UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a)"

Transcription

1 1 UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre VII : Dérivation Notations : On reprend dans ce chapitre les notations du chapitre précédent : soit I un intervalle non vide, on note I l intérieur de I. Si x 0 est un nombre réel, on notera I x0 un voisinage de x 0 (i.e. un intervalle ouvert contenant x 0 ), et I x 0 = I x0 {x 0 }. Si x 0 = +, alors I x0 désigne un intervalle ouvert du type ]γ; + [ et si x 0 =, I x0 =] ; γ[. 1 Dérivabilité d une fonction en un réel x 0 Rappels : Soit f une fonction définie sur un intervalle I, et a < b deux réels de I. On appelle taux d accroissement de f (ou taux de variation de f, ou accroissement moyen de f) entre a et f(b) f(a) b le rapport. Dans un repère orthogonal, ce rapport est le coefficient directeur de la b a droite (AB) où A(a, f(a)) et B(b, f(b)). m = y B y A f(b) f(a) = x B x A b a y B B y B y A y = mx + p y A j ı A x A x B x A x B Figure 1 Accroissement moyen entre a et b

2 2 Définition 1. Soit f une fonction définie sur un intervalle ouvert I et x 0 un réel appartenant à I. f est dite dérivable en x 0 si f (x,x0 ) = f(x) f(x 0) admet une limite réelle (= finie) l x x 0 lorsque x tend vers x 0 (x x 0 ). Dans ce cas, cette limite est notée f (x 0 ) et est appelée nombre dérivé de f en x 0. Remarque : f (x,x0 ) représente le coefficient directeur de la sécante (MM 0 ) où M(x, f(x)) et M 0 (x 0, f(x 0 )). Dire que f (x,x0 ) possède une limite quand x tend vers x 0 revient à dire que la courbe représentative de f possède au point M 0 une tangente de coefficient directeur f (x 0 ). (tangente non verticale) Ainsi, lorsque f est dérivable en x 0, l équation de la tangente à C f au point M 0 est y = f (x 0 )(x x 0 ) + f(x 0 ) (remarquer que cette droite a pour coefficient directeur f (x 0 ) et passe par M 0 ). Exemples Soit f : f(x) = x 2. Pour x 0 = 1, on a f (x,1) = x2 1 = x + 1 donc lim x 1 (x,1) = 2. f est x 1 dérivable en 1 et f (1) = 2. La tangente à C f au point A(1, 1) a pour équation : y = 2x Soit f x 1 : f(x) = x 1. Pour x 0 = 1, on a f (x,1) = = 1 si x > 1 et 1 si x < 1. x 1 Donc f (x,1) ne possède pas de limite en x 0 = 1 et f n est pas dérivable en 1. Remarque : Avec le changement de variable x 0 = x+h, on a l énoncé suivant : f est dérivable en x 0 si et seulement si f(x 0 + h) f(x 0 ) h admet une limite finie lorsque h tend vers zéro et h 0. Théorème 1. Théorème d approximation affine Soit f définie sur I x0. f est dérivable en x 0 si et seulement s il existe une fonction ε définie sur I x0, continue en x 0, telle que ε(x 0 ) = 0 et un nombre réel A tels que : x I x0 f(x) = f(x 0 ) + A(x x 0 ) + (x x 0 )ε(x) ( ) Figure 2 Approximation affine

3 3 Définition 2. Soit f une fonction définie sur I x0. Si le taux d accroissement de f a une limite finie à droite (respectivement à gauche) en x 0, f est dite dérivable à droite (resp. à gauche) de x 0. On note f d(x f(x) f(x 0 ) 0 ) = x x0 lim x>x 0 x x 0 et f g(x f(x) f(x 0 ) 0 ) = x x0 lim. x<x 0 x x 0 REMARQUE IMPORTANTE : Une fonction peut très bien être dérivable à droite et à gauche en x 0 mais ne pas être dérivable en x 0. (Voir par l exemple ci-dessus : f d(2) = 0 et f g(2) = 2). Exemple 2. Figure 3 Point anguleux Autres exemples de non-dérivabilité Exemple 3. Figure 4 Point de rebroussement Figure 5 Tangente verticale

4 4 Théorème 2. Une fonction f définie sur I x0 est dérivable en x 0 si et seulement si f est dérivable à gauche et à droite de x 0 et f d(x 0 ) = f g(x 0 ). Théorème 3. Soit f une fonction définie sur I x0. Si f est dérivable en x 0 alors f est continue en x 0. la réciproque est fausse : penser à la fonction «valeur absolue» qui est continue, mais non dérivable en zéro. 2 Fonction dérivée sur un intervalle Définition 3. Soit f une fonction définie sur un intervalle I. Si f est dérivable en tout réel de I (si I = [a, b] est fermé on convient alors de supposer que f est dérivable à droite en a et à gauche en b ) on dit que f est dérivable sur I et on peut alors définir la fonction dérivée de f, notée f, sur I par : f : I R x f f(x + h) f(x) (x) = lim h 0 h Définition 4. Fonctions dérivées d ordres supérieurs Soit f une fonction définie et dérivable sur un intervalle I et f sa fonction dérivée. Si f est elle-même dérivable sur I, on peut considérer la fonction dérivée de f, notée f ou f (2), définie sur I. S il est possible de réitérer cette opération n fois, on peut alors définir sur I, la fonction dérivée n ième, notée f (n). Exercices Déterminer toutes les dérivées successives de f : f(x) = 4x 3 5x 2 + 2x 1 2. Soit f : f(x) = 5e 2x. Déterminer la dérivée n ième de f sur R. Les étudiants doivent connaître le tableau des fonctions dérivées des fonctions de références suivantes : (à compléter avec les résultats que vous verrez dans le chapitre suivant)

