Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}"

Transcription

1 Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et K les points définis pr : OI = i ; OJ = j et OK = i + j On ppelle unité d ire (notée en régé u.) l unité de mesures des ires telle que : Aire(rectngle OIKJ)= u.. y J K j u.. O ı I Remrques : OIKJ peut-être un crré lorsque le repère (O ; ı, j ) est orthonormé. Si l on, pr eemple, OI = 3 cm et OJ = cm, lors une unité d ire correspond à 6 cm ( u.. = 6 cm ). Dns tout le chpitre, le pln est muni d un repère orthogonl (O ; ı, j ). Définition : Soient : et deu réels vec. f une fonction continue et positive sur l intervlle [ ; ]. On ppelle intégrle de à de f, l ire, eprimée en u.., du domine D suivnt : D = {M( ; y) P tels que et y f()} ( D est le domine délimité pr l coure de f, l e des scisses et les deu droites verticles d équtions = et = ) On note cette quntité : f()d C f D

2 Remrques : Dns l écriture On ussi ien : f()d, l vrile (ou t ou utre) est "muette" ; elle peut-être remplcée pr toute utre lettre. f()d = f(t)dt = f(u)du. Le symole d ne joue ucun rôle pour le moment, si ce de préciser quelle est l vrile.. Premiers eemples On considère un repère orthonorml (O ; ı, j ) vec i = j = cm. Ainsi,.u.. = cm.. Cs d une fonction constnte et positive. k C f y = k Si f est constnte et positive égle à k sur [ ; ], lors f()d = k( ). On simplement ppliqué l formule pour clculer l ire du rectngle).. Cs d une fonction ffine positive C f y = m + p Si f est ffine positive sur [ ; ], lors - f()d est l ire du trpèze. c. Cs d une prole On vu dns l ctivité "ire sous une prole" que cette ire est l limite commune de deu suites djcentes : l une (S n ) égle à l somme des ires des rectngles situés sous l coure et l utre (S n) égle à l somme des ires des rectngles situés u dessus de l coure. y = O

3 Dns l ctivité, on montré que : n, S n = n 3n k= Or, n, ( n )( n+ ) 6 Comme, Alors, lim n + ( d = = 3. k = ( n )( n+ ) 6 n = 6 ) n =, lim S n = n + 6 = 3. n et que S n = ( n ) ( n n n 3n k= n ) n = 6 k = ( n + )( n+ + ) 6 n. [ ( ) n ] [ ( ) n ]. d. Cs d une fonction en esclier (toujours supposée positive) λ λ λ 3 λ λ 4 = = f est une fonction en esclier et positive sur [ ; ]. Il s git d une fonction constnte égle à λ i sur chque intervlle ] i ; i+ [ où = < < <... < n < n = et prennt n importe quelle vleur en i. n Alors, f() d = λ i ( i+ i ) : c est l somme des ires des rectngles de lrgeur i+ i et de huteur λ i. i= e. On montre que l on peut toujours clculer l intégrle d une fonction continue et positive sur [ ; ] comme l limite de deu suites djcentes construites de l fçon suivnte : On sudivise l intervlle [ ; ] en n intervlles tous de lrgeur. On définit lors deu suites de fonctions en esclier (s n ) et (s n) telles que, [ ; ], s n () f() s n(). n Les fonctions s n sont les fonctions en esclier dont les coures sont situées sous celle de f et les fonctions s n sont les fonctions en esclier dont les coures sont situées u dessus de celle de f. S n est lors l ire sous l coure de s n : c est l somme des ires des rectngles situés sous l coure de f. S n est lors l ire sous l coure de s n : c est l somme des ires des rectngles situés u dessus de l coure de f. Les suites (S n ) et S n) sont lors djcente et de limite communes f() d.

