Support de cours D électronique de puissance Les convertisseurs DC-DC et DC-AC

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Support de cours D électronique de puissance Les convertisseurs DC-DC et DC-AC"

Transcription

1 MINISR D NSIGNMN SUPRIUR D A RCHRCH SCINIFIQU Direcion générale des éudes echnologiques Insiu supérieur des éudes echnologiques de Nabeul Déparemen : Génie lecrique Suppor de cours D élecronique de puissance es converisseurs DC-DC e DC-AC Classe concernée : I2 2 S2 Proposés par : Hidri.Imed echnologue à l IS de Nabeul

2 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC INRODUCION Ce documen es un suppor de cours d élecronique de puissance desiné esseniellemen aux éudians de l IS du déparemen génie élecrique pour l opion élecricié indusrielle I 2 S2. Il es desiné à accompagner le ravail personnel de l éudian avec l aide précieuse de l enseignan. Par ailleurs il es à signaler que ce ravail n a aucun caracère définiif e sa rédacion es provisoire; il ne préend pas êre exhausif. e premier chapire es dévolu à l éude des principaux ypes des hacheurs. e deuxième chapire es consacré à l éude des onduleurs monophasés e riphasés. Hidri.I Page 1

3 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC CONVRISSUR CONINU(DC)-CONINU(DC) S HACHURS I- Inroducion es hacheurs son des converisseurs saiques qui permeen d obenir une ension coninue consane e ce, avec un rendemen voisin de l unié. Ils jouen le même rôle que les ransformaeurs en couran alernaif. nrée (DC) Sorie (DC) Figure N 1 : Converisseur Coninu (DC) - Coninu (DC) Ils son principalemen uilisés pour la variaion de viesse des moeurs à couran coninu ainsi que dans les alimenaions à découpage à couran coninu. Ces converisseurs permeen le conrôle du ransfer d énergie enre une source e une charge qui es, soi de naure capaciive (source de ension), soi de naure inducive (source de couran). Hacheur à accumulaeur inducif Hacheur série Ou abaisseur Hacheur parallèle Ou élévaeur Hacheur à accumulaeur capaciive I-1- Définiion des sources e des récepeurs Pour déerminer si une source ou un récepeur réel doi êre considéré comme éan une source de ension ou une source de couran e évaluer dans quelle mesure son comporemen se rapproche de celui d une source ou d un récepeur parfai, il fau considérer deux échelles de emps: a première, qui es, de l ordre de la microseconde, correspond à la durée des commuaions des semi-conduceurs d un éa à l aure (fermeure ou ouverure). a deuxième, qui es, de l ordre de la cenaine de micro seconde, correspond à la durée des cycles d ouverure fermeure des semi-conduceurs au sein du variaeur. C es, l échelle des emps correspondan aux commuaions qui fixe la naure des sources e des récepeurs. On es en présence d une source ou d un récepeur de couran si on ne peu pas inerrompre le couran i() qui y circule par une commande à l ouverure d un semi-conduceur. Cee inerrupion provoquerai des pics imporans dans l onde de la ension u(). Hidri.I Page 2

4 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC di() Ces pics ( d ) apparaissen dés que la source ou le récepeur on une inducance inerne non négligeable compe enu de la rapidié de la variaion du couran di(). d Symbole d une source de couran On es en présence d une source ou d un récepeur de ension si on ne peu pas faire varier brusquemen la ension u() à ses bornes par une commande à la fermeure d un semi-conduceur. Ce enclenchemen enraîne des pics imporans dans l onde du couran i(). du() Ces pics (C ) apparaissen dés que la source ou le récepeur on une capacié d enrée C non négligeable d vu la rapidié de variaion de la ension du(). d Symbole d une source de ension échelle des emps liée à la durée des cycles d ouverure e fermeure des semi-conduceurs au sein du variaeur de couran coninu à pulsaion, c es-à-dire l échelle des emps liée à la fréquence de commuaion, indique dans quelle mesure on peu considérer une source ou un récepeur comme parfai. n effe, c es, la fréquence de commuaion du variaeur qui fixe : a fréquence de la composane parasie présene sur la ension u() aux bornes d une source ou d un récepeur de couran. Celui-ci es, d auan plus parfai que son impédance es, plus élevée à cee fréquence, a fréquence de la composane parasie présene dans le couran qui raverse une source ou un récepeur de ension. Celui-ci es, d auan plus parfai que son impédance es, plus faible à cee fréquence. I-2- es semi-conduceurs disponibles comme foncion inerrupeur es deux ypes de semi-conduceurs les plus uilisés dans les hacheurs son la diode e le ransisor MOSF/IGB associé à une diode de conducion don les caracérisiques son représenées Fermeure iq iq commandée Ouverure e fermeure sponanée Ouverure commandée uq uq Diode MOSF/IGB + Diode Figure N 2 : Caracérisique d une diode Figure N 3 : Caracérisique d une diode+igb(ou MOSF) Hidri.I Page 3

5 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC II- Hacheur série II-1- Principe hacheur série commande le débi d une source de ension coninu U dans un récepeur de couran I. Q1 i Q1 I 1 Q1 α i Q2 II-2- ude d un hacheur série charge inducive II-2-1- Monage Q2 u Pour régler le ransfer d énergie, on applique aux inerrupeurs une commande périodique. a période de pulsaion de celle-ci peu-êre choisie arbirairemen dans la mesure où la source e le récepeur que relie le variaeur de couran coninu se comporen comme des circuis à fréquence de commuaion nulle. inerrupeur Q1 perme de relier l enrée à la sorie, Q2 cour-circuie la source de couran quand Q1 es, ouver Q 1 Q2. On défini α rappor cyclique. iq i Q idr 1 Q UDR DR u R α Figure N 4 : Schéma d un Hacheur série charge R- i2 a charge inducive accumule une énergie élecromagneique W si Q es, passan.il serai dangereux 2 d de lidérer brualemen cee énergie par ouverure de Q, il en résulerai une surension e - qui d provoquerai des graves dommages. On évie ce inconvénien en uilisan une diode de roue libre (DR)qui assure le passage du couran si Q es, ouver. e foncionnemen es, alors coninu ; le couran évolue enre une limie infereure IMIN e une limie superieure IMAX II-2-2- Analyse de foncionnemen Nous pouvan décomposer cee analyse en deux paries disinces : Hidri.I Page 4

6 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC 1 er cas : < < α ( Q fermé, DR ouvere ). iq Q i UDR idr DR u R On a : UDR = - u = iq = i idr = e = Ri() di() d Figure N 5 : Schéma équivalen d un Hacheur série pour, di() Déerminon le couran i() : on a = Ri() avec i() = IMIN e i(α) = IMAX d di() * Soluion sans second membre ( = Ri() ) d di() di() di() di() Ri () Ri() - - R d d d i() i() donc log i() - R K i() A exp- R * Soluion pariculiere ( = Ri()) Donc i() R * Soluion génerale calcul de IMAX? = i() - R A e R on pose - donc i () A e R R à = on a i() = IMIN = A A I R à = α on a i(α) = IMAX = MIN 2 er cas : α < < ( Q ouver, DR fermée ). iq Q donc i() I MIN - R R e - MIN - R - I - e R R - - I MAX IMIN e 1 - e R i - R d UDR idr DR u R On a : UDR = u = iq = idr = i e = Ri() di() d Figure N 6 : Schéma équivalen d un Hacheur série pour, di() Déerminon le couran i() : on a = Ri() avec i() = IMIN e i(α ) = IMAX d di() di() di() di() Ri () Ri() - - R d d d i() i() = - R d Hidri.I Page 5

7 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC calcul de IMIN? donc log i() - K - R i () A e avec - R à = α on a i(α ) = IMAX = A e A IMAX e donc à = on a i() = IMIN = i() I MAX - MAX e I e ( - ) - - I MIN I MAX e - 1 II-2-3- Relaion enre les ensions d enrée e de sorie di() u () Ri() u() d Ri() d di() d On a u() d Ri() d di() n régime éabli, la ension moyenne aux bornes de l inducance es, nulle ( di() ) Donc u() d d 1 1 U U e I R e hacheur serie es, équivalen à un ransformaeur non réversible à couran coninu de rappor de ransformaion α avec α 1. II-2-4- Ondulaion du couran Il es, imporan, pour un hacheur, d apprécier l imporance de l ondulaion du couran. - - On a : I MAX IMIN e 1- e R (1) donc (1)-(2) = 1 I MAX IMIN e (2) I MIN e - 1- e I e R - (1) MIN = - 1- e 1- e - I e 1- e - 1- e I - e I R - R R MIN MIN MIN 1- e 1- e 1 - e donc I R 1 MIN e I MAX IMIN e 1 - e On considère rès élevée donc τ >> donc les morceaux d exponenielle son des segmens de droies ce qui perme un calcul simplifié des couran IMAX e IMIN (car e 1 si >> 1). Ce qui donne: IMIN = R e IMAX = IMIN (1 (1 )) Donc IMAX = (1 (1 )) R Il es alors facile de calculer l ondulaion ΔI crêe à crêe: ΔI = IMAX IMIN = (1 (1 )) R - R ΔI = ( 1 ) R Calcul de ΔIMAX : on a τ = ΔI = (1 ) R ΔI = (1 2 ) Hidri.I Page 6

8 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Donc ΔI es maximum pour α =,5 ΔIMAX = 4 4f Ainsi, pour réduire l ondulaion du couran doi-on agir sur les paramères suivans : Augmenaion de la fréquence de hachage f. Augmenaion de la consane de emps τ du récepeur. Réducion de la durée relaive des inervalles de coupure n fin, dans le cas pariculier où l inducance es, infinie,on a IC = IMIN = IMAX. II-2-5- Forme d ondes des principales grandeurs u i IMAX IMIN iq IMAX IMIN idr IMAX IMIN UDR - α Figure N 7 : Forme d ondes des principales grandeurs d un Hacheur série pour une charge R- Hidri.I Page 7

9 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC II-3-ude d un hacheur série charge R, e C. Quand on alimene un récepeur qui compore une f.c.e.m (C) la conducion peu êre soi coninue, soi disconinue. II-3-1- Conducion coninue : II Monage iq i Q UD idr DR u R C 1 Q α Figure N 8 : Schéma d un Hacheur série charge R-- C II Analyse du foncionnemen Généralemen l inducance de la source de couran, à une valeur suffisammen élevée pour que la valeur moyenne I du couran i(), au-dessous de laquelle la conducion devien disconinue, soi elle qu elle rend RI négligeable par rappor à U Nous pouvons décomposer cee analyse en deux paries disinces : 1 er cas : < < α ( Q fermé, DR ouvere ). iq Q i UDR idr DR u R C On a : UDR = - u = iq = i idr = e = C Ri() di() d Figure N 9 : Schéma équivalen d un Hacheur série (charge R-- C) pour, di() Déerminons le couran i() : on a >> Ri() donc = C avec i() = IMIN e i(α) = IMAX d di() di() = di() d di() - d d - C - d C C C donc i() - K C à = on a i() = IMIN = K calcul de IMAX? donc à = α on a i(α) = IMAX = i() - - C I MIN - C C IMIN IMAX IMIN Hidri.I Page 8

10 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC 2 er cas : α < < ( Q ouver, DR fermée ). Q iq i UDR idr DR u R C On a : UDR = u = iq = idr = i di() e = C d Figure N 1 : Schéma équivalen d un Hacheur série (charge R-- C) pour, di() Déerminon le couran i() : on a = C avec i() = IMIN e i(α ) = IMAX d di() di() = C d di() C C C - di() - - d d d donc C i() - K à = α on a i(α ) = IMAX = C - K C K IMAX donc C C C I i() - I C i() - MAX MAX C i() - - IMAX calcul de IMIN? à = on a i() = IMIN = C - 1- IMAX IMIN = C 1- I II Relaion enre les ensions d enrée e de sorie - MAX Si u() désigne la ension aux bornes de la charge qui compore une résisance R,une inducance e C ( f.c.é.m ) on a : di() u() C Ri() u() d CRi() d di() u() d CRi() d di() d régime éabli, la ension moyenne aux bornes de l inducance es, nulle ( di() ) Donc u() d d 1 1 U - C U e I R n II Ondulaion du couran Il es, imporan, pour un hacheur, d apprécier l imporance de l ondulaion du couran. C On a : IMAX - IMIN IMIN = C - 1- IMAX Donc on a C C 1- C C - C C donc I I MAX IMIN 1 - I 1- f Comme on l a monré, cee ondulaion es, maximale pour α =,5 ΔIMAX = 4 4f Ainsi, pour réduire l ondulaion du couran doi-on agir sur la fréquence de hachage f. Hidri.I Page 9

11 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC II Forme d ondes des principales grandeurs u i IMAX IMIN iq IMAX IMIN idr IMAX IMIN UDR - α Figure N 11 : Forme d ondes des principales grandeurs d un Hacheur série pour une charge R-- C Hidri.I Page 1