5 5 f : f(x) =... f (x) =... Ensemble de validité ax + b a R x n (n N ) nx n 1 R x n (n Z ) nx n 1 ] ; 0[ ]0; + [ x 1 2 x ]0; + [ x α (α R ) αx α 1 ]0; + [ e x e x R ln x 1 x ]0; + [ a x (a R +) (ln a)a x ]0; + [ Opérations usuelles Soient f et g deux fonctions dérivables sur un intervalle I : alors les fonctions f + g, k.f (où k R) et fg sont dérivables sur I : Si de plus g ne s annule pas sur I, 1 g et f g sont dérivables sur I Fonction Dérivée Condition f + g f + g k.f k.f k R f g f g + f g 1 g f g g g 2 x I, g(x) 0 f g f g g 2 x I, g(x) 0 Théorème 4. Dérivée d une fonction composée Soient f et g deux fonctions dérivables sur respectivement I et J tels que f(i) J. Alors la fonction composée g f est dérivable sur I et pour tout x I, ( g f ) (x) = f (x) ( g f ) (x) On obtient ainsi les dérivées suivantes :

6 6 Fonction Dérivée Condition f n (n N ) nf f n 1 f n (n Z ) nf f n 1 x I, f(x) 0 f α (α R ) αf f α 1 x I, f(x) > 0 ln f exp(f) f f f exp(f) x I, f(x) 0 3 Variations - extrema d une fonction dérivable Théorème 5. Soit f une fonction définie et dérivable sur un intervalle I. 1. Si x I, f (x) 0 alors f est croissante sur I. 2. Si x I, f (x) 0 alors f est décroissante sur I. 3. Si x I, f (x) = 0, alors f est constante sur I. Théorème 6. Soit f une fonction définie et dérivable sur un intervalle I. 1. Si x I, f (x) 0 et f ne s annule qu en des réels isolés, alors f est strictement croissante sur I. 2. Si x I, f (x) 0 et f ne s annule qu en des réels isolés, alors f est strictement décroissante sur I. Exemple : f x x 3. x R, f (x) = 3x 2 0 et f ne s annule qu en x = 0, donc f est strictement croissante sur R. Définition 5. Soit f une fonction définie sur D f. 1. On dit que f admet un maximum local en x 0, s il existe un voisinage I x0 tel que x 0 I x0, f(x) f(x 0 ). 2. On dit que f admet un minimum local en x 0, s il existe un voisinage I x0 tel que x 0 I x0, f(x) f(x 0 ). 3. On dit que f admet un extremum en x 0 si f admet un minimum ou un maximum en x 0. Théorème 7. Soit f une fonction définie et dérivable sur un intervalle I x0, si f admet un extremum en x 0, alors f (x 0 ) = 0. Conséquence graphique : Sous les conditions du théorème, la tangente à C f est horizontale. Remarque : La réciproque du théorème précédent est fausse : par exemple soit f : x x 3, f (0) = 0 mais f n admet pas d extremum en x = 0.

7 7 Théorème 8. Soit f une fonction définie et dérivable sur I x0, si f (x 0 ) = 0 et si f (x) change de signe en x 0, alors f admet un extremum en x 0. Théorème 9. Soit f une fonction deux fois dérivable sur I x0. 1. Si f (x 0 ) = 0 et f (x 0 ) > 0, alors f admet un minimum en x Si f (x 0 ) = 0 et f (x 0 ) < 0, alors f admet un maximum en x 0. Exercice 2. Soit f définie sur R + par f(x) = ( ln x ) 3 3 ln x. Calculer f (x) puis déterminer les variations de f sur R +. 4 Dérivée d une fonction réciproque Théorème 10. Soit f une bijection définie et continue d un intervalle I sur un intervalle. Si f est dérivable en x 0 I et si f (x 0 ) 0, alors f 1 est dérivable en y 0 = f(x 0 ) et ( f 1) (y0 ) = 1 f (x 0 ) Exemples x ]0; + [ y = x 2 } x I y = f(x) f (x 0 ) 0 { y ]0; + [ x = y y J x = f 1 (y) ( ) f 1 (y0 ) = 1 f (x 0 ) Soit f : x x 2, f est dérivable sur ]0; + [, et pour tout x > 0, f (x) = 2x 0. La fonction réciproque de f est la fonction «racine carrée» : cette fonction est dérivable sur ]0; + [, et pour tout x ]0; + [, y = x 2, ( ) 1 y = 2x = 1 2 y x ]0; + [ y = ln x } { y R x = exp(y) Soit f : x ln x, f est dérivable sur ]0; + [, et pour tout x > 0, f (x) = 1 0. La x fonction réciproque de f est la fonction «exponentielle» : cette fonction est dérivable sur R, et pour tout x ]0; + [, y = ln(x) et ( exp y ) 1 = ln (x) = 1 1 = x = exp(y). On retrouve x le fait que la fonction exponentielle est sa propre dérivée. Exercice 3. Soit f la fonction définie par f(x) = 1 ( ) 1 + x 2 ln 1 x 1. Déterminer l ensemble de définition D f de f. 2. Démontrer que f admet une fonction réciproque f 1 sur D f. Sur quel ensemble f 1 est-elle définie? 3. Déterminer la dérivée de f 1 là où elle est dérivable.