4 Etension u fonctions de signe quelconque sur un intervlle [ ; ] Définition : Cs d une fonction négtive Soit f une fonction continue négtive sur un intervlle [ ; ]. L intégrle de à de f est l opposé de l ire, eprimée en u.., du domine D suivnt : Cette quntité est notée D = {M( ; y) P tels que et f() y } f()d. Autrement dit, lorsque f est négtive sur [ ; ], on : f()d = f() d Eercice : Montrer que ( )d = 3. Définition : Cs d une fonction de signe quelconque Soit f une fonction continue sur un intervlle [ ; ]. Soit C s coure représenttive. Soit A (resp. A ) l ire de l prtie du pln délimité pr C, l e des scisses et les deu droites verticles d éqution = et = et située u dessus (resp. u dessous) de l e des scisses. L intégrle de à de f est lors En d utres termes, f()d se clcule en comptnt positivement l ire des domines où f est positive et négtivement l ire des domines où f est négtive. f()d = A A Eemples : A C f O A -

5 Eercice :. Clculer I =. Clculer 5 ( 3) d, puis clculer l ire du domine hchuré. d C f + O Vleur moyenne d une fonction continue sur un intervlle [ ; ] Définition : Soit f une fonction continue sur [ ; ]. On ppelle vleur moyenne de f sur [ ; ], le nomre réel µ défini pr : µ = f() d Interpréttion grphique : L vleur moyenne de f correspond à l vleur de µ qu il fut donner à l huteur du rectngle de lrgeur pour que celui-ci it l même ire que celle sous l coure de f. 3 µ = f() d µ

6 .5 Clcul de l ire située entre deu coures Propriété : Clcul de l ire située entre deu coures Soient f et g deu fonctions continues et définies sur un intervlle [ ; ]. On suppose que : g f sur [ ; ]. Alors, l ire du domine D défini pr : D = {M( ; y) P tels que et g() y f()} est donnée, en u.., pr : f() d g() d Eemple : Soient f et g définies sur [ ; ] pr f() = et g() =. L ire hchurée ci-dessous est d d = 3 = 6. C g C f O Propriétés de l intégrle. Bornes d intégrtion Définition : Soit f une fonction continue sur un intervlle I. Pour tous réels et de I, si <, on pose f() d = f() d = f() d Propriété : Reltion de Chsles Soit f une fonction continue sur un intervlle I. Soient, et c dns I, lors : f() d = c f() d + c f() d

7 . Linérité Propriété : Linérité de l intégrle Soient f et g deu fonctions continues sur un intervlle I contennt et et α un réel : f() + g() d = αf() d = α f() d + f() d g() d.3 Inéglités Propriété : Positivité de l intégrle Soit f une fonction continue et positive sur un intervlle [ ; ] vec, lors : f() d Remrque : L démonstrtion est immédite puisque une ire est positive. Évidemment, si f est négtive sur [ ; ] lors son intégrle est négtive. En revnche, on ne peut rien dire, priori, du signe de l intégrle d une fonction chngent de signe sur [ ; ]. Propriété : Comptiilité vec l ordre (intégrtion d une inéglité) Soient f et g deu fonctions continues sur un intervlle I contennt et, lors : f g sur [ ; ] lors f() d g() d Interpréttion en termes d ires : C g C f Théorème : Inéglité de l moyenne Soit f une fonction continue sur un intervlle I = [ ; ]. Soient m et M des réels tels que : m f() M suri Alors m( ) f() d M( ) Remrque : Une fonction continue sur un intervlle [ ; ] est toujours ornée (et de plus tteint ses ornes). Les réels m et M eistent toujours.

8 Interpréttion en termes d ires : M D C m E A F B Lorsque f est positive et m et M positifs, l ire de ABEF est m( ) et celle de ABCD est M( ). Théorème : Inéglité de l moyenne (is) Soit f une fonction continue sur un intervlle I = [ ; ]. Si f M sur I lors f() d M Eercice :. Prouver que : 3. Montrer que : sin(t )dt d + 3 Notion de primitive d une fonction sur un intervlle 3. Définition et théorème Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I toute fonction F dérivle sur I telle que F = f sur I. Eemple : On considère l fonction f définie sur R pr : f() = 3 + cos. Trouver (mentlement) une primitive F de f sur R. L fonction F définie pr F () = 3 + sin convient. Remrquons que si l on vit choisi pour F l fonction définie pr F () = 3 + sin + 5, nous urions encore eu une cndidte stisfisnte. Donc si une fonction f dmet une primitive, lors elle en dmet une infinité.