12 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC II-3-2- Conducion disconinue : la conducion es, disconinue si la valeur minimale IMIN du couran s annule à chaque période à = β pour β, ; soi i(β) =. II Analyse du foncionnemen 1 er cas : < < α ( Q fermé, DR ouvere ). iq Q i UDR idr DR u C R On a : UDR = - u = iq = i idr = e = C Ri() di() d Figure N 12 : Schéma équivalen d un Hacheur série (charge R-- C) pour, di() Déerminons le couran i() : on a >> Ri() donc = C avec i() = e i(α) = IMAX d di() di() = di() d di() - d d - C - d C C C donc i() - K C à = on a i() = = K donc i() - C calcul de IMAX? à = α on a i(α) = IMAX = - C - C IMAX 2 er cas : α < < β ( Q ouver, DR fermée ). iq Q i UDR idr DR u R C On a : UDR = u = iq = idr = i di() e = C d Figure N 13 : Schéma équivalen d un Hacheur série (charge R-- C) pour, di() Déerminons le couran i() : on a = C avec i() = IMIN e i(α ) = IMAX d di() di() C C C - di() - d d d di() donc C i() - K = C - d Hidri.I Page 11

13 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC calcul de IMIN? à = α on a i(α ) = IMAX = C - K C K IMAX donc C C C I i() - I C i() - MAX MAX C i() - - IMAX à = β on a i(β) = = C - C IMAX = - - IMAX 3 er cas : β < < (Q ouver, DR fermée). iq Q i UDR idr DR u R C On a : UDR = -C u = C iq = idr = e i = Figure N 14 : Schéma équivalen d un Hacheur série (charge R-- C) pour, II Ondulaion du couran Il es, imporan, pour un hacheur, d apprécier l imporance de l ondulaion du couran. On a : IMAX = C -C - e IMIN = donc I IMAX IMIN I IMAX II Relaion enre les ensions d enrée e de sorie On a IMAX = C - - C C - C - Donc C Il es, alors possible de calculer la valeur moyenne de la ension aux bornes de la charge on a : U -C U 1- C on a C donc U 1- C C - C U C C C Hidri.I Page 12

14 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC II Forme d ondes des principales grandeurs u C i IMAX iq IMAX idr IMAX UDR - α β Figure N 15 : Forme d ondes des principales grandeurs d un Hacheur série pour une charge R-- C Conducion disconinue Hidri.I Page 13

15 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC II Valeur moyenne du couran i(). On peu égalemen calculer la valeur moyenne du couran puisque le graphe es un riangle on a : C - C I IMAX avec IMAX - I de plus on a I 2 C C Il es, alors ineressan de représener le graphe de I = f(c) pour différenes valeurs de α. I α =,25 α =,5 α =, Figure N 16 : Graphe de I = f( C) pour différenes valeurs de α. C n régime disconinu, la courbe représenaive es, une hyperbole qui passe par le poin : I = ; C =. e régime passe de l ea disconinu à l éa coninu pour β =, soi C = α. 2 Dans ces condiions, le couran I a pour valeur limie : C I 2 2 C C a courbe de ce couran limie es, une parabole qui es, représenée en poinillé. Cee parabole qui passe par les poins C = e = a pour valeur maximale C = (soi α =,5 ) e IM =. 2 8 Hidri.I Page 14

16 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC III- Hacheur parallèle ou élévaeur de ension III-1-Principe e hacheur parallèle perme de varier le couran fourni par une source de couran I dans un récepeur de ension U. Ce hacheur es, consiué d un inerrupeur à ouverure commandée en parallèle avec le récepeur e d un inerrupeur à fermeure e ouverure sponanée enre la source e le récepeur. III-2-Monage i v D i iq 1 Q UQ C Q u α Figure N 17 : Schéma d un Hacheur parallèle Dans ce cas, es, une fém comme dans le cas précéden mais elle es, à présen en série avec une inducance ( dans un premier emps on néglige sa sésisance propre R) donc une source de couran qui débien dans une source de ension C e que la diode D empêche ou reour de couran vers la source. III-3-ude d un hacheur parallèle III-3-1- Conducion coninue Généralemen l inducance de la source de couran, à une valeur suffisammen élevée pour que la valeur moyenne I du couran i(), au dessous de laquelle la conducion devien disconinu, soi elle qu elle rend RI négligeable par rappor à. III Analyse du foncionnemen Nous pouvan décomposer cee analyse en deux paries disinces : 1 er cas : < < α ( Q fermé, D ouvere ). i v v D i iq D On a : UQ = vd = -C UQ Q u C iq = i id = di () e = v = d Figure N 18 : Schéma équivalen d un Hacheur parallèle pour, Hidri.I Page 15

17 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC di () Déerminons le couran i() : on a >> Ri() donc = avec i() = IMIN e i(α) = IMAX d di() = di () d di () d d donc i() K à = on a i() = IMIN = K donc i () IMIN calcul de IMAX? à = α on a i(α) = IMAX = IMIN IMAX IMIN 2 er cas : α < < ( Q ouver, D fermée ). i v v D i UQ iq Q D u C On a : UQ = C vd = iq = id = i di () e v = C = d Figure N 19 : Schéma équivalen d un Hacheur parallèle pour, di() Déerminon le couran i() : on a = C avec i(α ) = IMAX e i() = IMIN d di() di() = C - C - d d di() - C d di () donc C i() K à = α on a i(α ) = IMAX = K C K I - C MAX donc - C i() I - C MAX i () - - I C MAX calcul de IMIN? à = on a i() = IMIN = 1- I C MAX IMIN = 1- I C III Ondulaion du couran dans l inducance Il es, imporan, pour un hacheur parallèle, d apprécier l imporance de l ondulaion du couran dans l inducance. On a : IMAX IMIN Donc on a I MAX - IMIN C d MAX I I I MAX MIN I f Hidri.I Page 16

18 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC III Forme d ondes des principales grandeurs UQ C v - C i IMAX IMIN iq IMAX IMIN id IMAX IMIN vd -C α Figure N 2: Forme d ondes des principales grandeurs d un Hacheur parallèle (Conducion coninue) III Relaion enre les ensions d enrée e de sorie n régime éabli, la ension moyenne aux bornes de l inducance es, nulle. Donc : u () d U 1 C C - C C C 1-1 C - C - C Hidri.I Page 17

19 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC III Caracérisique saique réelle en conducion coninue Si on se place en conducion coninu, il es, possible de voir, héoriquemen du moins, que la ension de sorie end vers 1.Cela pose un problème sur le plan physique : commen la ension peu-elle augmener ainsi indéfinimen? Il fau à ce sade enir compe des élémens dissipaifs que l on avai négligés jusqu à présen. Si on ien compe de la résisance série R ( de l inducance ) avec la résisance inerne de la charge RC on peu écrire en valeur moyenne: R I C 1- avec donc : par sui : C R R C 1 C R R I R C C 1-1- C C Cee foncion présene un maximum pour RC C 1- e CMAX 1 R R 2 R On voi donc que la limiaion en ension inervien par les imperfecions du sysème.on obien la caracérisique saique réelle en conducion coninue suivane : 16 C R R C,1 R R C,5 R R C,1 1 Figure N 21: Caracérisique saique réelle en conducion coninue d un Hacheur parallèle a charge es, noée comme une fcém C, mais cee charge peu ne pas êre une charge acive e êre réalisée avec une résisance RC en parallèle avec un condensaeur de capacié C. Si la valeur de C es, suffisammen grande, il sera possible de considérer la ension aux bornes de C comme consane. Hidri.I Page 18

20 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC III-3-2- Fronière enre le mode coninu e disconinu : orsque le couran moyen I dans l inducance es, égal à la moiié de l ondulaion Δi, on aein la limie de la conducion coninue. On peu écrire pour le couran limie moyen dans I 1 I IM donc i i IMIN Sachan que le couran dans l inducance es, idenique au couran d enrée, il es, possible de calculer la valeur moyen de sorie IIM à la limie de la conducion coninue : on a I 1 IM 1- IMAX e IMAX IIM on peu calculer IIM(MAX) pour =.5 donc I 8 IM MAX IMAX IMIN III-3-3- Conducion disconinue : a conducion es, disconinue si la valeur minimale IMIN du couran s annule à chaque période à = β pour β, ; soi i(β) =. III Analyse de foncionnemen Nous pouvan décomposer cee analyse en 3 paries disinces : 1 er cas : < < α ( Q fermé, D ouvere ) i α i v v D i iq D On a : UQ = vd = -C UQ Q u C iq = i id = di () e = v = d Figure N 22 : Schéma équivalen d un Hacheur parallèle pour, di () Déerminon le couran i() : on a >> Ri() donc = avec i() = IMIN e i(α) = IMAX d di() = di () d di () d d donc i() K à = on a i() = IMIN = K = donc i() calcul de IMAX? à = α on a i(α) = IMAX = IMAX Hidri.I Page 19

21 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC 2 er cas : α < < β ( Q ouver, D fermée ). i v v D i UQ iq Q D u C On a : UQ = C vd = iq = id = i di () e v = C = d Figure N 23 : Schéma équivalen d un Hacheur parallèle pour, di() Déerminons le couran i() : on a = C avec i(α ) = IMAX e i(β) = d di() di() = C - C - d d di() - C d di () donc C i() K à = α on a i(α ) = IMAX = K C K I - C MAX donc - C i() I - C MAX i () - - I C MAX calcul de IMAX? à = β on a i(β) = = - I C MAX IMAX = - C d 3 er cas : β < < ( Q ouver, D fermée ) i v v D i UQ iq Q D u C On a : UQ = vd = -C iq = id = i = e v = Figure N 24 : Schéma équivalen d un Hacheur parallèle pour, III Relaion enre les ensions d enrée e de sorie - C On a IMAX = - C - C - C - Donc C C e - C - Hidri.I Page 2

22 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC III Valeur moyenne du couran i(). On peu égalemen calculer la valeur moyenne du couran puisque le graphe es un riangle on a : C - - I - de plus on a - C I I avec I 2 2 C MAX MAX C C - - I I C C I C 2 C - C C 1- C 2 I C III Forme d ondes des principales grandeurs uq C v - C i IMAX iq IMAX id IMAX UD - C -C α β Figure N 25 : Forme d ondes des principales grandeurs d un Hacheur parallèle Conducion disconinue Hidri.I Page 21

23 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC III Caracérisique saique avec ension d enrée consane. Il es, alors ineressan de représener le graphe de C f I I pour différenes valeurs de α. IM( MAX ) 2 On a I e 8 2 I IM MAX 4 C 1 I C IIM ( MAX ) C 5 imie de conducion 4 3 Conducion coninue Conducion disconinue α =,6 2 α =,8 α =, I IIM( MAX ) Figure N 26: Caracérisique saique avec ension d enrée consane Hidri.I Page 22

24 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC IV- Hacheur à accumulaion d énergie IV-1-Principe Un aure ype de hacheur survoleur peu êre obenu par une modificaion de la srucure ; au lieu de parir de la configuraion : source de ension + commuaeur + source de couran, on inercale, enre les deux, un disposiif qui socke emporairemen l énergie ransférée ou une parie de celle-ci : source 1 + commuaeur + élémen de sockage + commuaeur + source 2. Cee srucure permera de réaliser une conversion indirece d énergie enre deux généraeurs (ou sources) de même ype. IV-2-Monage iq UQ D i Q i v u = C 1 Q Figure N 27 : Schéma d un Hacheur à accumulaion α IV-3-ude d un hacheur à accumulaion d énergie Comme dans ce qui précède, on éudie le sysème dans le cadre d une approximaion : - a charge es, supposée êre à ension consane umoy = C. - inducance de sockage es, dépourvue de résisance (non-dissipaion de l énergie sockée). IV-3-1- Analyse du foncionnemen es deux phases de foncionnemen son : 1 er phase : < < α ( Q fermé, D ouvere ). iq UQ Q i v D D i On a : UQ = vd = - C - v u iq = i id = di () e = v = d Figure N 28 : Schéma équivalen d un Hacheur à accumulaion pour, Hidri.I Page 23

25 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC di () Déerminons le couran i() : on a >> Ri() donc = avec i() = IMIN e i(α) = IMAX d di() = di () d di () d d donc i() K à = on a i() = IMIN = K donc i () IMIN calcul de IMAX? à = α on a i(α) = IMAX = IMIN IMAX IMIN 2 er cas : α < < ( Q ouver, D fermée ). iq UQ v D i Q v i D u On a : UQ =C + vd = iq = id = i di () e v = -C = d Figure N 29: Schéma équivalen d un Hacheur à accumulaion pour, di() Déerminons le couran i() : on a = C avec i(α ) = IMAX e i() = IMIN d di() di() = C - C - d d di() - C d di () donc C i() K à = α on a i(α ) = IMAX = K C K I - C MAX donc - C i() I - C MAX i () - - I C MAX calcul de IMIN? à = on a i() = IMIN = 1- I C MAX IMIN = 1- I C IV-3-2- Relaion enre les ensions d enrée e de sorie n régime éabli, la ension moyenne aux bornes de l inducance es, nulle. Donc : u () d U 1 C C C Si le rappor cyclique es, inférieur à,5 : abaisseur. Si le rappor cyclique es, supérieur à,5 : élévaeur. C d MAX C - C C Hidri.I Page 24