8 8 5 Théorème des accroissements finis Théorème 11. de Rolle Soit f une fonction définie sur un segment [a, b] de R. On suppose que f est continue sur [a, b] et dérivable sur ]a, b[ et que f(a) = f(b). Alors il existe c ]a, b[ tel que f (c) = 0. Figure 6 Théorème de Rolle Théorème 12. des accroissements finis Soit f une fonction définie sur un segment [a, b] de R. On suppose que f est continue sur [a, b] et dérivable sur ]a, b[. Il existe c ]a, b[ tel que f(b) f(a) = (b a)f (c) Figure 7 Théorème des accroissements finis Remarque : Une application de ce théorème est la démonstration du théorème qui lie signe de la dérivée et variation de la fonction

9 9 Par exemple : Si f est croissante sur I, pour tout x 0 I, f(x) f(x 0 ) 0 et par passage à x x 0 la limite, on en déduit que f (x 0 ) 0. Réciproquement, supposons que f (x) 0 pour tout x I. Soient a et b (a < b) deux réels de I : on applique le théorème des accroissements finis à f sur [a, b] : il existe c [a, b] tel que f f(b) f(a) f(b) f(a) (c) = d où 0, d où f(b) f(a) 0, et f est croissante sur I. b a b a Théorème 13. Inégalité des accroissements finis Soient f et g deux fonctions définies et continues sur un segment [a, b] et dérivables sur ]a, b[. On suppose que pour tout x ]a, b[, f (x) g (x), alors f(b) f(a) g(b) g(a) Exercice 4. Première partie : étude d une fonction g Soit g la fonction définie sur ]0; + [ par : g(x) = x ln x x Après avoir justifié de la dérivabilité de g sur son domaine de définition, calculez la fonction dérivée de g puis donnez le tableau des variations de g (limites comprises). 2. Déterminez le signe de g sur ]0; + [. Seconde partie : étude d une fonction f Soit f la fonction définie sur ]1; + [ par : f(x) = 1 x 1 ln x 1. Déterminer la fonction dérivée de f puis donner le tableau des variations de f. 2. Calculer la limite de f en Calculez la limite de f en 1 + Troisième partie : étude de l équation f(x) = 1 2 Dans cette partie, on a besoin de connaître ln 3 1, 10 et ln 4 1, 4 1. Montrez que l équation f(x) = 1 admet une unique solution α dans l intervalle [3; 4] Soit h la fonction définie sur I = [3; 4] par : h(x) = ln x x (a) Montrez que α est solution de l équation h(x) = x (b) Etudiez les variations de h sur I. (c) Montrez que pour tout x de I on a : h(x) I et h (x) 5 6. Quatrième partie : étude de la suite récurrente u : u n+1 = h(u n ) 1. Montrer que l on peut définir la suite (u n ) n N d éléments de [3, α] de façon récurrente par : u 0 = 3 et u n+1 = h(u n ) On pourra justifier que pour tout entier n, u n [3, α].

10 10 2. Démontrez que, pour tout entier naturel n, u n+1 α 5 6 u n α ( 5 n 3. Démontrez par récurrence que, pour tout entier naturel n : u n α 6) 4. En déduire la convergence de la suite (u n ) n N. 6 Dérivées successives I est toujours un intervalle de R non vide et non réduit à un point et R I fonctions définies sur I à valeurs dans R l ensemble des Définition 6. Soit f une fonction définie sur I : on définit par récurrence la dérivée n ième de f, notée f (n) par : f (0) = f et pour tout n N : si f (n 1) est dérivable sur I on note f (n) = ( f (n 1)) Définition 7. On dit qu une fonction f est de classe D n (n N ) sur I lorsque f est dérivables sur I et que pour tout p [[1; n 1], la dérivée p ième est définie sur I et f (n 1 est dérivable sur I Définition 8. Soit n N. ON dit que f est de classe C n sur I quand elle est de classe Dn sur I et si f (n ) est continue sur I. Par analogie, on dit que f est de classe C 0 sur I lorsqu elle est continue. Notation : D n (I) est l ensemble des fonctions de classe D n sur I (n 1) C n (I) est l ensemble des fonctions de classe C n sur I (n 1) Par analogie, on note aussi C 0 (I) l ensemble de fonctions continues sur I. On verra dans le cours d algèbre : Proposition 1. Pour tout n 1, D n (I) et C n (I) sont des sous-espaces vectoriels de l espace vectoriel R I Théorème 14. Formule de Leibniz Soient n N et f et g deux fonctions de D n alors f.g appartient à D n (I) et ( ) n n (fg) (n) = f (p )g (n p) p p=0

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation grapique 1) Taux de variation d une fonction en un point. Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Université de Nice Sophia-Antipolis Licence L3 Mathématiques Année 2008/2009. Analyse Numérique. Corrigé du TD 5

Université de Nice Sophia-Antipolis Licence L3 Mathématiques Année 2008/2009. Analyse Numérique. Corrigé du TD 5 Licence L3 Mathématiques Année 008/009 Analyse Numérique Corrigé du TD 5 EXERCICE 1 Méthode des approximations successives, ordre de convergence Soient I un intervalle fermé de R, g : I I une fonction

Plus en détail

Dérivation, accroissement et calcul marginal

Dérivation, accroissement et calcul marginal Dérivation, accroissement et calcul marginal MATHEMATIQUES APPLIQUEES Licence 1 Administration Economique et Sociale Sébastien Pommier 2007-2008 Un exemple introductif Introduction Un exemple 1/2 Une bille

Plus en détail

Exercices fondamentaux

Exercices fondamentaux Université de Nantes Département de Mathématiques DEUG MIAS - Module M2 Algèbre Année 2002/2003 Liste d exercices n 1 Exercices fondamentaux Espaces vectoriels, sous-espaces vectoriels 1. Montrer que l

Plus en détail

LA DÉRIVÉE SECONDE. Même si la dérivée première donne beaucoup d'information à propos d'une fonction, elle ne la caractérise pas complètement.

