC 2 Étude des circuits linéaires en régime continu

EC 2 Étude des circuits linéaires en régime continu Étude des crcuts lnéares en régme contnu PS 2016 2017 Objet du chaptre : donner des outls pour détermner l état électrque d un crcut : potentels des dfférents nœuds par rapport à un nœud chos comme référence

Plus en détail

Partie 1. Manipulations. Plan. Approche expérimentale de la tangente à une courbe. 1 ère S

Partie 1. Manipulations. Plan. Approche expérimentale de la tangente à une courbe. 1 ère S 1 ère S pproche epérmentale de la tangente à une courbe Parte 1 anpulatons Dans toute cette parte, on consdère la courbe de la foncton «carré» dans le plan mun d un repère. Plan Parte 1 anpulatons I. Tracé

Plus en détail

Ecole Nationale d Ingénieurs de Brest. Module Qualité et Fiabilité. Les Plans d Expériences

Ecole Nationale d Ingénieurs de Brest. Module Qualité et Fiabilité. Les Plans d Expériences Notes de cours Ecole Natonale d Ingéneurs de Brest Module Qualté et Fablté Les Plans d Expérences Cours proposé par M. Parenthoën année 2002-2003 enb c mp2003....... 1 Plan du cours Plans d Expérences

Plus en détail

Calcul linéaire de toutes les périodes locales d un mot. Thierry Lecroq

Calcul linéaire de toutes les périodes locales d un mot. Thierry Lecroq Calcul lnéare de toutes les pérodes locales d un mot Therry Lecroq ABISS Unversté de Rouen - France Therry.Lecroq@unv-rouen.fr http://www-gm.unv-mlv.fr/~lecroq traval commun avec Jean-Perre Duval (Rouen),

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

CIRCUITS LOGIQUES SEQUENTIELS

CIRCUITS LOGIQUES SEQUENTIELS Chap-II: Regstres à décalage CIRCUITS LOGIQUES SEQUENTIELS Regstres à décalage Attenton! Ce produt pédagogque numérsé est la proprété exclusve de l'uvt. Il est strctement nterdt de la reprodure à des fns

Plus en détail

LA MESURE EN SCIENCES PHYSIQUES

LA MESURE EN SCIENCES PHYSIQUES MP LA MESURE EN SCIENCES PHYSIQUES En général, on dot donner avec le résultat d une mesure expérmentale effectuée en TP une évaluaton de l ncerttude de mesure, cec dans le but : - d estmer correctement

Plus en détail

Editions ENI. Access Collection Référence Bureautique. Extrait

Editions ENI. Access Collection Référence Bureautique. Extrait Edtons ENI Access 2010 Collecton Référence Bureautque Extrat Relatons entres les tables Tables Établr une relaton entre deux tables Les dfférents types de relaton entre les tables Établr une relaton entre

Plus en détail

1) Proportion («rapport d une partie au tout»)

1) Proportion («rapport d une partie au tout») 1) Proporton («rapport d une parte au tout») La proporton (ou réquence) d une sous populaton dans une populaton (dte de réérence) est le nombre : où n est l eect de et n celu de. Proprété : 0 p 1 p = n

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

Les transformations élémentaires

Les transformations élémentaires Les transformatons élémentares ransformatons Utlsatons : Déplacement d'un objet dans une scène Déplacement d'un observateur par rapport a une scène éplcaton d'un motf ou d'un objet Déformaton d'un objet

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

texte source 3/59 Quoi d autre? 5/59

texte source 3/59 Quoi d autre? 5/59 Front-end d un complateur parte avant (analyse) Bureau 332 - M3 mrabelle.nebut at lfl.fr texte source analyseur lexcal analyseur syntaxque analyse sémantque rep sémantque 2012-2013 2/59 Analyse sémantque

Plus en détail

N - ANNEAUX EUCLIDIENS

N - ANNEAUX EUCLIDIENS N - ANNEAUX EUCLIDIENS Dans ce qu sut A est un anneau untare, mun de deux opératons notées addtvement et multplcatvement. Le neutre de l addton est noté 0, celu de la multplcaton est noté e. On pose A

Plus en détail