26 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC IV-3-3- Forme d ondes des principales grandeurs UQ + C v - C i IMAX IMIN iq IMAX IMIN id IMAX IMIN vd -C α Figure N 3: Forme d ondes des principales grandeurs d un Hacheur à accumulaion Hidri.I Page 25

27 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC V- ransfer d énergie e réversibilié V-1- Calcule de puissance Dans les cas précédens hacheur série e hacheur parallèle la puissance moyenne disponible à la charge es, celle qui a éé prise à la source, le rendemen éan égal à un. Cee puissance varie avec le rappor cyclique α. Hacheur série : On a démonré que : C, MAX MIN I I Q 2 I e MAX MIN I 2 I Donc la puissance moyenne prise à la source : P1 IQ I P2 Car P2 C I I Hacheur survoleur : IQ On a démonré que : I MAX MIN I MAX MIN C, I e I 1- I I 2 I Donc la puissance moyenne prise à la source : P1 I P2 1 - I Car P I I 1 2 C Dans les deux cas les ransfers d énergie s effecuen de la source vers la charge pour oue valeur du rappor cyclique. Si on veu un ransfer d énergie en sens inverse il sera donc nécessaire d associer deux srucures du ype précéden e en oure, d adoper pour chacune d elle une poliique de gesion de la commande V-2- Hacheurs réversibles en couran V-2-1- Monage D2 Q1 C D1 u Q2 Figure N 31 : Schéma d un Hacheur réversibles en couran V-2-2-ude d un hacheur réversible en couran On peu, sur cee srucure, envisager différens ypes de foncionnemen : 1 er phase: Q1 es commandé e Q2 non commandé (ouver), D1 concernée e D2 ne l es, pas. C es, le foncionnemen en hacheur série. 2 er phase: Q2 es commandé e Q1 non commandé (ouver), D2 concernée e D1 ne l es, pas. C es, le foncionnemen en hacheur parallèle. Hidri.I Page 26

28 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Ceci es, vrai dans les condiions suivanes: - que la source soi réversible en couran, - que C joue convenablemen son rôle de source e soi, elle aussi, réversible en couran. On obien alors un hacheur double, ou à deux inerrupeurs, réversible en couran. Une elle srucure es, bien adapée pour la récupéraion d énergie en viesse variable dans le cas d une machine à couran coninu. V-3- Hacheurs réversibles en ension V-3-1- Monage is D1 Q2 UD1 C id1 UQ2 u Q1 i D2 UQ1 iq1 UD2 1 Q1 = Q2 α iq2 id2 Figure N 32 : Schéma d un Hacheur réversibles en ension V-3-2-ude d un hacheur réversible en ension On peu, sur cee srucure, envisager différens ypes de foncionnemen : 1 er phase < < α : Q1 e Q2 son commandés (fermés), D1 e D2 son ouveres. C es, le foncionnemen en hacheur série. 2 er phase α < < : Q1 e Q2 ne son pas commandés (ouvers), D1 e D2 son fermées. C es, le foncionnemen en hacheur parallèle. V-3-3- Relaion enre les ensions d enrée e de sorie n régime éabli, la ension moyenne aux bornes de l inducance es, nulle. Donc : u() d U 1 U 2-1 On a réversibilié en ension mais au prix d une réversibilié en couran de la source Hidri.I Page 27

29 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC V-3-4- Forme d ondes des principales grandeurs u - i IMAX IMIN i S IMAX IMIN - IMIN - IMAX id1 IMAX id2 IMIN vd α Figure N 33: Forme d ondes des principales grandeurs d un Hacheur réversibles en ension VI- Hacheurs en H ou hacheurs à 4 inerrupeurs a srucure la plus complèe e la plus riche d emploi es, à 4 inerrupeurs ces derniers son disposés de la façon suivane: is ik2 iq1 id1 Vk1 In1 In4 u i In2 In3 Figure N 34 : Schéma d un Hacheur en H Hidri.I Page 28

30 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC e ransfer d énergie s effecue dans les deux sens avec une réversibilié en ension e une réversibilié en couran. Soi par exemple, une source de ension coninue réversible en couran (baerie d accumulaeurs ou disposiif de récupéraion-dissipaion associé à une source unidirecionnelle) e une charge qui serai, comme précédemmen, une machine à couran coninu. Selon le mode de commande il sera possible de rerouver les différens ypes de foncionnemen possible des hacheurs (réversibilié en ension e réversibilié en couran). xemple : Commande complémenaire es inerrupeurs 1 e 2 son couplés ainsi que les inerrupeurs 3 e 4 e, en oure : - quand 1 e 2 son fermés 3 e 4 son ouvers, - quand 1 e 2 son ouvers 3 e 4 son fermés, a période es, e le rappor cyclique α. Dans ces condiions, la ension aux bornes de la charge es, + ou selon les inervalles e la valeur moyenne de u es : U = (2α 1) e foncionnemen de la charge peu êre de couran posiif (récepeur) ou négaif (généraeur). Dans ces condiions l énergie échangée peu êre dans les deux sens e de deux façons différenes : soi en ension (la valeur moyenne peu prendre deux valeurs numériques les mêmes en valeur absolue mais de signe différen), soi en couran (posiif ou négaif). es modes de foncionnemen réversibles de la machine à couran coninue son possibles. Dans le cas où le couran dans la charge es, posiif, comme c es, indiqué dans la figure ci-dessus, la valeur moyenne du couran es I e celle de la source IS = I (2α 1). Hidri.I Page 29

31 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC S ONDUURS AUONOMS I- Inroducion Un onduleur auonome es un converisseur saique coninu-alernaif ; il perme d obenir une ension alernaive réglable en fréquence e en valeur efficace à parir d une ension coninue donnée. Dans ceraines condiions, un redresseur commandé peu envoyer de l énergie d une source coninue à une source alernaive : c es le foncionnemen di en onduleur non auonome ou assisé. nrée Onduleur Sorie Vmax ension de Fondamenale de la ension de sorie Figure N 2.1 a forme d onde alernaive de la ension de sorie es déerminée par le sysème (par différence avec les onduleurs auonomes). Selon la forme de cee ension de sorie, on classe les onduleurs en plusieurs caégories : vs() Onduleur 2 éas (ension en créneaux +U, -U) : a valeur efficace de la ension de sorie n es pas réglable e dépend de la ension coninue d enrée. Onduleurs 3 éas (+U,, -U) : a valeur efficace de la ension de sorie es réglable en agissan sur la durée du créneau. Figure N 2.2 vs() Onduleurs à modulaion de largeur d impulsions : MI (Pulse Widh Modulaion: PWM): onde de sorie es avec rain d impulsions de largeur e d espacemen variables. Ceci perme de réduire le aux des harmoniques. On peu même obenir une onde de sorie voisine de l onde sinusoïdale. vs() Figure N 2.3 Figure N 2.4 Onduleurs à ension de sorie en marche d escalier : onde de sorie es consiuée par la somme ou la différence de créneaux de largeur variable e sa forme générale se rapproche au mieux de la sinusoïde. un des problèmes de ce sysème es le nombre imporan d élémens vs() Figure N 2.5 Hidri.I Page 3

32 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Classificaion es monages onduleurs son rès nombreux en foncion de leurs applicaions, de leurs srucures e de leurs commandes. Nous pouvons classer les onduleurs suivan : le nombre de phases de la charge : nous disinguerons les onduleurs monophasés les onduleurs riphasés. la naure de la source : l'onduleur de ension : alimené par un généraeur de ension coninu, il impose par sa commande la ension u(); la charge impose alors l'inensié i(). l'onduleur de couran : alimené par un généraeur de couran coninu, il impose par sa commande le couran i(); la charge impose la ension u(). la srucure du converisseur : on rouve des srucures en demi-pon, en pon, avec ransformaeur la naure des inerrupeurs : inerrupeurs commandés à l'ouverure e à la fermeure (ransisor bipolaire, MOS ou IGB, GO), inerrupeurs commandés à la fermeure (hyrisors) avec blocage naurel ou forcé, inerrupeurs commandés à l'ouverure (hyrisor dual). le mode de commande : la forme de la grandeur imposée y() = u() ou i() peu êre à deux niveaux Yo, à rois niveaux + Yo,, - Yo, en marche d'escalier (plusieurs niveaux par alernance),, à modulaion de largeur d'impulsion (en abrégé MI ou PWM pour Pulse Widh Modulaion) Qualié du signal de sorie e specre d'un signal recangulaire inclu une onde fondamenale (rang n = 1, pulsaion 1) e des ondes harmoniques (rang n > 1, pulsaion n = n1) d'ampliude plus ou moins imporane. Dans ce qui sui, on compare les performances de chaque ype d'onduleur au cas idéal (onde sinusoïdale pure de pulsaion 1) en calculan le specre du signal généré. On cherche à diminuer le plus possible l'ampliude des harmoniques de rang faible car : - les harmoniques de rang élevé son faciles à filrer : un onduleur es oujours suivi d'un filre passe-bas. - sur charge inducive, ce son les harmoniques de rang faible qui génèren les courans les plus imporans. a qualié de l'onde de ension obenue sera évaluée par le HD, ou aux d'harmonique ramené au fondamenal (HD idéal = %). On pourrai aussi calculer le HD du couran, mais celui-ci dépend égalemen de la charge. es onduleurs son uilisés dans plusieurs applicaions indusrielles : - Alimenaion sans coupure : n emps normal, la baerie es mainenue en charge, mais l'énergie es fournie par le réseau via le redresseur e l'onduleur. n cas de défau de réseau, l'énergie es fournie par la baerie via l'onduleur. NB : assure égalemen isolaion galvanique e/ou CM. Baerie Figure N 2.6 f,v Hidri.I Page 31

33 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC - Alimenaion des moeurs CA à f e V variables : (évenuellemen réversible) Figure N 2.7 f,v var M - Alimenaion de charges réacives (fours,...) : (ou onduleurs "à résonance"). II- Principe de base en monophasé Figure N 2.8 f fixe, e principe de base consise à connecer, alernaivemen dans un sens puis dans l aure, une source coninue (de ension ou de couran) à une charge de manière à lui imposer une alimenaion (en ension ou couran) alernaive. es srucures possibles son : un pon d inerrupeurs élecroniques (Fig.2.9 e Fig.2.1), un demi-pon d inerrupeurs élecroniques (Fig.2. 11) nécessian deux sources d alimenaion, ou une srucure uilisan un ransformaeur à poin milieu (Fig.3. 12) équivalene à deux charges. I Onduleur Inerrupeurs élecroniques Source coninue d alimenaion Charge alimenée en alernaif K1 K4 U A us = uab B is de ension bidirecionnels Source de ension ou à capacié en parallèle. a ension es imposée, le couran dépend de la charge. K2 Figure N 2.9 : Principe d un onduleur auonome en pon K3 de couran unidirecionnels Source de couran ou à inducance en série. Figure N 2.1 : Onduleurs de ension e de couran e couran es imposé, la ension dépend de la charge. U I K1 I K1 is U I B us = uab A is K2 U K2 us Figure N 2.11 : Principe d un onduleur auonome en demi-pon Figure N 2.12: Principe d un onduleur auonome avec ransformaeur à poin milieu Hidri.I Page 32

34 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC III- Principe de foncionnemen des onduleurs de ension monophasés On considère le monage onduleur auonome le plus simple : monage à deux inerrupeurs don la commande es symérique. Schéma du monage : I K1 B A ic I uc = uab K2 Figure N 2.13: Principe d un onduleur auonome en demi-pon son deux sources de ension coninue idéales ideniques. K1 e K2 son deux inerrupeurs élecroniques commandable à l ouverure e à la fermeure. On appelle uc, ension aux bornes de la charge e ic, inensié du couran dans la charge. a commande es symérique, cela signifie que pendan la moiié de la période de foncionnemen K1 es fermé e K2 es ouver e pendan l aure moiié de la période de foncionnemen K1 es ouver e K2 es fermé. u C() K 2 K 1 K 2 K 1 K 2 K 1 Inerrupeur ouver Inerrupeur fermé /2 - Figure N 2.14 Sur la première demi-période (<</2), l inerrupeur K1 es fermé e K2 es ouver. Seule la branche du hau es uilisée. a ension se recopie aux bornes de la charge. Sur la deuxième demi-période (/2<<), l inerrupeur K2 es fermé e K1 es ouver. Seule la branche du bas es uilisée. a ension - se recopie aux bornes de la charge. Ainsi : la ension aux bornes de la charge es alernaive. IV- Onduleur de ension monophasé à deux inerrupeurs en série IV-1- Onduleur de ension monophasé à deux inerrupeurs débi sur charge résisive IV-1-1-Analyse du foncionnemen On uilise le monage précéden. a charge es une résisance R. Hidri.I Page 33