LA DÉRIVÉE SECONDE. Même si la dérivée première donne beaucoup d'information à propos d'une fonction, elle ne la caractérise pas complètement. LA DÉRIVÉE SECONDE Sommaire 1. Courbure Concavité et convexité... 2 2. Détermination de la nature d'un point stationnaire à l'aide de la dérivée seconde... 6 3. Optima absolus... 8 La rubrique précédente

Plus en détail

des fonctions numériques

des fonctions numériques Chapitre 3 Continuité et dérivabilité des fonctions numériques Dans ce chapitre on reprend les notations précédentes. 3.1 Rappels sur les fonctions 3.1.1 Injectivité, surjectivité Soient X et Y deux ensembles

Plus en détail

Etude des extrema d une fonction

Etude des extrema d une fonction CHAPITRE 3 Etude des extrema d une fonction 1. Extrema : Rappels sur les fonctions d une variable Dans cette section on veut généraliser à plusieurs variable la discussion suivante concernant les fonctions

Plus en détail

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe de la ère S à la TS. Exercice n : On donne la fonction f définie sur R par : = x 4 + x +. On appelle Γ la courbe représentative de f dans un repère orthonormé (O; ı, j).. Étudier la parité de f.. Déterminer

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

APPLICATIONS LINÉAIRES ET MATRICES. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016)

APPLICATIONS LINÉAIRES ET MATRICES. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) APPLICATIONS LINÉAIRES ET MATRICES Résumé de cours d algèbre linéaire L de B. Calmès, Université d Artois (version du er février 206). Applications linéaires Soient E et F des espaces vectoriels sur K...

Plus en détail

Chapitre 3 : Étude de fonctions; Rappels

Chapitre 3 : Étude de fonctions; Rappels ECSB Carnot Chapitre 3 03/04 Chapitre 3 : Étude de fonctions; Rappels Objectifs : Connaître toutes les notions du lycée (parité, monotonie, périodicité) Connaître les fonctions de référence (l étude des

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Exercices : Étude de fonctions Exercice : Calculer les limites suivantes :. lim + lnx+x x+e x.. lim 3. lim x4 e x +3x x x 4. lim 5. lim 6. lim e x (lnx) (e 3 ) x e 3x +x ( (lnx) 3 +x ) x 7. lim x e x +e

Plus en détail

L1/S1 : MATH 101 - Pratique des Fonctions Numériques. Livret d exercices II : Limites - continuité - Dérivabilité. Chapitre 2 - Limites

L1/S1 : MATH 101 - Pratique des Fonctions Numériques. Livret d exercices II : Limites - continuité - Dérivabilité. Chapitre 2 - Limites UNIVERSITÉ DE CERGY Année 2013-2014 LICENCE d ÉCONOMIE FINANCE et GESTION Première année - Semestre 1 L1/S1 : MATH 101 - Pratique des Fonctions Numériques Livret d exercices II : Limites - continuité -

Plus en détail

Corrigé du Devoir Surveillé n 2

Corrigé du Devoir Surveillé n 2 Corrigé du Devoir Surveillé n Exercice : Autour de la fonction Arc cosinus Représentons la fonction définie par f(x) = Arccos (cosx) + Arccos (cos x). f est définie sur R, f est paire, f est π périodique

Plus en détail

L espace de probabilités (Ω,A,P )

L espace de probabilités (Ω,A,P ) L espace de probabilités (Ω,A,P ) 1 Introduction Le calcul des probabilités est la science qui modélise les phénomènes aléatoires. Une modélisation implique donc certainement une simplification des phénomènes,

Plus en détail

Chapitre 4. Formules de Taylor. 4.1 Les trois formules de Taylor

Chapitre 4. Formules de Taylor. 4.1 Les trois formules de Taylor Chapitre 4 Formules de Taylor La formule de Taylor, du nom du mathématicien Brook Taylor qui l établit en 1715, permet l approximation d une fonction plusieurs fois dérivable au voisinage d un point par

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Rappels et compléments 3 1.1 Fonctions affines............................................. 3 1.2 Fonctions

Plus en détail

Exo7. Préalables, rappels. Enoncés : M. Quéffelec, V. Mayer, T. Tahani, F. Sarkis Corrections : F. Sarkis

Exo7. Préalables, rappels. Enoncés : M. Quéffelec, V. Mayer, T. Tahani, F. Sarkis Corrections : F. Sarkis Enoncés : M. Quéffelec, V. Mayer, T. Tahani, F. Sarkis Corrections : F. Sarkis Exo7 Préalables, rappels Exercice 1 1. Montrez que d(x,y) = x y est bien une distance sur l ensemble des réels. 2. Pour tout

Plus en détail

LEÇON N 52 : 52.1 Suites monotones

LEÇON N 52 : 52.1 Suites monotones LEÇON N 52 : Suites monotones, suites adjacentes. Approximation d un nombre réel, développement décimal. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation d une calculatrice.

Plus en détail

fonctions homographiques

fonctions homographiques fonctions homographiques Table des matières 1 aspect numérique et algébrique 3 1.1 activités.................................................. 3 1.1.1 activité 1 : différentes écritures.................................