9 Théorème : Soit f une fonction dmettnt des primitives sur un intervlle I. Soient F et G deu primitives d une fonction f sur un intervlle I. Alors F et G diffèrent d une constnte : F () = G() + c (c R) pour tout I Démonstrtion : Puisque F et G sont des primitives de f sur I, on : F = G = f Pr conséquent, F G = sur I. Or, F G = (F G), donc (F G) = sur I. Or, les seules fonctions qui ont une dérivée nulle sont les fonctions constntes, donc on, sur I : F G = c vec c R. Grphiquement, dns un repère orthonorml (O ; ı, j ) les représenttions grphiques C F et C G se correspondent pr une trnsltion de vecteur c j C F C G c 3. Tleu des primitives usuelles f() = F () = (c= constnte) I k (constnte) k + c R + n (n Z et n ) + c R + + c R n+ n + + c R si n > ] ; [ ou ] ; + [ si n + c ] ; + [ + c ] ; [ ou ] ; + [ cos sin + c R sin cos + c R + tn = cos tn + c ] π ; π [ e e + c R ln + c ] ; + [ ou ] ; [

10 3.3 Opértions sur les primitives Lorsque u et v sont des fonctions dérivles sur un intervlle I. Fonction Une primitive Conditions u + v u + v ku (k constnte) u u n (n Z { }) u u k u u n+ n + u u sur I si n u > sur I v v u e u u u v e u ln u v sur I u > sur I ou u < sur I u( + ) ( ) U( + ) U primitive de u sur I Eercice : Pour chcune des fonctions f continues sur l intervlle I indiqué, trouver ] une[ primitive F sur I :. f() = (3 ) 6 ; I = R. f() = ( ) 4 ; I = ; + 3. f() = ; I =] ; [ Eercice : Soit F l fonction définie sur ] ; + [ pr : F () = 3. Clculer F (). Qu -t-on démontré?

11 Théorème : Primitive définie pr une condition initile Soit f une fonction définie sur un intervlle I dmettnt des primitives sur I. Soit I et y R. Il eiste une unique primitive F de f sur I stisfisnt l condition initile F ( ) = y Démonstrtion : Soit G une primitive de f sur I (eiste pr hypothèse). On en déduit d près un théorème précédent que toutes les primitives F de f sur I sont de l forme F = G + c (où c est une constnte). L condition F ( ) = y impose c = y G( ). L constnte c est déterminée de mnière unique, ce qui démontre le théorème. Eemple : Soit f l fonction définie sur R pr : f() =. Trouver l unique primitive F de f telle que F () =. + 4 Clculs d intégrles 4. Intégrles et primitives Théorème : Soit f une fonction continue sur un intervlle I contennt. L fonction F définie sur I pr F () = est l unique primitive de f sur I qui s nnule en f(t) dt Autrement dit, F () =, F est dérivle sur I et pour tout réel de I : F () = f(). Démonstrtion : On démontre ce théorème dns le cs où f est croissnte sur I. Soit I et h R tel que + h I. F ( + h) F () = +h f(t) dt f(t) dt = +h f(t) dt (reltion de Chsles). Si h >, comme f est croissnte sur I, si t + h lors f() f(t) f( + h). Donc, +h ou encore f() Soit hf() f() dt +h +h Finlement f() +h dt +h f(t) dt +h f(t) dt f( + h) f( + h) dt (ordre) +h dt (linérité) f(t) dt hf( + h) (intégrtion d une fonction constnte égle à ) F ( + h) F () h f( + h). Or, comme f est continue sur I donc en, d où lim f( + h) = f(). Donc, d près le théorème des gendrmes, h F ( + h) F () lim = f(). h h h> Si h <, comme f est croissnte sur I, si + h t, lors f( + h) f(t) f(). Donc, +h f( + h) dt ou encore f( + h) Soit hf() +h +h Finlement f( + h) dt +h f(t) dt +h +h f(t) dt f() f( + h) dt (ordre) +h dt (linérité) f(t) dt hf() (intégrtion d une fonction constnte égle à ) F () F ( + h) h f() f( + h) F ( + h) F () h f().