35 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Observaion des oscillogrammes : u C() K 1 K 2 K 2 K 1 K 2 K 1 Inerrupeur ouver Inerrupeur fermé /2 - i C() /R -/R /2 Figure N 2.15 Comme la charge es résisive, l inensié du couran dans la charge a la même forme d onde que la ension aux bornes de la charge. es inerrupeurs K1 e K2 doiven supporer une ension posiive à leurs bornes lorsqu ils son ouvers e son raversées par une inensié unidirecionnelle (posiive pour K1 e négaive pour K2) lorsqu ils son fermés. On peu donc réaliser K1 avec un ransisor bipolaire NPN e K2 avec un ransisor bipolaire PNP. IV-1-2- Grandeurs caracérisiques du monage IV Période e fréquence a période e la fréquence de la ension aux bornes de la charge e de l inensié du couran qui parcour la charge son imposées par la commande des inerrupeurs, il s agi donc d un onduleur auonome. IV Valeur de moyenne de la ension aux bornes de la charge e signal es alernaif : la valeur moyenne de la ension aux bornes de la charge es nulle. IV Valeur efficace de la ension aux bornes de la charge On la déermine par la méhode des aires en résolvan l équaion U c = < uc² > Pour cela, le problème es découpé en 3 éapes : On race le graphe du signal uc²() : On déermine la valeur moyenne de uc²() : < uc²() > = ² On prend la racine carrée du résula précéden : U c = < u c ² > = ² Uc = Remarque : la valeur efficace de la ension aux bornes de la charge es fixe. Hidri.I Page 34

36 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC IV-2- Onduleur de ension monophasé à deux inerrupeurs débi sur charge inducive IV-2-1- Srucure des inerrupeurs a charge inducive implique un déphasage enre la ension e le couran pour la charge. Ainsi uc e ic ne passe pas par aux mêmes insans. Par conséquen, le couran dans les inerrupeurs sera bidirecionnels (anô posiifs, anô négaifs). Il faudra adaper la srucure des inerrupeurs afin que ceux-ci accepen le double sens de parcours du couran. Pour cela, on place une diode en aniparallèle du ransisor pour chacun des inerrupeurs K1 e K2. I 2 I 2 I B2 I B2 1 D 1 2 D 2 Inerrupeur K 1 Inerrupeur K 2 D 1 D 2 H 1 H 2 Figure N 2.16 es inerrupeurs son consiués d un inerrupeur élecronique commandable à l ouverure e à la fermeure (comme un ransisor bipolaire, schéma ci-conre) e une diode en aniparallèle. éa de l inerrupeur es déerminé par le circui de commande (généralemen non représené sur le schéma). n effe lorsque le ransisor es commandé à la fermeure, il ne conrôle plus le couran e peu êre raversé par un couran inverse; le foncionnemen inversé du ransisor avec un faible gain peu êre dangereux. On peu évier la conducion inverse en plaçan une diode Ds en série avec le ransisor. Cee diode a l'inconvénien d'augmener la chue de ension dans l'inerrupeur donc les peres de conducion. On peu aussi polariser négaivemen la base de r an que le couran i es négaif pour forcer son blocage mais cela complique la commande car on doi déecer les passages à zéro de i pour débloquer r. Si on uilise un ransisor MOS, ce inerrupeur possède une diode de srucure inégrée; cee diode peu êre uilisée pour conduire le couran négaif mais cee diode es de mauvaise qualié en commuaion. n basse fréquence, la diode de srucure peu êre uilisée à condiion de ralenir la commuaion du MOS; en haue fréquence, cee diode doi êre neuralisée en plaçan une diode en série avec le MOS e une diode rapide êe-bêche suivan un monage idenique à celui de la figure N 2.16 précédene. Pour les fores puissances e une fréquence maximale de l'ordre de 1 khz, on peu uiliser un hyrisor GO. Dans ous les cas, afin d'évier une conducion simulanée de K1 e K2 on doi réaliser l'emboîemen des commandes. orsqu'on commande le blocage de K1, on ne doi pas débloquer simulanémen K2; on doi aendre le blocage effecif de K1 e commander K2 au bou d'un emps supérieur au emps de blocage off. Hidri.I Page 35

37 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC IV-2-2- Analyse du foncionnemen e observaion des oscillogrammes Schéma du monage : i 1 i D1 i B1 Charge R, ic 1 K 1 D 1 uc i 2 K2 i D2 i B2 2 D 2 Figure N 2.17 : Schéma de principe de l'onduleur de ension monophasé à deux inerrupeurs débi sur charge inducive Analyse du foncionnemen : a commande des inerrupeurs impose un foncionnemen périodique de période réglable. Pendan la première demi-période ( < /2), la commande impose K1 fermé e K2 ouver. Pendan la deuxième demi-période (/2 <), la commande impose K1 ouver e K2 fermé. Pour < /2 : K1 fermé e K2 ouver donc uc =. a ension aux bornes de la charge es posiive. e couran circule soi par 1 soi par D1 suivan le signe de celui-ci. e couran dans la charge ic s annule à l insan 1. Pour < 1 : le couran dans la charge es négaif ic <. e couran circule par la diode D1 : id1 = -ic. e ransisor 1 ne condui pas. a puissance insananée p = uc.ic < : il y a ransfer d énergie de la charge vers la source de ension. Il s agi d une phase de récupéraion. Pour 1 < /2 : le couran dans la charge es posiif ic. e couran circule par le ransisor 1 : i1 = ic. a diode D1 es bloquée. a puissance insananée p = uc.ic : il y a ransfer d énergie de la source vers la charge. Il s agi d une phase d alimenaion. Pour /2 < : K2 fermé e K1 ouver donc uc = -. a ension aux bornes de la charge es négaive. e couran circule soi par 2 soi par D2 suivan le signe de celui-ci. e couran dans la charge ic s annule à l insan 2. Pour /2 < 2 : le couran dans la charge es posiif ic >. e couran circule par la diode D2 : id2 = ic. e ransisor 2 ne condui pas. a puissance insananée p = uc.ic < : il y a ransfer d énergie de la charge vers la source de ension. Il s agi d une phase de récupéraion. Pour 2 < : le couran dans la charge es négaif ic. e couran circule par le ransisor 2 : i2 = -ic. a diode D2 es bloquée. a puissance insananée p = uc.ic : il y a ransfer d énergie de la source vers la charge. Il s agi d une phase d alimenaion. Hidri.I Page 36

38 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Onduleur monophasé à deux inerrupeurs en débi sur charge inducive : observaion des oscillogrammes u() - I M i() 1 2 -I M I M i 1() i D1() -I M I M i D2() i 2() -I M D 1 2 D 2 2 D 1 2 lémens passans K 1= 1 K 2 = K 1 = K 2 = 1 K 1= 1 K 2 = Figure N 2.18: oscillogrammes d onduleur monophasé à deux inerrupeurs en débi sur charge inducive IV-2-3- Grandeurs caracérisiques du monage Période e fréquence : imposées par la commande e réglable indépendammen de la charge. Valeur moyenne de la ension e de l inensié pour la charge : nulles, les signaux son alernaifs. Valeur efficace de la ension aux bornes de la charge : le signal es le même que celui obenu en charge résisive donc Uc =. Cee valeur efficace es fixe. Remarque : es sources de ension coninue doiven acceper de fournir de la puissance comme d en recevoir, elles doiven êre réversibles en couran. Il fau donc uiliser des baeries ou des alimenaions couplées en parallèle avec des condensaeurs. e plus souven on uilise une seule source de ension coninue de valeur 2. e un diviseur capaciif. Hidri.I Page 37

39 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC xemple praique d un diviseur : ou avec C = 47 μf - 3V Figure N 2.19: Principe d un diviseur capaciif V- Onduleur de ension monophasé à deux inerrupeurs en parallèle Ce monage nécessie un ransformaeur à poin milieu enre la source e la charge. es inerrupeurs K e K son des hyrisors ou des ransisors. Considérons un ransformaeur d'alimenaion à double secondaire. Un ransformaeur éan réversible, on peu alimener les deux secondaires en alernaif e en opposiion de phase, on obiendra alors une ension alernaive en sorie. e schéma de principe es donné ci-dessous: v k i k K v u i v k v i k K Figure N 2.2: Principe d un onduleur auonome avec ransformaeur à poin milieu e ransformaeur es supposé parfai; chaque demi primaire a n1 spires e le secondaire a n2 spires; nous en déduisons, en posan m = n2/n1, v = v' e u = m.v, ik-i'k = m.i. De à /2, K es fermé e K' ouver; nous en déduisons vk= donc v = e u = m.; v' = donc v'k = 2.; i'k = donc ik = m.i. De /2 à, K es ouver e K' fermé; v'k = donc v' = v = - e vk = 2.; ik = donc i'k = -m.i. es grandeurs on la même allure que pour l'onduleur en demi-pon, seules les ampliudes diffèren : u es un créneau symérique d'ampliude m. l'inensié ik es égale à m.i de à /2 e à de /2 à le couran dans la source de ension es égal à m.i de à /2 e à -m.i de /2 à. Sa valeur moyenne es le double de celle calculée pour l'onduleur en demi-pon soi 2.m.Imax.cosφ/π. la ension es égale à 2. aux bornes de K ou K' lorsqu'ils son bloqués. e calcul réel du couran e le choix des inerrupeurs se fai comme pour le monage en demi-pon. Hidri.I Page 38

40 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC VI- Onduleur de ension monophasé en pon (quare inerrupeurs) Un onduleur monophasé de ension en pon (Fig. 21) nécessie des inerrupeurs élecroniques bidirecionnels (diode en aniparallèle sur inerrupeur unidirecionnel) car le couran is es décalé par rappor à la ension us. On uilise le symbole d un inerrupeur unidirecionnel en couran commandable à l ouverure e à la fermeure. i1 iq1 id1 K1 Q1 D1 Charge R, K4 Q4 D4 uc ic Q2 Q3 K2 D2 K3 D3 e monage es consiué de deux bras d'onduleur: le bras A consiué de K1 e K2, le bras B consiué de K4 e K3. a source es un généraeur de ension coninue réversible en couran. es inerrupeurs Q1, Q2, Q3 e Q4 son des inerrupeurs commandable à l ouverure e à la fermeure. D1, D2, D3 e D4 son des diodes supposées idéales. Si on considère A, K1, K2, B, K4, K3 comme des variables logiques (foncionnemen en soupapes), on obien les équaions logiques suivanes: o Soupape Ki Ki= ransisor bloqué Ki=1 ransisor sauré o Bras A A = K1 =, K2 = 1 A = 1 K1 = 1, K2 = o Bras B B = K3 = 1, K4 = B = 1 K3 =, K4 = 1 VI-1- ude du foncionnemen de la parie puissance VI-1-1- Commande Pleine Onde: Dans cee commande, K1 e K3 son commandés en même emps, saurés pendan l'alernance posiive e bloqués pendan l'alernance négaive. De même pour K2 e K4, bloqués pendan l'alernance posiive e saurés pendan l'alernance négaive. n reprenan les noaions ci-dessus, on peu écrire: S A B K1 K2 K3 K4, où S es le signal de synchronisaion. On obien le chronogramme de commande ci-dessous. S A K 1, K 3 B K 2, K 4 Figure N 2.22 : Chronogramme de commande. Figure N 2.21 : Schéma de principe de l'onduleur en Pon On remarque que A B, c'es une commande complémenaire. On remarquera, en débu d'alernance un emps mor (reard à la sauraion des ransisors) permean au ransisor conduisan précédemmen de se bloquer. On remarquera que ce son les blocages des ransisors qui délimien les alernances. Hidri.I Page 39