Plus en détail

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c.

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c. Chapitre I : Révisions I. Le second degré a) fonction trinôme La représentation graphique d une fonction f définie sur par f() = a² + b + c (a non nul) est une parabole. La fonction f est appelée fonction

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 21 février 2015 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 21 février 2015 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 février 015 MATHEMATIQUES durée de l épreuve : 3h coefficient Le sujet est paginé de 1 à 5. Veuillez vérifier que vous avez bien toutes les pages. En cas d anomalie,

Plus en détail

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire.

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire. T ES/L DEVOIR SURVEILLE 6 24 MAI 2013 Durée : 3h Calculatrice autorisée NOM : Prénom : «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Espaces euclidiens. Soient E un espace vectoriel euclidien de dimension n, le produit scalaire sera noté comme

Espaces euclidiens. Soient E un espace vectoriel euclidien de dimension n, le produit scalaire sera noté comme Espaces euclidiens 1 Bases orthonormées Soient E un espace vectoriel euclidien de dimension n, le produit scalaire sera noté comme d habitude : < x, y >, ou (x, y) ou < x y > On note < x, x >= x 2, x est

Plus en détail

1 Exercices fondamentaux

1 Exercices fondamentaux Université de Nantes Licence Math L3 Département de Mathématiques Année 2009-2010 Topologie et calculs différentiel Liste n 3 1 Exercices fondamentaux Applications Linéaires Exercice 1. Calculer la norme

Plus en détail

Corrigé : EM Lyon 2008

Corrigé : EM Lyon 2008 Exercice 1: I. Étude d une fonction Corrigé : EM Lyon 28 Option économique 1. Les fonctions t t et t ln(t) sont continues sur ];+ [ donc par produit et différence de fonctions continues, f est continue

Plus en détail

FONCTIONS DU PREMIER ET DU DEUXIEME DEGRE

FONCTIONS DU PREMIER ET DU DEUXIEME DEGRE FONCTIONS DU PREMIER ET DU DEUXIEME ) Fonctions constantes. DEGRE Une fonction constante est une fonction de la forme : Exemples : f (x) = 3 g(x) = h(x) = 0 k(x) = 3, 6 f (x) = b où b est un nombre réel

Plus en détail

Logarithme Népérien. Conséquence Pour tous réels a et b strictement positifs on a : ln 1 a = - lna ; ln a b = lna - lnb ; ln a = 1 2 lna

Logarithme Népérien. Conséquence Pour tous réels a et b strictement positifs on a : ln 1 a = - lna ; ln a b = lna - lnb ; ln a = 1 2 lna Logarithme Népérien I) Définition - s Rappel La fonction exponentielle est une bijection de r sur ]0;+ [, c'est-à-dire que pour tout k ]0;+ [, l'équation ex = k a une solution unique dans r, cette solution

Plus en détail

Corrigé de la Feuille 7. Fonctions trigonométriques et trigonométriques hyperboliques inverses.

Corrigé de la Feuille 7. Fonctions trigonométriques et trigonométriques hyperboliques inverses. Corrigé de la Feuille 7. Fonctions trigonométriques et trigonométriques hyperboliques inverses. Simplifier des expressions sin(arcsin(x)) : arcsin est la fonction réciproque de la fonction sin de l intervalle

Plus en détail

Corrigé de la première épreuve de mathématiques. Mines-Ponts 2009 - filière MP

Corrigé de la première épreuve de mathématiques. Mines-Ponts 2009 - filière MP Corrigé de la première épreuve de mathématiques Mines-Ponts 9 - filière MP A. Questions préliminaires Prouvons par récurrence sur n N la propriété P n : φ f est de classe C n sur et t, φ (n f (t = i n

Plus en détail

2 PGCD, PPCM, petit théorème de Fermat

2 PGCD, PPCM, petit théorème de Fermat Université de Paris-Sud, année 2012/2013 Filière Math/Info-L2 Maths 209 Feuille d exercices de soutien 1 Congruences et arithmétique sur Z Exercice 1. a) Soit n un nombre entier. Combien de valeurs peut

Plus en détail

Module de Maths approfondies. Enoncés des exercices

Module de Maths approfondies. Enoncés des exercices Module de Maths approfondies Enoncés des exercices Université Paul Sabatier - Toulouse 3 IUT de Toulouse 3 A Département GEA PONSAN Clement Rau clement.rau@iut-tlse3.fr Systémes linéaires, Pivot de Gauss.

Plus en détail

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID I NOMBRE DÉRIVÉ DÉFINITION Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. f() f(a) Lorsque le rapport admet une

Plus en détail

Exo7. Connexité. Enoncés : V. Mayer Corrections : A. Bodin

Exo7. Connexité. Enoncés : V. Mayer Corrections : A. Bodin Enoncés : V. Mayer Corrections : A. Bodin Exo7 Connexité Exercice 1 Soit X un espace métrique. 1. Montrer que X est connexe si et seulement si toute application continue f : X {0,1} est constante. 2. Soit

Plus en détail

Quatre études de fonctions

Quatre études de fonctions Énoncé Quatre études de fonctions Eercice 1 On définit la fonction f : e 1/ ( +. 1. Préciser le domaine de définition, de continuité, de dérivabilité de f.. Indiquer les limites de f au bornes de son domaine

Plus en détail

Les équations du premier degré

Les équations du premier degré TABLE DES MATIÈRES 1 Les équations du premier degré Paul Milan LMA Seconde le 10 septembre 2010 Table des matières 1 Définition 1 2 Résolution d une équation du premier degré 2 2.1 Règles de base................................

