VOCABULAIRE DE GEOMETRIE PLANE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "VOCABULAIRE DE GEOMETRIE PLANE"

Transcription

1 Fiche de vocabulaire VOCABULAIRE DE GEOMETRIE PLANE Généralités ) Nom des polygones courants ) Qu est-ce qu un polygone?... 2 La médiatrice d un segment... 3 Cercle et disque ) Le disque? Une surface! Et le cercle? Une ligne! ) Points cocycliques... 3 Les angles ) Aigu ou obtus? ) La bissectrice d un angle ) Angles adjacents ) Angles complémentaires ) Angles supplémentaires ) Angles opposés par le sommet ) Angles alternes-internes ) Angles correspondants ) Somme des angles d un triangle... 6 Les types de triangles ) Le triangle isocèle ) Le triangle équilatéral ) Le triangle rectangle ) Le triangle isocèle rectangle... 7 Les droites remarquables dans le triangle ) Les médiatrices du triangle et le cercle circonscrit ) Les médianes du triangle et le centre de gravité du triangle ) Les hauteurs du triangle et l orthocentre ) Les bissectrices intérieures du triangle et le cercle inscrit ) La symétrie du triangle isocèle ) Les 3 symétries du triangle équilatéral Les quadrilatères ) Les trapèzes ) Le parallélogramme ) Le losange ) Le rectangle ) Le carré

2 Généralités 1) Nom des polygones courants On classe les polygones en fonction du nombre de leurs côtés, donc du nombre de leurs sommets. Voici les plus courants : 3 côtés 4 côtés 5 côtés 6 côtés 8 côtés 10 côtés Triangle Quadrilatère Pentagone Hexagone Octogone Décagone Un polygone est régulier si tous ses côtés sont isométriques et si tous ses angles ont même mesure. Les sommets d un tel polygone sont cocycliques (le polygone régulier est inscriptible dans un cercle). Un triangle équilatéral, un carré sont des polygones réguliers. 2) Qu est-ce qu un polygone? L expression «polygone ABCDE» peut être interprétée différemment suivant le contexte. ABCDE est la liste ordonnée des 5 points A, B, C, D et E. ABCDE est la ligne formée des segments [AB], [BC], [CD], [DE] et [EA]. Cette ligne est dite ligne polygonale. ABCDE est l ensemble des 5 droites (AB), (BC), (CD), (DE), (EA). ABCDE est la surface comprise à l intérieur de la frontière formée des segments [AB], [BC], [CD], [DE] et [EA]. 2

3 La médiatrice d un segment La médiatrice du segment [AB] est l ensemble des points équidistants des extrémités A et B. Autrement dit : Le point M appartient à la médiatrice de [AB] si et seulement si MA = MB. La médiatrice d un segment est la droite perpendiculaire à ce segment et passant par le milieu de ce segment. Les «médiatrices d un triangle» sont les médiatrices des côtés de ce triangle. Cercle et disque 1) Le disque? Une surface! Et le cercle? Une ligne! Le disque est la surface dont la frontière est le cercle. Le centre du cercle est un point du disque, mais n est pas un point du cercle. Les mots rayon et diamètre désignent, suivant le contexte, soit les segments de droite, soit les mesures de ces segments. 2) Points cocycliques Plusieurs points sont dits cocycliques s ils appartiennent à un même cercle (cette notion ne prend sons sens qu à partir de 3 points). 3

4 Les angles 1) Aigu ou obtus? Angle aigu < angle droit (90 ) < angle obtus L angle plat (180 ) est la réunion de 2 angles droits. L angle plein (360 ) est la réunion de 2 angles plats, donc de 4 angles droits. C est un «tour». 2) La bissectrice d un angle La bissectrice d un angle est l ensemble des points équidistants des côtés de l angle. La bissectrice est axe de symétrie de l angle. 3) Angles adjacents Deux angles adjacents sont de même sommet et ont un côté commun. On suppose en général qu ils sont extérieurs l un à l autre. 4) Angles complémentaires Deux angles sont complémentaires si leur somme fait un angle droit (90 ). Ces angles ne sont pas nécessairement adjacents. Dans un triangle rectangle, les deux angles (autres que l angle droit) sont complémentaires. 4

5 5) Angles supplémentaires Deux angles sont supplémentaires si leur somme fait un angle plat (180 ). 6) Angles opposés par le sommet Deux droites sécantes définissent deux couples d angles opposés par le sommet. Deux angles opposés par le sommet sont isométriques (ils ont même mesure). 7) Angles alternes-internes La droite sécante aux deux droites parallèles définit des paires d angles égaux, dits alternesinternes. 8) Angles correspondants La droite sécante aux deux parallèles définit des paires d angles égaux, dits correspondants. 5

6 9) Somme des angles d un triangle La somme des angles d un triangle vaut 180. L explication s appuie sur les propriétés des angles alternes internes. Cas particuliers : triangle rectangle, triangle équilatéral, triangle isocèle. 6

7 Les types de triangles 1) Le triangle isocèle Le triangle isocèle a deux côtés de même mesure. Il a deux angles de même mesure. 2) Le triangle équilatéral Le triangle équilatéral a ses 3 côtés de même mesure. Ses 3 angles mesurent chacun 60. 3) Le triangle rectangle Le triangle rectangle est un demi-rectangle. Il a un angle droit. Le côté opposé à l angle droit s appelle l hypoténuse (attention à l orthographe). 4) Le triangle isocèle rectangle Le triangle isocèle rectangle est un demi carré. Il a un angle droit, et les deux côtés de l angle droit sont isométriques. 7