41 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Analyse du foncionnemen a commande des inerrupeurs impose un foncionnemen périodique de période réglable. Pendan la première demi-période ( < /2), la commande impose K1 e K3 fermé, K2 e K4 ouver. Pendan la deuxième demi-période (/2 <), la commande impose K1 e K3 ouver e K2 e K4 fermé. Chaque alernance débue par une phase de resiuion e se ermine par une phase d'accumulaion. di *Pour < /2 : K1 e K3 fermés e K2 e K4 ouvers donc uc = R. i u. a ension aux bornes d de la charge es posiive. e couran circule soi par Q1 e Q3 (Figure N 2.24) soi par D1 e D3 (Figure N 2.23) suivan le signe de celui-ci. e couran dans la charge i s annule à l insan 1. e couran de source es égal au couran dans la charge : i1 = i Pour < 1 : le couran dans la charge es négaif i <. e couran circule par les diodes D 1 e D 3 : i D1 = i D3 = -i. es inerrupeurs Q 1 e Q 3 ne conduisen pas. a puissance insananée p = u.i < : il y a ransfer d énergie de la charge vers la source de ension. Il s agi d une phase de récupéraion ou resiuion. Pour 1 < /2 : le couran dans la charge es posiif i. e couran circule par les inerrupeurs Q 1 e Q 3 :i Q1 = i Q3 = i. es diodes D 1 e D 3 son bloquées. a puissance insananée p = u.i : il y a ransfer d énergie de la source vers la charge. Il s agi d une phase d'alimenaion ou accumulaion. *Pour /2 < : K2 e K4 fermés e K1 e K3 ouvers donc uc = R. i u. a ension aux bornes de la charge es négaive. e couran circule soi par Q2 e Q4 (Figure N 2.26) soi par D2 e D4 (Figure N 2.25) suivan le signe de celui-ci. e couran dans la charge i s annule à l insan 2. e couran de source es égale au couran dans la charge : i1 = -i Pour /2 < 2 : le couran dans la charge es posiif i >. e couran circule par les diodes D 2 e D 4 : i D2 = i D4 = i. es inerrupeurs Q 2 e Q 4 ne conduisen pas. a puissance insananée p = u.i < : il y a ransfer d énergie de la charge vers la source de ension. Il s agi d une phase de récupéraion ou resiuion. Pour 2 < : le couran dans la charge es négaif i. e couran circule par les diodes Q 2 e Q 4 : i H2 = i H4 = -i. es inerrupeurs D 2 e D 4 son bloquées. a puissance insananée p = u.i : il y a ransfer d énergie de la source vers la charge. Il s agi d une phase d'alimenaion ou accumulaion. Hidri.I Page 4 di d i 1 i 1 K 1 K 2 K 1 K 2 Q 1 i D2 Q 2 D 1 D 2 Charge R, Figure N 2.25: Schéma équivalen resiuion alernance négaive pour : i 1 K 1 K 2 Q 1 i Q2 Q 2 i D1 Q 1 Q 2 D 1 D 2 D 1 D 2 Charge R, Figure N 2.23: Schéma équivalen resiuion alernance posiive pour : i 1 u Charge R, K 4 i i D4 Q 4 Q 3 D 4 K 3 D 3 Figure N 2.26: Schéma équivalen accumulaion alernance négaive pour : u u K 4 K 4 i i Q 4 Q 3 i D3 i Q4 Q 4 Q 3 D 4 K 3 D 3 Figure N 2.24: Schéma équivalen accumulaion alernance posiive pour : i 1 K 1 K 2 i Q1 Q 1 Q 2 D 1 D 2 Charge R, u K 4 i Q 4 Q 3 i Q3 D 4 K 3 D 3 D 4 K 3 D 3

42 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Grandeurs caracérisiques du monage Période e fréquence : imposées par la commande e réglable indépendammen de la charge. Valeur moyenne de la ension e de l inensié pour la charge : nulles, les signaux son alernaifs. Valeur efficace de la ension aux bornes de la charge : u d' ou :U eff eff Remarque : les sources de ension coninue doiven acceper de fournir de la puissance comme d en recevoir, elles doiven êre réversibles en couran. Onduleur monophasé en pon en débi sur charge inducive : observaion des oscillogrammes pour la pleine onde : u() - I M i() 1 2 -I M I M i Q1() i D1() -I M I M i D2() i Q2() -I M I M i 1 () -I M D 1D 3 Q 2Q 4 D 2D 4 Q 1Q 3 D 1D 3 Q 2Q 4 lémens passans K 1=K 3 =1 K 2 =K 4= K 1=K 3 = K 2 =K 4=1 K 1=K 3 =1 K 2 =K 4= Figure N 2.27: oscillogrammes d onduleur monophasé à deux inerrupeurs en débi sur charge inducive Hidri.I Page 41

43 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC ude du couran de sorie: D'après ce qui précède, le couran i() sera la réponse à u() par deux équaions différenielles: di Ri cse d di di n normalisan cee équaion, on obien i que l on rapproche de i I R d R d Par idenificaion, on rouve la consane de emps : e la valeur asympoique : I R R On sai que cee équaion a pour soluion : i( ) A. e B On pose l inensié iniiale : i( ) I. n injecan cee valeur dans la soluion, on obien : i ( ) I. e 1 IM. e On obien alors le chronogramme de la soluion mahémaique : M I 3 Pour obenir le chronogramme du couran de sorie, il fau inroduire l équaion de raccordemen. Pour ce faire, on remarque que i() es un couran inducif e, par conséquen n a pas de disconinuié. Pour le chronogramme précéden on peu écrire: i( ) i( ) IM. n faisan ainsi, on voi que 2 IM correspond à la valeur finale (à ne pas confondre avec la valeur asympoique) de l inensié du couran i () e donc l inensié maximale du couran débié par l onduleur. On a donc à résoudre l équaion : I I. 1 e 2 I. e I. 1 e I. e On rouve sans difficulé : I M e 1 e M 1 e x x M M où on pose x x x x x x x e e e e x 2 2 IM I IM I I I I x x x x x e chronogramme de l inensié du couran : -I M e 1 e. 1 e e e. h( ) 4 x synchro ½ u +I M i -I M Figure N 2.28: chronogramme de l inensié du couran Hidri.I Page 42

44 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC a valeur du paramère synchro x influe foremen sur la forme du couran : synchro ½ ½ u +I M u i +I M i -I M -I M Figure N 2.29: chronogramme de l inensié du couran >> Au passage, on peu remarquer que l on obien des droies pour x << 1. C es bien l approximaion pour les R. hacheurs pour lesquels nous avons posé R, ce donne bien x Specre de la ension ondulée: a ension u () es un signal carré symérique (cf. ci dessus). a décomposiion en séries de Fourier donne : Pulsaion du fondamenal : 2 2f Valeur moyenne : 1 a v ( ). S d car le signal es symérique [ ] 2 Coefficiens pairs : a n sin( n ). vs ( ). d car le signal es impair 2 Coefficiens impairs : b n sin( n ). vs ( ). d [ ] [ ] Symérie de glissemen => les coefficiens bn son nuls pour n pair. Pour n impair : b n.sin( n ). d.sin( n ). d 1 cosn 1 1 n n 2 On obien le specre : v kmax Figure N 2.3: chronogramme de l inensié du couran << n 4 2 cn bn 1 1 n f n e HD es rès mauvais, de l ordre de 48% : F1 3F1 5F1 7F1 9F1 Figure N 2.31: Specre de la ension ondulée Hidri.I Page 43

45 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC VI-1-2- Onduleur en créneaux ou Commande décalée: Cee commande, plus sophisiquée dans sa concepion, es une première éape vers l'obenion d'un couran sinusoïdale. Si nous nous aachons à une analyse specrale, nous verrions dans la commande précédene que la ension, ainsi que le couran, son riches en harmoniques ce qui pose des problèmes pour une uilisaion avec des moeurs (peres joules, couples pulsaives ). a commande décalée perme d'éliminer en parie ces harmoniques e améliore donc le converisseur. D'ailleurs l'allure du couran s'en ressen. a commande du pon n es plus symérique K1 e K3 ne son pas nécessairemen fermés en même emps, il en es de même pour K2 e K4. Pendan la première demi période K1 e K3 son fermés simulanémen puis c es au our de K3 e K2 d êre fermés conjoinemen. Pendan la seconde demi-période K4 rese fermé avec K2, puis revien K1 avec K4. a ension uc peu prendre mainenan les nouvelles valeurs suivanes : K1 e K3 fermés K2 e K4 ouvers u =. K3 e K2 fermés K1 e K4 ouvers u =. K4 e K2 fermés K1 e K3 ouvers u = -. K4 e K1 fermés K3 e K2 ouvers u =. Analyse du foncionnemen d onduleur à commande décalée a commande des inerrupeurs impose un foncionnemen périodique de période réglable. a commande des inerrupeurs K1 e K2 es décalée d une durée τ par rappor à la commande des inerrupeurs K4 e K3 (voire les oscillogrammes en annexe). Ainsi : Pour < τ : K2 e K3 fermés e K4 e K1 ouvers donc la charge es cour-circuiée u =. inensié du couran dans la charge es négaive. a puissance consommée par la charge p = u.i =. a charge ne ravaille pas. Il s agi d une phase die de «roue-libre». Pour τ < /2 : K1 e K3 fermés e K2 e K4 ouvers donc u =. Pour τ < 1 : le couran dans la charge es négaif i <. e couran circule par les diodes D1 e D3 : il s agi d une phase de récupéraion. Pour 1 < /2 : le couran dans la charge es posiif i. e couran circule par les ransisors Q1 e Q3 : il s agi d une phase d'alimenaion. Pour /2 < /2 + τ : K1 e K4 fermés e K3 e K2 ouvers donc la charge es cour-circuiée u =. inensié du couran dans la charge es posiive. a puissance consommée par la charge p = u.i =. a charge ne ravaille pas. Il s agi d une phase de «roue-libre». Pour /2 + τ < : K2 e K4 fermés e K1 e K3 ouvers donc u = -. Pour /2 < 2 : le couran dans la charge es posiif i >. e couran circule par les diodes D2 e D4 : il s agi d une phase de récupéraion. Pour 2 < : le couran dans la charge es négaif i. e couran circule par les ransisors Q2 e Q4 : il s agi d une phase d'alimenaion. Grandeurs caracérisiques du monage Période e fréquence : imposées par la commande e réglable indépendammen de la charge. Valeur moyenne de la ension e de l inensié pour la charge : nulles, les signaux son alernaifs. Hidri.I Page 44

46 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Valeur efficace de la ension aux bornes de la charge : D où : n réglan τ donc α, il es possible de régler la valeur efficace de la ension aux bornes de la charge. Remarque : les sources de ension coninue doiven acceper de fournir de la puissance comme d en recevoir, elles doiven êre réversibles en couran. Observaion des oscillogrammes pour la commande décalée: u() K 2 K 1 K 2 K 1 K 3 K 4 K 3 lémens commandés à la fermeure /2-1 i() I M 1 2 /2 - I M Q 2 D 1 Q 1 Q 2 D 1 Q 1 lémens passans Specre de la ension ondulée (commande décalée): Signal : ( : angle de commande) D 3 Q 3 D 4 D 2 Q 4 D 3 Q 3 Figure N 2.32: oscillogrammes pour la commande décalée u() β π-β π 2π e HD dépend de l'angle de commande ß. Comme le monre la courbe ci-dessous, sa valeur minimum es de l'ordre de 29%, pour ß Hidri.I Page 45

47 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Specre (exemple : ß = 35 ) : Figure N 2.33: Ampliude des premières harmoniques en foncion de ß avec : n=2k+1 (n impair) Figure N 234: Specre de la ension ondulée (commande décalée) VI-1-3- Commande M..I.: Onduleur à Modulaion de argeur d'impulsion (MI ou PWM : Pulse Widh Modulaion) ou à Modulaion d'impulsions en Durée (MID). C'es, de loin, l'onduleur le plus performan. On monre qu'il es possible, en calculan soigneusemen les angles de commuaion, d'annuler complèemen les harmoniques de rang faible. Cela es assuré dans les onduleurs indusriels par un sysème à microprocesseur dans lequel son mis en mémoire les valeurs des angles de commuaion. n se limian aux harmoniques de rang faible, le HD es alors voisin de zéro. VI M..I. pré-calculée ou M..I. à neuralisaion d harmoniques a M..I. (modulaion de largeur d impulsions, ou P.W.M. pour pulse widh modulaion) perme de supprimer des harmoniques en commuan les inerrupeurs élecroniques à des insans pré-calculés. lle es pariculièremen adapée à l obenion d une sinusoïde avec peu de commuaions par période. Hidri.I Page 46

48 a Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC M..I. Onde 2 niveaux Foncionnemen. es inerrupeurs élecroniques son ous simulanémen commandés ; on a soi K1-K3 fermés e K2-K4 ouvers, soi K1-K3 ouvers e K2-K4 fermés. a ension u es impaire e symérique par rappor à la droie vericale passan par π/2. Dans le cas général, on a un nombre m d angle αi, avec. u() - u2 u1 u α 1 α2 π/2 π 2π Figure N 2.35: M..I.pré-calculée-Onde 2 niveaux xemple avec deux angles α 1 e α 2 Specre. a ension u es impaire e possède une symérie de somme pondérée de m + 1 ensions ui : On en dédui le développemen en série de sinus de u : glissemen _ ension u peu aussi êre vue comme la (exemple voir figure N où ) Soien 1 l ampliude du fondamenal e 1n l ampliude de l harmonique n,(n = 2p + 1 avec p N). Pour supprimer les harmoniques 3 à 2k + 1,(p = 1 à p = k), les harmoniques pairs éan nuls, il fau résoudre numériquemen le sysème suivan qui donne les m angles αi. Hidri.I Page 47