Plus en détail

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé Baccalauréat S Nouvelle-Calédonie //0 Corrigé. P. M. E. P. EXERCICE Commun à tous les candidats Soit f la fonction dérivable, définie sur l intervalle ]0 ; + [ par f (x)=e x + x.. Étude d une fonction

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Sujets. Formulaire. mai 2011. Amérique du Nord. novembre 2011. Nouvelle-Calédonie. mai 2012. BTS Métopole (B1) mai 2013.

Sujets. Formulaire. mai 2011. Amérique du Nord. novembre 2011. Nouvelle-Calédonie. mai 2012. BTS Métopole (B1) mai 2013. LOIS CONTINUES Sujets mai 2011 novembre 2011 mai 2012 mai 2013 Amérique du Nord Nouvelle-Calédonie BTS Métopole (B1) BTS Métropole (D) Formulaire LOIS CONTINUES 1 Amérique du Nord mai 2011. EXERCICE 2

Plus en détail

Etude de fonctions polynômes, cours, terminale STMG

Etude de fonctions polynômes, cours, terminale STMG Etude de fonctions polynômes, cours, terminale STMG F.Gaudon 8 juillet 2015 Table des matières 1 Fonction dérivée 2 2 Opérations sur les fonctions dérivables 2 2.1 Somme..............................................

Plus en détail

Chapitre 3 Étude de fonctions. Table des matières. Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1

Chapitre 3 Étude de fonctions. Table des matières. Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1 Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1 Chapitre 3 Étude de fonctions Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Correction Bac ES Amérique du Nord juin 2010

Correction Bac ES Amérique du Nord juin 2010 Correction Bac ES Amérique du Nord juin 2010 EXERCICE 1 (5 points) On considère la fonction définie et dérivable sur l intervalle [ 2 ; 11], et on donne sa courbe ci-dessous. 1) (0) est égal à 2 : réponse

Plus en détail

Corrigé : EM Lyon 2006

Corrigé : EM Lyon 2006 Corrigé : EM Lyon 26 Option économique Exercice 1: 1. a) Comme A est une matrice triangulaire, on peut lire ses valeurs propres sur sa diagonale. Les valeurs propres de A sont et 1. b) Aadmet deux valeurspropresdistinctes

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Chapitre 7 Généralités sur les fonctions numériques Étude d une fonction réelle d une variable réelle On munit le plan d un repère orthonormé O; i, j.. Fonction réelle d une variable réelle Définition

Plus en détail

17 exercices de dérivation avec Q.C.M. - première. Les Dérivées

17 exercices de dérivation avec Q.C.M. - première. Les Dérivées Les Dérivées exercice 1 Trouver la (ou les) réponse(s) exacte(s) : Le plan est muni d'un repère (O,, ); C 3 f désigne la courbe représentative de la fonction f dans ce repère : f la fonction définie par

Plus en détail

Minimisation d une somme de distances, points de Fermat

Minimisation d une somme de distances, points de Fermat Minimisation d une somme de distances, points de Fermat Arnaud de Saint Julien 26 décembre 2004 Table des matières 1 Présentation du problème 2 1.1 Définitions et objectifs..................................

Plus en détail

Cours 1 : Points fixes de fonctions monotones

Cours 1 : Points fixes de fonctions monotones Université Bordeaux 1 INF569 Master d informatique Logique et Langages (2 - partie 2) Cours 1 : Points fixes de fonctions monotones Anne Dicky 7 novembre 2009 Table des matières 1 Exemples de points fixes

Plus en détail

Chapitre 2 : Etude de fonctions

Chapitre 2 : Etude de fonctions Chapitre : Etude de fonctions I. Fonctions carrées, racine carrée et inverse Propriété : La fonction carrée est définie sur. Elle est décroissante sur ; 0 et croissante sur 0; Démonstration : Sur ; 0 :

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Extremums d une fonction

Extremums d une fonction Extremums d une fonction I) Définitions (rappels de seconde : voir la fiche de cours correspondante) Soit une fonction définie sur un ensemble D inclus dans, et deux réels. est le maximum de sur D si et

Plus en détail

1 Opérations sur les ensembles

1 Opérations sur les ensembles UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan ÉLÉMENTS DE LA THÉORIE DES ENSEMBLES La théorie des ensembles est à elle seule une branche des mathématiques

Plus en détail

L inégalité des accroissements finis. Applications.

L inégalité des accroissements finis. Applications. DOCUMENT 31 L inégalité des accroissements finis. Applications. 1. Introduction La fonction x ]0, 1[ sin 1 x est bornée mais il n en est pas de même de sa fonction dérivée x 1 x 2 cos 1. Dans ce document

Plus en détail

Extremums d une fonction

Extremums d une fonction Extremums d une fonction I) Définitions (rappels de seconde : voir la fiche de cours correspondante) Soit une fonction définie sur un ensemble D inclus dans, et deux réels. est le maximum de sur D si et

Plus en détail

CORRECTION. = et b = x a ȳ ) 2 V (X)V (Y ) aa = r 2. 9, on a, on a : a = 3, 5 9 et b = 24 15.