12 Pr conséquent, F est dérivle en et F () = f(). Comme ce résultt est vri pour tout de I, F est une primitive de f sur I. De plus, comme F () = f(t) dt =, F est l primitive de f qui s nnule en. Théorème : Eistence de primitives pour les fonctions continues Toute fonction continue sur un intervlle I dmet des primitives sur I L démonstrtion est immédite, cr si f est continue sur I, une primitive F de f est donnée pr : F () = f(t) dt ( I) Théorème : Formule de Newton-Leiniz Soit f une fonction sur un intervlle I et F une primitive de f sur I. Alors pour tous réels et dns I : f(t) dt = F () F () Démonstrtion : f(t) dt est, d près ce qui précède, l primitive de f sur I qui s nnule en. Toutes les primitives de f sur I s écrivent lors f(t) dt + k vec k R. Soit F l une d entre elle. ( ) ( ) Alors F () F () = f(t) dt f(t) dt = f(t) dt. Eercices : Clculer les intégrles suivntes : 3 dt 5 4 t dt u u3 du 3 t 9 t dt dt 6 v 4 v dv π π cos(3z π) dz n d e t dt 3 ( + )( + 3) d e d ln e + d e y dy Remrque : Le choi de l primitive F n influe ps le résultt de l intégrle. En effet, si F et G sont deu primitives d une même fonction f sur I, lors elles diffèrent d une constnte. Les quntités F () F () et G() G() sont donc égles. 4. Intégrtion pr prties Théorème : u et v sont deu fonctions dérivles sur un intervlle I, telles que leurs dérivées u et v sont continues sur I. Alors pour tous réels et de I : u(t)v (t)dt = [u(t)v(t)] Cette formule est ppelée formule d intégrtion pr prties u (t)v(t)dt Démonstrtion : L fonction uv est dérivle sur I vec (uv) = u v uv. Ainsi uv = (uv) u v. Puisque uv, (uv) et u v sont continues sur I, on en déduit que : et pr linérité de l intégrtion : (uv )(t)dt = (uv )(t)dt = Or uv est une primitive de (uv) sur I, donc [(uv) (t) (u v)(t)]dt, (uv) (t)dt (uv) (t)dt = [u(t)v(t)]. (u v)(t)dt.

13 Ainsi, on otient : Eercice : Clcul de te t dt. u(t)v (t)dt = [u(t)v(t)] u (t)v(t)dt. Eercice : Quelle est l vleur de l intégrle π sin d? Eercice : Trouver une primitive sur l intervlle ]; + [ de l fonction f : ln.

14 5 Appliction u clculs de volumes 5. Volume d une oule de ryon R (O; OI, OJ, OK) est un repère orthonorml de l espce. S est l sphère de centre O et de ryon R (R > ). Pour tout réel z tel que R z R, le pln P prllèle à (OIJ) de cote z coupe l sphère S suivnt le cercle C.. Clculer l ire A(z) du cercle C en fonction de R et z.. Le volume V de l sphère S est donné pr l intégrle : V = R R Clculer V. A(z)dz. 5. Volume d une pyrmide On considère l pyrmide tringulire ci-contre, de huteur [OH]. On note h = OH et S l ire de l se ABC. On ppelle H un point de l e (O; k ), intérieur à l pyrmide. L section de l pyrmide pr un pln prllèle u pln (ABC) et pssnt pr H est un tringle A B C. On pose OH = z.. Utiliser une homothétie de centre O pour prouver que l ire S(z) de l section A B C est telle que S(z) = S z h.. En déduire que le volume V de l pyrmide est V = 3 Sh.