49 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC On rouve m α1 α2 α3 α4 α5 5 1,7 26,3 32,3 52,4 54,5 4 15,5 24,3 46,1 49, ,2 42,6 2 23,6 33,3 D où : n % 56% m=5 29% 55% 36% m=4 29% 52% 36% 4% m=3 3% 49% 36% 3% 2% m=2 Remarque : a valeur efficace du fondamenal se règle par 1. M..I. Onde 3 niveaux Foncionnemen. Pendan la première demi-période, K3 es fermé e K4 ouver, andis que l on a soi K1 fermé e K2 ouver, soi K1 ouver e K2 fermé ; Pendan la deuxième demi-période, K2 es fermé e K1 ouver, andis que l on a soi K4 fermé e K3 ouver, soi K4 ouver e K3 fermé. a ension u es impaire e symérique par rappor à la droie vericale passan par π/2. Dans le cas général, on a un nombre m impair d angle αi, avec. u() - u3 u2 u1 α 1 α2 α3 π/2 π Figure N 2.36 : M..I.pré-calculée-Onde 3 niveaux exemple avec rois angles α 1,α 2 e α 3. 2π Hidri.I Page 48

50 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Specre. a ension u es impaire e possède une symérie de «glissemen». a ension u peu aussi êre vue comme la somme pondérée de m ensions ui, m éan impair : (exemple voir figure N où ) On en dédui le développemen en série de sinus de u : Soien l ampliude du fondamenal e 1n l ampliude de l harmonique n,(n = 2p + 1 avec p N). Pour supprimer les harmoniques 3 à 2k + 1,(p = 1 à p = k), les harmoniques pairs éan nuls, il fau résoudre numériquemen le sysème suivan qui donne les m angles αi. On rouve m α1 α2 α3 α4 α5 5 18,2 26,6 36,9 52,9 56,7 3 22,7 37,8 46,8 49,4 D où : n % 22% m=5 19% 2% 7% 23% m=3 Remarque : a valeur efficace du fondamenal se règle par. VI M..I. par découpage à fréquence élevée ou M..I. sinus-riangle M..I. Onde 2 niveaux e principe consise à comparer la ension d enrée modulane umod (représenaive de la forme d onde désirée) à une ension riangulaire uri de fréquence poreuse f élevée par rappor à la fréquence f de umod. a ension de sorie ucde, modulée en largeur d impulsions, ser à commander l onduleur en pon. Ce principe es aussi uilisé pour l amplificaion ; on parle alors d amplificaeur «classe D». umod uri ucde Figure N 2.37:Principe du découpage à fréquence élevée Hidri.I Page 49

51 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Foncionnemen. es inerrupeurs élecroniques son ous simulanémen commandés ; on a K1-K3 fermés e K2-K4 ouvers pendan α, puis K1-K3 ouvers e K2-K4 fermés pendan (1 α) avec = 1/f, ω = 2πf, = 1/f e ω = 2πf. umod uri U Sa ucde u() - -π -α/2 α/2 π 2π Inerrupeurs fermés K 2 K 1 K 2 K 1 K 4 K 3 K 4 K3 Sur une période, la «valeur moyenne insananée» de u s écri : On choisi la variaion suivane du rappor cyclique : Figure N 2.38 :M..I.par découpage-onde 2 niveaux a «valeur moyenne insananée» de u es alors sinusoïdale : si ω «ω alors le fondamenal u1 de la ension u es idenique à umoy. Specre. a ension u es paire. Son développemen en série de cosinus es : e specre d ampliude présene une raie à ω (fondamenal) e des raies à ω, ω ± 2ω,..., 2ω ± ω, 2ω ± 3ω,..., 3ω,3ω ± 2ω,..., ec. es ampliudes des différenes raies dépenden de k. Remarque : a M..I. à fréquence élevée perme d élaborer n impore quelle forme d onde (ici une sinusoïde), e de repousser les harmoniques auour de la fréquence poreuse e de ses muliples ce qui en facilie le filrage. Hidri.I Page 5

52 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Remarque : a valeur efficace du fondamenal se règle par ou k. M..I. Onde 3 niveaux Foncionnemen. À l aide de deux commandes on élabore une onde à rois niveaux. es ensions de commandes ucde1 e ucde2 son obenues en comparan la ension de modulaion umod, e son opposée umod (déphasage de π pour une sinusoïde), à la ension riangulaire uri. umod uri U Sa U Sa ucde1 ucde2 u() - -π -α/2 α/2 π 2π Inerrupeurs fermés K 1 K 2 K 3 K 1 K 2 K 1 K 4 K3 K 4 Figure N 2.39 :M..I.par découpage-onde 3 niveaux a valeur moyenne de u es alors : Specre. a ension u es paire. Son développemen en série de cosinus es : e specre d ampliude présene une raie à ω (fondamenal) e des raies à 2ω ± ω, 2ω ± 3ω,..., 4ω ± ω, 4ω ± 3ω,..., ec. ; mais aucune raie en (2p + 1) ω ±, ce qui facilie le filrage. es ampliudes des différenes raies dépenden de k. Hidri.I Page 51

53 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Remarque : a valeur efficace du fondamenal se règle par ou k. VI ension en escalier: Foncionnemen. Une ension en escalier de m marches s obien en faisan la somme (généralemen avec des ransformaeurs) de m ensions à commandes décalées de haueur 1/m. es décalages 2αi son compris enre e π. u() - u3 u2 u1 α 1 α2 α3 π/2 π Figure N 2.4 :ension en escalier à 3 marches 2π Specre. a ension u es la somme des m ensions ui. Soi : avec Soien 1 l ampliude du fondamenal e n l ampliude de l harmonique n, (n = 2p + 1 avec p N). Pour supprimer les harmoniques 3 à 2k + 1, (p = 1 à p = k), les harmoniques pairs éan nuls, il fau résoudre numériquemen le sysème suivan qui donnen les m angles αi. Hidri.I Page 52

54 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC On rouve m α1 α2 α3 α4 4,9 24,9 35,1 6,9 3 11, , D où : n % m=4 7% 2% 3% 2% m=3 9% 9% 5% m=2 2% 14% 9% 8% m=1 Remarque : a valeur efficace du fondamenal se règle par. VII- Onduleur à résonance VII-1-Srucure à résonance série 'onduleur en pon ou en demi-pon foncionne en onde recangulaire deux niveaux : de à /2 on a u = e de /2 à on a u = -. a charge es un dipôle R--C série : i R C u v Figure N 2.41: Circui R..C serie Dans le cas d un circui R--C la résonance apparaî pour une fréquence propre, la résonance es d auan plus aigue que la valeur de la résisance es faible. Dans le cas d une plaque ou d un four à inducion, le circui de charge es consiué d une bobine, soi un circui R. Cee bobine doi êre alimenée en haue fréquence pour générer un champ magnéique sinusoïdale dans le maériel de cuisson. alimenaion es consiuée d un onduleur don la fréquence es accordée au circui de charge consiué de la bobine e d un condensaeur pour former un circui RC. e circui RC enre en résonance e le couran vibre à la seule la fréquence propre du circui pour former un couran sinusoïdal. VII-2-Calcul direc des grandeurs es équaions de la charge son : nous en déduisons. Sur [ ; /2], Soi la pulsaion propre du circui e son coefficien d amorissemen ; posons, il vien. a soluion de cee équaion dépend des racines de l équaion caracérisique ; le déerminan de l équaion es :. Nous nous plaçons dans le cas d un amorissemen faible soi ; es racines son alors complexes conjuguées avec e la soluion de l équaion es ; Hidri.I Page 53

55 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC nous en déduisons : es condiions iniiales v() = V e i() = I donnen : n régime éabli, les grandeurs son alernaives n pose, il vien : e suivan les deux relaions nous exprimons A e B en foncion de I : Nous exprimons I e V : VII-3-Choix des inerrupeurs Chaque inerrupeur condui sur une demi-période, le couran changean de signe sur ce inervalle. A ce insan il y a commuaion de la diode D à l'inerrupeur commandé K ou l'inverse; cee commuaion es naurellemen douce puisque i =. si la fréquence de commande f es inférieure à la fréquence de résonance, le circui es globalemen capaciif e i() >. K condui en + ; sa fermeure doi êre commandée; son blocage es naurel par annulaion du couran; ce mode de foncionnemen convien parfaiemen pour des hyrisors. si la fréquence de commande f es supérieure à celle de résonance, i() <. D condui en + e K en /2; l'ouverure de K doi êre commandée; ce foncionnemen correspond à celui du hyrisor dual. si la fréquence es proche de la résonance, oues les commuaions se fon à couran quasi nul; on a donc commuaion douce. Dans ous les cas, ce ype d'onduleur rédui les peres de commuaion donc peu foncionner à fréquence élevée VII-4-Approximaion du premier harmonique orsque le coefficien d'amorissemen << 1 e la fréquence de commande peu différene de la fréquence propre du circui résonan, le couran i es peu différen de son erme fondamenal. Éudions le foncionnemen dans cee hypohèse die du premier harmonique. e fondamenal de la ension de fréquence f es : en posan, il vien Soi i1 le fondamenal du couran dans la charge e vr1 le fondamenal de la ension vr aux bornes de la résisance R ; nous avons : ; Pour R=, on a Hidri.I Page 54

56 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC n valeurs efficaces ; la puissance acive fournie à la charge es celle dissipée par R soi Si nous fixons,, C e la fréquence de commande f, U1 e Icc son fixés; lorsque R varie, le graphe Vr1(I1) correspond à un quar d'ellipse correspondan à l'équaion ci-dessus. Comme on a de plus Vr1 = R.I1 (droie de charge), l'inersecion de l'ellipse avec la droie de charge donne le poin de foncionnemen donc Vr1, I1 e P. Si nous fixons,, C e R, pour une valeur de f donc de x, l'inersecion de l'ellipse avec la droie de charge donne le poin de foncionnemen. Remarquons que le résula es le même pour deux valeurs de la fréquence f1 e f2 elles que f1/fo = fo/f2 soi x1 = 1/x2; si x1 > 1, le circui es inducif à cee fréquence ; on a alors x2 <1 donc un circui capaciif. e choix de x > 1 ou x < 1 se fai en foncion des inerrupeurs uilisés. a figure N 2.42 donne les graphes pour = 1 V, = 5 mh ; C = 82 nf, e rois valeurs de x :1,1 ; 1,2 e 1,4. On a égalemen racé deux droies de charges pour R = 5 e R = 2,5. Figure N 2.42: les graphes V r1(i 1) pour = 1 V, = 5 mh ; C = 82 nf, e rois valeurs de x :1,1 ; 1,2 e 1,4. Dans les mêmes condiions, on a racé figure N 2.43 les graphes P(I1) e les droies de puissances P = R.I1 ². Figure N 2.43: les graphes P(I 1) e les droies de puissances P = R.I 1 ² pour = 1 V, = 5 mh ; C = 82 nf, e rois valeurs de x :1,1 ; 1,2 e 1,4. Hidri.I Page 55

57 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC Pour x =1,1 soi f = 2 51 Hz, si R varie de 5 à 2,5, la ension varie de 86 à 76,5 V e la puissance de 1 5 W à 2 3 W. Pour R = 2,5, si x varie de 1,1 à 1,4, la ension varie de 76,5 à 35 V e la puissance de 23 à 48 W. On peu donc régler la puissance ransmise à la charge en jouan sur la fréquence de commande. Pour x fixé, la puissance es maximale pour I = Icc/2 e vau U1.Icc/2. Noons que, sur le graphe de puissance, le poin d'inersecion de P(I1) avec la parabole P = R.I1 ² doi se siuer dans la parie croissane du graphe. n effe dans cee parie, l'augmenaion de R fai chuer la puissance alors que dans la parie décroissane, l'augmenaion de la résisance fai augmener la puissance. Or au cours du foncionnemen, la puissance dissipée dans R augmene sa empéraure donc sa résisance. Si l'augmenaion de R produi une augmenaion de puissance, la empéraure augmene encore e l'effe cumulaif condui le sysème à foncionner de façon insable. Seules les valeurs de P < Pmax corresponden donc à des poins de foncionnemen sables. VIII- Filre d'enrée Il es le plus souven nécessaire de placer un filre de ype - C enre la source de ension e l'onduleur. a source présene oujours une inducance parasie, or le couran source présene une disconinuié à chaque commuaion dans l'onduleur; le condensaeur C permera cee disconinuié ou en lissan la ension appliquée à l'onduleur. 'inducance rédui l'ondulaion du couran dans la source afin de limier les peres. Éudions le comporemen de ce filre pour un onduleur en pon, en supposan le couran charge sinusoïdal e les inerrupeurs parfais (figure N 44). i i S v j C K 1 i u K 2 K 1 K 2 Figure N 2.44: Principe d un onduleur auonome en pon avec filre On a = v+.dis/d e j = C.dv/d = is - i'. Si l'onduleur es commandé à la fréquence f = /2. avec un décalage angulaire, on a : <. < : K1 e K2 fermés donc u = e i' = <. < : K1 e K'2 fermés donc u = v e i' = i = Imax.cos (.). <. < : K'1 e K'2 fermés donc u = e i' = <.< 2. : K'1 e K2 fermés donc u = -v e i' = -i = -Imax.cos (.). Comme i(+/2) = -i(), les grandeurs du filre son de période /2. VIII-1- Calcul du condensaeur Négligeons pour ce calcul l'ondulaion du couran source is. On a is=is avec Is=ismoy; d après l allure du couran on a : n uilisan la variable =ω, nous avons. Hidri.I Page 56