CORRECTION. = et b = x a ȳ ) 2 V (X)V (Y ) aa = r 2. 9, on a, on a : a = 3, 5 9 et b = 24 15. UNIVERSITE CHEIKH ANTA DIOP DE DAKAR / 8 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfax () 864 67 9 - Tél : 84 95 9-84 65 8 M A T H E M A T I Q U E S Durée: 4 heures Séries

Plus en détail

Pour les TS2 version boulets. Giorgio Chuck VISCA 7 février 2016 PRIMITIVES

Pour les TS2 version boulets. Giorgio Chuck VISCA 7 février 2016 PRIMITIVES Pour les TS2 version boulets Giorgio Chuck VISCA 7 février 206 PRIMITIVES Table des matières I Le cours 3 I Définition et propriétés 3 I. définition................................................... 3

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Brevet de technicien supérieur Opticien lunetier session 2010

Brevet de technicien supérieur Opticien lunetier session 2010 Brevet de technicien supérieur Opticien lunetier session 2010 A. P. M. E. P. Exercice 1 11 points Les deux parties A et D peuvent être traitées indépendamment des parties B et C A. Ajustement affine Une

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Le sujet comporte 8 pages numérotées de à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 Un distributeur

Plus en détail

a. (0,5) Probabilité que le candidat n ait pas un dossier de bonne qualité et soit admis à la formation :. b. (0,5)

a. (0,5) Probabilité que le candidat n ait pas un dossier de bonne qualité et soit admis à la formation :. b. (0,5) Exercice 1 : (5 points) 1 On choisit un candidat au hasard et on note : l évènement : «le candidat a un dossier jugé de bonne qualité»; l évènement : «le candidat est admis à suivre la formation» a (0,5)

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

Bac S 2015 Métropole - Correction épreuve de mathématiques.

Bac S 2015 Métropole - Correction épreuve de mathématiques. Bac S 2015 Métropole - Correction épreuve de mathématiques. Exercice 1 : 6 points Commun à tous les candidats Les résultats des probabilités seront arrondis à 10 3 près. Partie 1 : 1 ) Soit X une variable

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Généralités sur les fonctions numériques. Rappels sur les fonctions.. Généralités Définition : On appelle fonction f un procédé qui à tout nombre réel tente d'associer un unique nombre réel f(), appelé

Plus en détail

Surplomb maximal. Vincent PANTALONI. 27 novembre 2010

Surplomb maximal. Vincent PANTALONI. 27 novembre 2010 Surplomb maximal Vincent PANTALONI 27 novembre 2010 1 Le problème On s intéresse ici à un problème que nous sommes beaucoup à nous être posé, en jouant à empiler des cartes, des dominos, des morceaux de

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Nous avons vu dans le premier chapitre qu un problème important en analyse est le calcul de limites. Par exemple,

Nous avons vu dans le premier chapitre qu un problème important en analyse est le calcul de limites. Par exemple, Chapitre 4 LA FORMULE DE TAYLOR ET SES APPLICATIONS Nous avons vu dans le premier chapitre qu un problème important en analyse est le calcul de ites. Par exemple, Calculer : x ln x x 2, x 2 x + e x, x

Plus en détail

III - INTRODUCTION AUX TESTS STATISTIQUES

III - INTRODUCTION AUX TESTS STATISTIQUES III - INTRODUCTION AUX TESTS STATISTIQUES J-P. Croisille Université de Lorraine UEL - Année 2012/2013 1-PRINCIPE DES TESTS D HYPOTHESE HYPOTHESE NEUTRE ET HYPOTHESE ALTERNATIVE: Une hypothèse est une affirmation

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

Examen du cours MATH-G-1101

Examen du cours MATH-G-1101 Examen du cours MATH-G-1101 Le 6 janvier 2015 Question: 1 2 3 4 5 6 7 8 Total Points: 13 12 20 10 12 10 12 11 100 Score: Nom : Prénom(s) : Section : Matricule : Instructions Vous avez 2 heures 30 minutes

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Chapitre : Fonctions convexes

Chapitre : Fonctions convexes Chapitre : Fonctions convexes I Définition Définition 1 Soit f : I R une fonction continue où I un intervalle de R On dit que f est une fonction convexe si (x, y I 2, λ [0, 1], f(λx + (1 λy λf(x + (1 λf(y

Plus en détail

Chapitre 5 : Application - Forces Centrales

Chapitre 5 : Application - Forces Centrales Cours de Mécanique du Point matériel Chapitre 5: Application - Forces Centrales SMPC Chapitre 5 : Application - Forces Centrales I Force Centrale I.)- Définition Un point matériel est soumis à une force

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Exercice 1 : «un gars, une fille» (3 points)

Exercice 1 : «un gars, une fille» (3 points) Exercice 1 : «un gars, une fille» (3 points) Simulation : On a simulé la situation sur un tableur. Le graphique ci-dessous indique l évolution de la fréquence de l évènement M «Avoir un garçon et une fille»

Plus en détail

Lycée Louis de Broglie

Lycée Louis de Broglie Lycée Louis de Broglie Livret de révisions de Mathématiques pour l entrée en classe de seconde Ce livret vous proposé pour vous remettre au travail avant votre entrée en seconde Il s agit d exercices divers

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de Terminale ES 2 Table des matières 1 Équations de droites. Second degré 7 1.1 Équation de droite.................................. 7 1.2 Polynôme du second degré..............................