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

TOUT SUR LE TRIANGLE

TOUT SUR LE TRIANGLE PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI Toutes les questions de cours et R.O.C. u bc de T.S. Vincent PANTALONI VERSION DU 9 MARS 2012 Tble des mtières Bc 2011 3 Bc 2011 5 Bc 2010 9 Bc 2009 11 Bc 2008 13 Bc 2007 17 Bc 2006 19 Bc 2005 21 ii Remerciements.

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution .8 Aperçu de l intégrle.8 APERÇU DE L INTÉGRALE Estimtion de l ire d une région curviligne Erreur d pproimtion Aire ecte d une région curviligne 4 Intégrle définie 5 Intégrle définie négtive 6 Propriétés

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Stage olympique de Cachan Géométrie

Stage olympique de Cachan Géométrie Stge olympique de chn Géométrie Exercices du vendredi 20 février 2015 1 Quelques définitions et résultts utiles éfinition (Nottions) Soit un tringle non plt. On utiliser usuellement les nottions suivntes

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

zz' = z. z' ; Si z' # 0 1 z' Re(z) = z + z z est réel z = z ; z est imaginaire pur z = - z

zz' = z. z' ; Si z' # 0 1 z' Re(z) = z + z z est réel z = z ; z est imaginaire pur z = - z Nomres complexes Module et conjugué d'un nomre complexe Définition - Propriétés Un nomre complexe z s'écrit de fçon unique sous l forme + i ; IR, IR On dit que + i est l forme lgérique du nomre complexe

Plus en détail

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes . Intégrtion (suite) e qui suit comporte trois prties : l première correspond à peu près à ce qui été trité lors du dernier cours, certins exemples du cours et d utres clculs sont présentés dns l deuxième,

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane Déprtement de Mthémtiques Fculté des Sciences Université Ibn Tofïl Kénitr Cours d Anlyse II S2 Filières : SMP /SMC (Deuxième semestre, première nnée) Notes rédigées pr : M. BENELKOURCHI Slimne Professeur

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques Bcclurét 20 Résumé Ce document contient les principles définitions, théorèmes et propriétés du cours de mthémtiques du tronc commun de mthémtiques de Terminle S. Je tiens à remercier

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Clcls de primitives et d intégrles Eercices de Jen-Lois Roget. Retrover ssi cette fiche sr www.mths-frnce.fr * très fcile ** fcile *** difficlté moyenne **** difficile ***** très difficile I : Incontornle

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S Kit de survie - Bc S. Inéglités - Étude du signe d une expression Opértions sur les inéglités Règles usuelles : Pour tout x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales Utiliser l inverse d une mtrice pour résoudre un système d équtions & coures polynomiles Exercice : Dns une ferme, il y des lpins et des poules. On dénomre 58 têtes et 60 pttes. Comien y -t-il de lpins

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION UNIVERSITE PRIS PNTHEON SORBONNE UFR DE GESTION MTHEMTIQUES PPLIQUEES L ECONOMIE ET L GESTION LICENCE nnée Cours de Thierry LFY TRVUX DIRIGES semestre 7-8 Thème n : Rppels Eercice Déterminez l ensemble

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Intégration et primitives

Intégration et primitives DERNIÈRE IMPRESSIN LE 8 mrs 24 à 4:2 Itégrtio et primitives Tle des mtières Notio d itégrle 2. Défiitio................................. 2.2 Exemple de clcul d itégrle : l qudrture de l prole.... 3.3 Itégrle

Plus en détail

Séries, intégrales et probabilités

Séries, intégrales et probabilités Séries, intégrles et probbilités Thierry MEYRE Préprtion à l grégtion interne. Année 2014-2015. Université Pris Diderot. IREM. http://www.prob.jussieu.fr/pgeperso/meyre 2 BIBLIOGRAPHIE. Les ouvrges de

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction Prép. Agrég. écrit d Anlyse, Annexe n o 6. Méthode de Lplce dns R d Fonctions définies pr une intégrle On suppose que g et h sont deux fonctions réelles définies sur R d, telles que l fonction F(t = g(x

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Analyse 1 L1-mathématiques

Analyse 1 L1-mathématiques Anlyse L-mthémtiques Renud Leplideur Année 3-4 UBO Tble des mtières Inéglités et clculs 3. Nombres..................................... 3.. Les ensembles N, Z, Q et R...................... 3.. Les intervlles

Plus en détail

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates Lycée Fidhere, Lille MP Cours d informtique 203 204 Automtes I Déterministes........................... 2 Définitions 2 Exemple 2 Action des mots 3 Lngge reconnu 3 II Incomplets.............................