58 Suppor de cours d élecronique de puissance I-2 es converisseurs DC-DC e DC-AC De à α, i = donc soi ; en posan v()=v, il vien De α à π, soi en écrivan la coninuié de v en α, il vien : Pour calculer V, nous savons que la valeur moyenne aux bornes de es nulle en régime périodique donc Vmoy=. ous calculs fais : a figure N 2.45 donne l'allure de v/ pour = Cse e variable, la figure N 2.46 pour variable e consan. Figure N 2.45: allure de v/ pour = Cse e variable Circui R..C serie Figure N 2.46: l'allure de v/ pour pour variable e consan. Hidri.I Page 57

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur REGIME TRANSITOIRE Inroducion Lorsqu on ferme un circui pour le mere en foncion, les courans e les ensions meen un cerain emps à s éablir. C es le régime ransioire. Ce chapire fai l éude des composans

Plus en détail

Réglage valeur moyenne

Réglage valeur moyenne P Cours : l insrumenaion élecrique A- Le généraeur de basses fréquences ou G.B.F - Présenaion uilisé : Réglage fréquence Réglage ampliude Réglage valeur moyenne Sweep : Possibilié de créer un signal de

Plus en détail

ETUDE D'UNE ALIMENTATION A DECOUPAGE. I ) MONTAGE REDRESSEUR TRIPHASE A DIODES (figure n 2)

ETUDE D'UNE ALIMENTATION A DECOUPAGE. I ) MONTAGE REDRESSEUR TRIPHASE A DIODES (figure n 2) GCJIPH BTS ELECTROTECHNIQUE Session 1997 PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 ETUDE D'UNE ALIMENTATION A DECOUPAGE Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

ELECTRONIQUE DE PUISSANCE. 2 ème année S3. V. Chollet - ELECTRONIQUE DE PUISSANCE11-20/11/2013 - Page 1 sur 60

ELECTRONIQUE DE PUISSANCE. 2 ème année S3. V. Chollet - ELECTRONIQUE DE PUISSANCE11-20/11/2013 - Page 1 sur 60 ELECRONIQUE DE PUISSANCE 2 ème année S3 V. Cholle - ELECRONIQUE DE PUISSANCE11-20/11/2013 - Page 1 sur 60 ELEC INSRU 3 ELECRONIQUE DE PUISSANCE Ch1 HACHEUR Ch2 HYRISOR Ch3 REDRESSEMEN NON COMMMANDE Ch4

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

Carte d'acquisition Dossier ressource

Carte d'acquisition Dossier ressource Care d'acquisiion BTS Sysèmes Phooniques TP AMOS Care USB 6009 BTS SP1 Page 1 sur 9 Care d'acquisiion BTS Sysèmes Phooniques 1. Présenaion 1.1 inroducion Une care d'acquisiion es un accessoire uilisé dans

Plus en détail

Redressement non commandé sur charge RLE en conduction continue

Redressement non commandé sur charge RLE en conduction continue Redressemen non commandé sur charge RL en conducion coninue SI 9- I. Conversion alernaif-coninu, exemples d applicaions liés à la racion Figure : Locomoive BB5 Réseau de disribuion Redresseur saique monophasé

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation INGOD Charloe MEYE Anne DAEAU Mayeul 22 GESSET omain éponse Temporelle d'un circui C dégradé en régime quelconque : foncions inégraion e dérivaion Philippe GUY 23-24 INGOD Charloe MEYE Anne DAEAU Mayeul

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPEILS DE MESUE EN COUAN ALENAIF I- PAAMEES CAACEISIQUES D UN SIGNAL ALENAIF : Un signal alernaif es caracérisé par sa forme ( sinus, carré, den de scie, ), sa période ( fréquence ou pulsaion

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

EVALUATION : LA GÉNÉRATION ÉLECTRIQUE EN AÉRONAUTIQUE

EVALUATION : LA GÉNÉRATION ÉLECTRIQUE EN AÉRONAUTIQUE EVALUATION : LA GÉNÉRATION ÉLECTRIQUE EN AÉRONAUTIQUE Temps impari = 1 heure ; Tous documens auorisés excepé la copie du voisin(e) Lire ou l énoncé avan de commencer. Le besoin en énergie élecrique à bord

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou ELECRICIE Analyse des signaux e des circuis élecriques Michel Piou Chapire 9 Valeur moyenne des signaux périodiques. Ediion //24 able des maières POURQUOI E COMMEN?... 2 INERE DE LA NOION DE VALEUR MOYENNE....2

Plus en détail

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés Le redressemen c'es la ransformaion de l'énergie élecrique alernaive du réseau en énergie coninue. Symbole : ~ = Les redresseurs se divisen en deux grands groupes : les redresseurs demi onde, à une alernance

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

ETUDE DES DIFFERENTES COMMANDES DU SYSTEME. 1 - Commande manuelle par BP "marche-arrêt" (2 sens de marche)

ETUDE DES DIFFERENTES COMMANDES DU SYSTEME. 1 - Commande manuelle par BP marche-arrêt (2 sens de marche) BS Mainenance Indusrielle Elecroechnique Eude d un mone charge Moeur asynchrone deux sens de roaion e 2 viesses enroulemens séparés Rappels emporisaions Présenaion es manuenions dans un grand magasin son

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

Le transistor bipolaire

Le transistor bipolaire (pascal.masson@unice.fr) Ediion 212-213 École Polyechnique Universiaire de Nice Sophia-Anipolis Cycle Iniial Polyechnique 1645 roue des Lucioles, 641 BIOT Sommaire I. Hisorique II. III. IV. Caracérisiques

Plus en détail

Voiture radio commandée servomoteur et trame PPM. Formation Systèmes d'information et numérique

Voiture radio commandée servomoteur et trame PPM. Formation Systèmes d'information et numérique 1 ère STI2D TD V1.0 Voiure radio commandée servomoeur e rame PPM. Formaion Sysèmes d'informaion e numérique Le servomoeur es un mécanisme qui réalise le déplacemen d un axe (pouvan êre relié à la direcion

Plus en détail

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max G. Pinson - Physique Appliquée Signaux périodiques A3-P / A3 - Mesurage des signaux périodiques ère parie : caracérisiques générales d'un signal périodique () 3 + 4 sin 5 max pp DC (ms) min () Signal arian

Plus en détail

Les signaux. Page 1/11

Les signaux. Page 1/11 Les signaux numériques e analogiques... 2 Les ypes de signaux... 2 les signaux à variaion coninue ou signaux analogiques... 2 les signaux à variaion disconinue... 2 Représenaion des signaux... 3 en foncion

Plus en détail

PTSI PT AUTOMATIQUE. Constituants des systèmes

PTSI PT AUTOMATIQUE. Constituants des systèmes PTSI PT AUTOMATIQUE des sysèmes Table des maières 1 LA CHAINE FONCTIONNELLE 1 1.1 STRUCTURE FONCTIONNELLE... 1 1.2 CHAINE D ENERGIE... 1 1.3 CHAINE D INFORMATION... 2 2 LES ACTIONNEURS 3 2.1 LES VERINS

Plus en détail

CONDITONNEMENT DU SIGNAL

CONDITONNEMENT DU SIGNAL I) Présenaion "La diode" CONITONNMNT U IGNAL La diode es un composan élecronique semi conduceur qui se compore comme un inerrupeur fermé quand elle es polarisée en direc e comme un inerrupeur ouver polarisée

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

GENERATEURS DE HAUTE TENSION

GENERATEURS DE HAUTE TENSION ours de A. Tilmaine HAPITRE VII GENERATEURS DE HAUTE TENSION Les généraeurs de haue ension son uilisés dans : a) les laboraoires de recherche scienifique ; b) les laboraoires d essai, pour eser les équipemens

Plus en détail

GENIE ELECTRIQUE. Introduction à l électronique de puissance Chapitre I. Conversion statique d énergie. Michel Piou. Edition 18/10/2010

GENIE ELECTRIQUE. Introduction à l électronique de puissance Chapitre I. Conversion statique d énergie. Michel Piou. Edition 18/10/2010 GENIE ELECTIQUE Conversion saique d énergie Michel Piou Inroducion à l élecronique de puissance Chapire I Ediion 18/10/2010 Exrai de la ressource en ligne PowerElecPro sur le sie Inerne Table des maières

Plus en détail

Commande d'un moteur à courant continu 48 V 140 A 3200 tr/min 18 Nm 8,1 CV pour un véhicule électrique

Commande d'un moteur à courant continu 48 V 140 A 3200 tr/min 18 Nm 8,1 CV pour un véhicule électrique Commande d'un moeur à couran coninu 48 V 40 A 300 r/min 8 Nm 8, CV pour un véhicule élecrique hierry LEQE GE de ours Proje-KARNG3h.doc K K' Le ie C i E Ce K K' v MCC Baerie Source de ension Source de couran

Plus en détail

Cahier technique n 202

Cahier technique n 202 Collecion Technique... Cahier echnique n 22 Les singulariés de l harmonique 3 J. Schonek Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés à l inenion des ingénieurs e echniciens

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

Elec 3 : Circuit RLC

Elec 3 : Circuit RLC Travaux Praiques de physique Elec 3 : ircui R Version du 8/3/6 Plan Rappels Théoriques ircuis R e R ircui «idéal» ircui R en ension coninue ircui R en ension sinusoïdale, résonance Applicaions Manipulaion

Plus en détail

BACCALAUREAT D ENSEIGNEMENT GENERAL Session 2001 Série S Technologie Industrielle

BACCALAUREAT D ENSEIGNEMENT GENERAL Session 2001 Série S Technologie Industrielle BACCALAUREAT D ENSEIGNEMENT GENERAL Session 2001 Série S Technologie Indusrielle ETUDE D UN SYSTEME PLURITECHNIQUE Coefficien : 6 Durée de l épreuve : 4 heures PROPOSITION DE BAREME Analyse du sysème Quesion

Plus en détail

LES ALIMENTATIONS ELECTRIQUES SOMMAIRE. I) Généralités... 3. II) Les alimentations linéaires... 5 II.1) Schéma fonctionnel... 5

LES ALIMENTATIONS ELECTRIQUES SOMMAIRE. I) Généralités... 3. II) Les alimentations linéaires... 5 II.1) Schéma fonctionnel... 5 AMNAON CQ OMMA ) Généraliés... 3 ) es alimenaions linéaires... 5.1) chéma foncionnel... 5.2) ude de F1 : ransformaion ou abaissemen... 5.3) ude de F2 : edressemen.... 8.3.1) edressemen : Mono alernance....

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

03/12/2015. Le transistor bipolaire. Pascal MASSON. Sommaire. I. Historique. Caractéristiques du transistor. Polarisation du transistor

03/12/2015. Le transistor bipolaire. Pascal MASSON. Sommaire. I. Historique. Caractéristiques du transistor. Polarisation du transistor 3/2/25 (pascal.masson@unice.fr) diion 25-26 École Polyechnique Universiaire de ice Sophia-Anipolis Parcours des écoles d'ingénieurs Polyech (Peip) -Parcours des écoles 645 roue d'ingénieurs des Lucioles,

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

LES REDRESSEURS ET LES ONDULEURS NON AUTONOMES

LES REDRESSEURS ET LES ONDULEURS NON AUTONOMES Chapire 4 LES REDRESSEURS ET LES ONDULEURS NON AUTONOMES BB 15 consruie de 1971 à 1978 Moeurs à CC à exciaion série Alimenée en alernaif 5 kv, 5 Hz Freinage avec récupéraion La première à uiliser des hyrisors

Plus en détail

PHYSIQUE. Partie préliminaire

PHYSIQUE. Partie préliminaire PHYSIQUE Les différenes paries de ce problème son dans une large mesure indépendanes Seules les argumenaions précises e concises seron prises en compe en réponse aux quesions qualiaives Parie préliminaire

Plus en détail

17 Conversion de signaux Modulation de l énergie. Chapitre 17

17 Conversion de signaux Modulation de l énergie. Chapitre 17 Chapire 17 Conversion de signaux Modulaion de l énergie Perurbaion e compaibilié élecromagnéique INTRODUCTION 3 1. LES FONCTIONS DE CONVERSION 4 1.1. La commuaion 4 1.2. La emporisaion 15 1.3. L amplificaion

Plus en détail

LES CAPTEURS. Energie. Acquérir et coder une information. Capteur

LES CAPTEURS. Energie. Acquérir et coder une information. Capteur CPG / ciences Indusrielles pour l Ingénieur C83 Les capeurs L CAPTUR Le domaine indusriel a besoin de conrôler de rès nombreux paramères physiques (longueur, force, poids, pression, déplacemen, posiion,

Plus en détail

CHAPITRE 4 LA VAR MONTE CARLO... 2

CHAPITRE 4 LA VAR MONTE CARLO... 2 CHAPITRE 4 LA VAR MONTE CARLO... I. PRINCIPE... A. Quel modèle uiliser?... B. Algorihme de simulaion... 3 II. EXEMPLE D APPLICATION... 4 A. Travail préliminaire... 4 B. Simulaion des rajecoires... 6 Algorihme...