Plus en détail

Fonctions hyperboliques

Fonctions hyperboliques Chapitre III Fonctions hyperboliques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique A.. Définition On appelle fonction sinus hyperbolique la fonction sh : R R, x sh x

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Voir des propriétés sur la calculette et de les démontrer par des calculs : ensemble de définition solutions d'équations et d'inéquations croissance et décroissance symétries

Plus en détail

Contents. Fonctions affines 3. Fonctions usuelles 7. Dérivation 11. Fonctions de plusieurs variables 15. Optimisation sous contraintes 23

Contents. Fonctions affines 3. Fonctions usuelles 7. Dérivation 11. Fonctions de plusieurs variables 15. Optimisation sous contraintes 23 Contents Fonctions affines 3 Fonctions usuelles 7 Dérivation 11 Fonctions de plusieurs variables 15 Optimisation sous contraintes 23 i Fonctions affines 1 Définition - représentation graphique Les fonctions

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

TAUX d EVOLUTIONS (cours)

TAUX d EVOLUTIONS (cours) TAUX d EVOLUTIONS (cours) Table des matières 1 calcul d un taux d évolution 3 1.1 activité.................................................. 3 1.2 corrigé activité..............................................

Plus en détail

A.P soutien maths. Exercice 2 : Ci-contre, voici la représentation graphique de g dans un repère

A.P soutien maths. Exercice 2 : Ci-contre, voici la représentation graphique de g dans un repère A.P soutien maths Exercice 1 : Soit la fonction f définie sur IR par f(x) = 4x 2 + 16 x + 29 a) Quelle est la nature de f? b) Déterminer les variations de f c) Tracer la représentation graphique de f dans

Plus en détail

Fonctions affines par morceaux

Fonctions affines par morceaux Fonctions affines par morceaux Année scolaire 2006/2007 Table des matières 1 Fonctions affines par morceaux 2 1.1 Définition Représentation graphique................................. 2 1.2 Un cas particulier

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Fonctions carrée et inverse. Autres fonctions élémentaires

Fonctions carrée et inverse. Autres fonctions élémentaires TABLE DES MATIÈRES Fonctions carrée et inverse. Autres fonctions élémentaires Paul Milan LMA Seconde le 6 février 200 Table des matières La fonction carrée 2. Fonction paire................................

Plus en détail

Seconde Chapitre III : Fonctions affines Année scolaire 2012/2013

Seconde Chapitre III : Fonctions affines Année scolaire 2012/2013 Seconde Chapitre III : Fonctions affines Année scolaire 2012/2013 I) Généralités sur les fonctions affines : 1) Définition : Une fonction f définie sur R est dite affine si il existe deux nombres réels

Plus en détail

CONCOURS 2013 DEUXIÈME ÉPREUVE DE MATHÉMATIQUES. Filière MP. (Durée de l épreuve : 4 heures) L usage d ordinateur ou de calculette est interdit.

CONCOURS 2013 DEUXIÈME ÉPREUVE DE MATHÉMATIQUES. Filière MP. (Durée de l épreuve : 4 heures) L usage d ordinateur ou de calculette est interdit. A 013 MATH. II MP ÉCOLE DES PONTS PARISTECH, SUPAÉRO (ISAE), ENSTA PARISTECH, TÉLÉCOM PARISTECH, MINES PARISTECH, MINES DE SAINT-ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (FILIÈRE MP),

Plus en détail

Mathématiques approfondies (parcours MID) Semestre 2. 1. Ensembles et applications

Mathématiques approfondies (parcours MID) Semestre 2. 1. Ensembles et applications Université Paris XII Licence Économie-Gestion Mathématiques approfondies (parcours MID) Semestre 2 1. Ensembles et applications Exercice 1 On considère l ensemble F des fruits, l ensemble R des fruits

Plus en détail

FONCTION LOGARITHME NEPERIEN : f(x) = ln(x)

FONCTION LOGARITHME NEPERIEN : f(x) = ln(x) FONCTION LOGARITHME NEPERIEN : f() = ln() I) DEFINITION. a) Définition 1 et notations : ( de la fonction logarithme ) La fonction logarithme népérien notée «ln», associe à tout nombre réel positif strict

Plus en détail

Chapitre 4. Quelques types de raisonnement

Chapitre 4. Quelques types de raisonnement Chapitre 4 Quelques types de raisonnement 1. Aide à la rédaction d un raisonnement 1.1. Analyse du problème La première chose est de distinguer les hypothèses (= propositions vraies) de la question (=proposition

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Baccalauréat ES Amérique du Nord 3 juin 2010

Baccalauréat ES Amérique du Nord 3 juin 2010 Baccalauréat ES Amérique du Nord 3 juin 2010 EXERCICE 1 On considère la fonction f définie et dérivable sur l intervalle ( [ 2 ; 11], et on donne sa courbe représentative C f dans un repère orthogonal

Plus en détail

Rappels de seconde sur les fonctions

Rappels de seconde sur les fonctions Rappels de seconde sur les fonctions Table des matières I Vocabulaire des fonctions I. Définitions............................................... I. Tableau de valeurs d une fonction..................................

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables 11 Fonctions de plusieurs variables «Les mathématiques sont un jeu que l on exerce selon des règles simples en manipulant des symboles ou des concepts qui n ont en soi, aucune importance particulière.»

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPRTION DU BCCLURÉT MTHÉMTIQUES SÉRIE ES Obligatoire et Spécialité 8 Janvier Durée de l épreuve : heures Coefficient : 5 ou 7 L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Types de raisonnement

Types de raisonnement Types de raisonnement Christian Cyrille 19 août 013 "On résoud les problèmes qu on se pose et non les problèmes qui se posent" Henri Poincaré En sciences, deux façons de raisonner : - l induction - la

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Dérivabilité Etudier la dérivabilité de la fonction : 1 en 1. On considère la fonction définie sur 1; par 1 1 Etudier la dérivabilité de en 1.

Plus en détail