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145.

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145. École de technologie supérieure Service des enseignements généru Locl B-500 54-96-898 Site internet : http://www.etsmtl.c/ MAT45 CALCUL DIFFÉRENTIEL ET INTÉGRAL NOTES DE COURS e PARTIE PAR GENEVIÈVE SAVARD,

Plus en détail

Automates et langages

Automates et langages Automtes et lngges L exmen corrigé RICM 9 jnvier 22 Grmmire Automte Expression On considère l grmmire régulière G =(Γ,Σ,S,Π) vec Γ = {S,P,R}, Σ={,} et Π={S P,P R,P S,R,R P }.. Construire un utomte A cceptnt

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail

COURS DE MATHÉMATIQUES SEMESTRE 1. Jean-Marie De Conto Université Joseph Fourier IUT1 Département Mesures Physiques

COURS DE MATHÉMATIQUES SEMESTRE 1. Jean-Marie De Conto Université Joseph Fourier IUT1 Département Mesures Physiques COURS DE MATHÉMATIQUES SEMESTRE Jen-Mrie De Conto Université Joseph Fourier IUT Déprtement Mesures Phsiques Me contcter: sns hésiter À l IUT Au lbortoire: Lbortoire de Phsique Subtomique et de Cosmologie

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Terminle S Vlère BONNET vlere.bonnet@gmil.com) 9 mi Lycée PONTUS DE TYARD rue des Gillrdons 7 CHALON SUR SAÔNE Tél. : ) 85 46 85 4 Fx : ) 85 46 85 59 FRANCE ii LYCÉE PONTUS DE TYARD

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

CALCULS DE PRIMITIVES ET D INTÉGRALES

CALCULS DE PRIMITIVES ET D INTÉGRALES Christoph Brtult Mthémtiqus n MPSI CALCULS DE PRIMITIVES ET D INTÉGRALES C chpitr vis à rnforcr votr prtiqu du clcul intégrl u moyn d révisions ciblés t grâc à du nouvutés, l intégrtion pr prtis t l chngmnt

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

Chimie Avancement d une réaction chimique Chap.8

Chimie Avancement d une réaction chimique Chap.8 ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le

Plus en détail

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad Cours de Mthémtiques L1 Résumé des chpitres Hssn Emmird Université de Poitiers Version 29/21 TABLE DES MATIÈRES 3 Tble des mtières 1 Nombres complexes 5 1.1 Le corps C.....................................

Plus en détail

ANALYSE APPROFONDIES II MT242

ANALYSE APPROFONDIES II MT242 ALGÈBRE ET ANALYSE APPROFONDIES II MT242 Année 1998-1999 Chpitre 0. Introduction générle Dns cette introduction nous llons commenter les principles notions contenues dns le cours du second semestre, leurs

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

Chapitre 3 Intégrale double

Chapitre 3 Intégrale double Chpitre 3 Intégrle oule Nous llons supposer le pln usuel muni un repère orthonormé (O,i,j). 3. Aperçu e l éfinition formelle e l intégrle oule Soit =[, [, (

Plus en détail

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Deug Mis 1 Année 2002-2003 J.-F. Burnol Université Lille 1 1 DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Toutes les fiches de cours distribuées ux étudints pendnt l nnée

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Table des matières. Cristallographie. S.Boukaddid Cristallographie MP2

Table des matières. Cristallographie. S.Boukaddid Cristallographie MP2 S.Boukddid Cristllogrphie MP Cristllogrphie Tble des mtières 1 Bses de l cristllogrphie 1.1 Définitions....................................... 1. Crctéristiques des réseux cristllins......................

Plus en détail