Plus en détail

Fonctions numériques Proportionnalité

Fonctions numériques Proportionnalité Foncions numériques Proporionnalié I Foncions numériques 1 ) Définiion e noaions Définir une foncion f qui à x associe y c es donner une formule mahémaique qui perme pour oue valeur donnée de x soi de

Plus en détail

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I Chapire C1 Leçon C1 AMPLIFICATEU LINEAIE INTEGE (A.L.I) Monages Fondamenaux à base d A.L.I I. Uilisaion d un A.L.I en régime non linéaire : 1) Acivié praique : a) A l aide d une maquee fournie ou à parir

Plus en détail

Les composants de l'électronique de puissance

Les composants de l'électronique de puissance Les composans de l'élecronique de puissance «Rien ne va de soi. Rien n es donné. Tou es consrui.» Gason Bachelard in «La Formaion de l espri scienifique». Résumé L élecronique de puissance uilise des composans

Plus en détail

GENIE ELECTRIQUE. Conversion AC DC (Redresseurs monophasés) Chapitre IV. Conversion statique d énergie. Michel Piou. Edition 24/11/2010

GENIE ELECTRIQUE. Conversion AC DC (Redresseurs monophasés) Chapitre IV. Conversion statique d énergie. Michel Piou. Edition 24/11/2010 GENIE ELECIQUE Conversion saique d énergie Michel Piou Conversion AC DC (edresseurs monophasés) Chapire IV Ediion 24/11/21 Exrai de la ressource en ligne PowerElecPro sur le sie Inerne able des maières

Plus en détail

Installations électriques des bâtiments.

Installations électriques des bâtiments. TP 4 : Eude de la errasse (Minuerie) Objecifs : Insallaions élecriques des bâimens. Prendre connaissance du CCTP, des plans dexécuion. Prendre connaissance e simuler sous chemaplic le monage Minuerie.

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2003-2004 Devoir n 5 CONVERSION DE PUISSANCE Parie I EUDE D UN CAPEUR DE POSIION ANGULAIRE A / ÉUDE D'UN CIRCUI MAGNÉIQUE Considérons le disposiif schémaisé sur la figure, composé de deux bobines

Plus en détail

Les alimentations à découpage.

Les alimentations à découpage. Les alimenaions à découpage. S.M.P.S. : Swiched-Mode Power Supplies Leur inérê : 1. Elles meen en jeu un commuaeur idéal en 1 ère approximaion e des composans passifs presque sans peres (C, L) > le rendemen

Plus en détail

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche e Oscilloscope objecif de ce TP es d apprendre à uiliser, ie. à régler, deux des appareils les plus courammen uilisés : le e l oscilloscope. Pour cela vous serez amené(e) à uiliser e à associer de nouveaux

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

2. Tensions et courants alternatifs

2. Tensions et courants alternatifs 2.1 Définiions 2.1.1 Tension coninue Une ension coninue es une ension qui ne change pas avec le emps. diagramme d'une ension coninue: u() 2.1.2 Tension alernaive Une ension alernaive es une ension qui

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Considérons un dipôle AB d un circuit parcouru par un courant d intensité I :

Considérons un dipôle AB d un circuit parcouru par un courant d intensité I : Filière SM Module Physique lémen : lecricié Cours Prof..Tadili 2 ème Parie Chapire 2 ude des dipôles nergie élecrique e puissance. appel Considérons un dipôle d un circui parcouru par un couran d inensié

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE UNIVERSITE DE TUNIS Faculé des sciences économiques e de gesion de Tunis MODELE DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE Ezzeddine MBAREK 2010 1 INTRODUCTION Le modèle que je propose

Plus en détail

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES Sommaire I- Equaions différenielles du premier ordre I-1- Résoluion des équaions du ype : a f () + f() = g() I-- Exemple de résoluion

Plus en détail

Relais de mesure et de contrôle industriels Zelio Control 3

Relais de mesure et de contrôle industriels Zelio Control 3 Présenaion elais de mesure e de conrôle indusriels Zelio Conrol elais de conrôle de réseaux riphasés M T 0 M T Foncionnaliés Ces appareils son desinés à la surveillance des réseaux riphasés e à la proecion

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

( ) et est alors représenté par le graphe ci-

( ) et est alors représenté par le graphe ci- LE SIGNAL SINUSOIDAL : PRODUCTION ET OBSERVATION Le bu de ce premier TP es d une par la prise en main du maériel nécessaire pour l observaion des ondes lors de la prochaine séance (uilisaion de l oscilloscope),

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

Fusibles. Caractéristiques générales. Introduction. Limitation du courant de court-circuit (suite) Limitation du courant de court-circuit

Fusibles. Caractéristiques générales. Introduction. Limitation du courant de court-circuit (suite) Limitation du courant de court-circuit Caracérisiques générales Inroducion Le rôle d un fusible consise à inerrompre un circui élecrique lorsqu il es soumis à un couran de défau. Il présene en oure l inérê de limier les courans de défau imporans

Plus en détail

Lycée Viette TSI 1. T.P. cours 04 oscilloscope G.B.F. multimètres. P DV P DH écran fluorescent

Lycée Viette TSI 1. T.P. cours 04 oscilloscope G.B.F. multimètres. P DV P DH écran fluorescent Lycée Viee TSI 1 T.P. cours 04 oscilloscope G.B.F. mulimères I. Principe de foncionnemen de l oscilloscope à ube cahodique 1. Descripion F C W A 1 A 2 vide spo P DV P DH écran fluorescen F filamen C cahode

Plus en détail

Plan : : Les méthodes de codage numérique en

Plan : : Les méthodes de codage numérique en Plan : : Les méhodes de codage numérique en 3.1 Inroducion 3.2 Codages binaires 3.2.1 Codage NRZ (Non Reour à Zéro) 3.2.2 Codage biphasé ou (Mancheser) 3.2.3 Codage CMI (Code Mark Inversion) 3.3 Codages

Plus en détail

La détection synchrone : application

La détection synchrone : application La déecion synchrone : applicaion (Anglais: lock-in amplifier) La cigale chane U IN () Mais il y a du brui + beaucoup de brui. U OUT () Quelle es l'ampliude du chan de la cigale? Commen exraire le signal

Plus en détail

Temporisation et monostable Contrôleurs de rotation XSA-V

Temporisation et monostable Contrôleurs de rotation XSA-V Temporisaion e monosable Conrôleurs de roaion XSA-V Manuel didacique Version Française TE Sommaire Chapire Page Temporisaion - Lecure des hisogrammes 3. Définiion 3.2 Bu 3.3 Principe de foncionnemen 3.3.

Plus en détail

Electronique De Commutation

Electronique De Commutation Elecronique de commuaion par A. Oumnad 1 Elecronique e ommuaion A. Oumnad Elecronique de commuaion par A. Oumnad 2 OMMAIE I omposans en commuaion...3 I.1 appels...3 I.1.1 iviseur de ension...3 I.1.2 iviseur

Plus en détail

1 Cours Sciences Physiques MP. Analyse de Fourier

1 Cours Sciences Physiques MP. Analyse de Fourier Cours Sciences Physiques MP Analyse de Fourier En 86, le physicien e mahémaicien français Joseph Fourier (768-83) éudiai les ransfers hermiques. En pariculier, il chauffai un endroi de la périphérie d

Plus en détail

Communication technique

Communication technique Page 66 Communicaion echnique 1. Problémaique La SPCC (Sociéé de Producion e de Condiionnemen de Cosméiques) dispose d équipemens avec des moeurs de puissance plus imporane que ceux éudiés jusqu ici. Lors

Plus en détail

Intégration de Net2 avec un système d alarme intrusion

Intégration de Net2 avec un système d alarme intrusion Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera

Plus en détail

Chapitre 1.3 La vitesse instantanée

Chapitre 1.3 La vitesse instantanée Chapire.3 La iesse insananée La iesse dans un graphique de posiion On peu obenir une iesse moyenne en foncion du emps en effecuan un calcul de pene. Puisqu une pene es une rappor enre une ariaion selon

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Chapitre 1. La cinématique. 1.1 Définitions

Chapitre 1. La cinématique. 1.1 Définitions Chapire 1 La cinémaique La cinémaique es la descripion mahémaique du mouvemen, souven considérée comme la base de la physique. Le mouvemen le plus fondamenal auquel on puisse penser es la chue libre. Expérimenée

Plus en détail

Electronique de puissance

Electronique de puissance Haue Ecole d Ingénierie e de Gesion du Canon du Vaud Elecronique de puissance Chapire 9 MODÉLISAION HERMIQUE DES COMPOSANS DE PUISSANCE M. Correvon A B L E D E S M A I E R E S PAGE 9. ANALYSE HERMIQUE

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

Nature de l information

Nature de l information Naure de l informaion PAGE : Siuaion : Parfois l informaion fournie par un capeur Tou Ou Rien (TOR) n es pas suffisane pour piloer l équipemen. Dans ce cas nous devons avoir recours à des capeurs e déeceurs

Plus en détail

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE INTRODUCTION L'oscilloscope es le plus polyvalen des appareils de mesures élecroniques. Il peu permere simulanémen de visualiser

Plus en détail

LES CAPTEURS. Perturbations. Acquérir et coder une information. Capteur

LES CAPTEURS. Perturbations. Acquérir et coder une information. Capteur CPGE / Sciences Indusrielles pour l Ingénieur CI9 Capeurs LES CAPTEURS Le domaine indusriel a besoin de conrôler de rès nombreux paramères physiques (longueur, force, poids, pression, déplacemen, posiion,

Plus en détail

L oscilloscope numérique

L oscilloscope numérique L oscilloscope numérique Ce documen résume le principe de foncionnemen d un oscilloscope numérique e déaille les réglages possibles du modèle uilisé en séance de ravaux praiques. 1 Principe de foncionnemen

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Circuit de commande d'un moteur brushless DC par onduleur triphasé commandé en modulation de largeur d'impulsion par microcontrôleur

Circuit de commande d'un moteur brushless DC par onduleur triphasé commandé en modulation de largeur d'impulsion par microcontrôleur Circui de commande d'un moeur brushless DC par onduleur riphasé commandé en modulaion de largeur d'impulsion par microconrôleur Ing. V. LELEUX Ir. N. GILLIEAUX-VETCOUR GRAMME Liège Ce aricle présene la

Plus en détail

Généralités sur les signaux

Généralités sur les signaux Cours raiemen de Signal AII Chapire : La ra nsormée de Laplace Généraliés sur les signaux I. Inroducion Le raiemen du signal es une discipline indispensable de nos jours. Il a obje l'élaboraion ou l'inerpréaion

Plus en détail

Cahier technique n 114

Cahier technique n 114 Collecion Technique... Cahier echnique n 114 Les proecions différenielles en basse ension J. Schonek Building a ew Elecric World * Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés

Plus en détail

ÉTUDE D UN SYSTÈME PLURITECHNIQUE

ÉTUDE D UN SYSTÈME PLURITECHNIQUE DM SSI: AQUISITION DE l INFORMATION ÉTUDE D UN SYSTÈME PLURITECHNIQUE Pores Laérales Coulissanes de monospace PRÉSENTATION DE L ÉTUDE Mise en siuaion Les fabricans d'auomobiles, face à une concurrence

Plus en détail

Capteurs CCD (Charge Coupled Device)

Capteurs CCD (Charge Coupled Device) Capeurs CCD (Charge Coupled Device) 1 NOTION SUR LES CONDUCTEURS, SEMI-CONDUCTEURS ET ONDES LUMINEUSES... 2 1.1 STRUCTURE DE LA MATIERE... 2 1.2 LES ISOLANTS... 2 1.3 LES CONDUCTEURS... 2 1.4 LES SEMI-CONDUCTEURS...

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Chapitre 3.12 La charge et la décharge d un condensateur

Chapitre 3.12 La charge et la décharge d un condensateur hapire 3. La charge e la décharge d un condensaeur Le condensaeur Un condensaeur es un composan élecroniue servan à recueillir une séparaion de charges élecriues. l es consrui à l aide de deux plaues conducrices

Plus en détail

M2 SIA. TD Capteurs CCD. Exercice 1. Le nombre d électrons Ne qui s échappent du puits de potentiel en fonction du temps t est donné par :

M2 SIA. TD Capteurs CCD. Exercice 1. Le nombre d électrons Ne qui s échappent du puits de potentiel en fonction du temps t est donné par : M2 SIA TD Capeurs CCD Exercice 1 Le nombre d élecrons Ne qui s échappen du puis de poeniel en foncion du emps es donné par : avec L, la longueur de la grille de polarisaion (cm) V TB, la haueur de barrière

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine.

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine. CHAPITRE 5 Foncion linéaire. Proporionnalié. Foncion affine. (Voir : 4 ème, chapire 5 ; 3 ème, chapires 3, 13.) I) Foncion linéaire A) Définiion a désigne un nombre relaif connu e fié. Définiions : La

Plus en détail