8 Les droites remarquables dans le triangle 1) Les médiatrices du triangle et le cercle circonscrit Les médiatrices du triangle sont les médiatrices des côtés du triangle. Les 3 médiatrices d un triangle sont concourantes. Construire deux médiatrices suffit pour obtenir le point de concours. Le point de concours des 3 médiatrices est le centre du cercle circonscrit au triangle. Ce cercle passe par les 3 sommets du triangle. 2) Les médianes du triangle et le centre de gravité du triangle La médiane [AA ] est le segment joignant le sommet A au milieu A du côté opposé [BC]. Les 3 médianes d un triangle sont concourantes. Le point de concours des 3 médianes est le centre de gravité du triangle (ou barycentre du triangle). Ce point est situé sur chaque médiane aux 2/3 à partir du sommet. 8

9 3) Les hauteurs du triangle et l orthocentre La hauteur [AK] est le segment d extrémité A et perpendiculaire au côté opposé [BC]. Les 3 hauteurs d un triangle sont concourantes. Le point de concours des 3 hauteurs est l orthocentre du triangle. L orthocentre n est pas le centre d un cercle particulier. 4) Les bissectrices intérieures du triangle et le cercle inscrit Le point de concours des 3 bissectrices intérieures est le centre du cercle inscrit dans le triangle. Construire deux bissectrices suffit pour obtenir le point de concours. Le cercle inscrit dans le triangle est tangent aux 3 côtés du triangle. Le centre du cercle inscrit dans le triangle est situé à la même distance de chaque côté du triangle. 9

10 5) La symétrie du triangle isocèle Cercles inscrit et circonscrit d un triangle isocèle : On retrouve la symétrie axiale ayant pour axe la médiatrice relative à la base du triangle isocèle. 6) Les 3 symétries du triangle équilatéral Cercles inscrit et circonscrit d un triangle équilatéral : La figure admet 3 symétries axiales ayant chacune pour axe une médiatrice du triangle. Les deux cercles sont de même centre (les médiatrices sont également bissectrices). 10

11 Les quadrilatères 1) Les trapèzes Un trapèze est un quadrilatère non croisé ayant deux côtés parallèles. Les côtés parallèles sont les «bases» du trapèze. Parallélogrammes, losanges, rectangles et carrés sont des cas particuliers de trapèzes. Un trapèze est l intersection d un secteur angulaire et d une bande à bords parallèles. Un trapèze rectangle est un trapèze ayant deux angles droits. Un trapèze isocèle est un trapèze ayant un axe de symétrie. Les côtés «obliques» sont donc isométriques. 11

12 2) Le parallélogramme Il existe plusieurs définitions possibles du parallélogramme. En voici quatre : 1. Un parallélogramme est un quadrilatère dont les côtés opposés sont égaux deux à deux (définition). 2. Un parallélogramme est un quadrilatère dont les côtés sont parallèles deux à deux (définition). 3. Un parallélogramme est l intersection de deux bandes à bords parallèles (définition). 4. Un parallélogramme est un quadrilatère dont les diagonales se coupent en leurs milieux (définition). Rectangles et carrés sont des cas particuliers de parallélogrammes. 12

13 3) Le losange Un losange est un parallélogramme ayant deux côtés consécutifs égaux. Donc les 4 côtés d un losange sont égaux. Les diagonales d un losange se coupent en leur milieu (comme pour tout parallélogramme) et elles sont perpendiculaires entre elles (sans être nécessairement égales entre elles). 13

14 4) Le rectangle Un rectangle est un parallélogramme ayant un angle droit. Un rectangle a donc 4 angles droits. Le rectangle est inscrit dans un cercle ; les diagonales en sont les diamètres. Le centre de ce cercle est aussi appelé centre du rectangle. 5) Le carré Voici deux définitions possibles du carré : 1. Un carré est un rectangle ayant deux côtés consécutifs égaux (définition). 2. Un carré est un losange ayant un angle droit (définition). Le carré cumule les propriétés : du trapèze du parallélogramme du losange et du rectangle. Le carré est inscrit dans un cercle. Le centre de ce cercle est aussi appelé centre du carré. 14

Géométrie - notion : Angles, cercles, triangles

Géométrie - notion : Angles, cercles, triangles Géométrie - notion : Angles, cercles, triangles 1. Angles a) Vocabulaire Angle nul : L angle nul est formé par deux demi-droites identiques et donc de même origine. Angle plat : Un angle est plat si les

Plus en détail

Fichier de géométrie

Fichier de géométrie Fichier de géométrie Sommaire F1 F2 F3 F4 Périmètres Aires Volumes Tableaux de conversions F5 F6 Comment démontrer que deux droites sont parallèles Comment démontrer que deux droites sont perpendiculaires

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Troisième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

DISTANCE D UN POINT A UNE DROITE TANGENTE A UN CERCLE BISSECTRICE

DISTANCE D UN POINT A UNE DROITE TANGENTE A UN CERCLE BISSECTRICE DISTNE D UN PINT UNE DRITE TNGENTE UN ERLE ISSETRIE I) édiatrice d un segment : Soit et deux points distincts du plan. La médiatrice du segment [] est la droite perpendiculaire au segment [] passant par

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Cinquième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Propriété : Les médiatrices des cotés d un triangle sont concourantes : Leur point de concours est le centre du cercle circonscrit au triangle.

Propriété : Les médiatrices des cotés d un triangle sont concourantes : Leur point de concours est le centre du cercle circonscrit au triangle. MISE U POINT ES NOTIONS E GEOMETRIE I. Triangles : 1. roites remarquables : a. Médiatrices d un triangle : Médiatrice d un segment : La médiatrice d un segment est la droite perpendiculaire à ce segment

Plus en détail

Angle inscrit et angle au centre Géométrie Exercices corrigés

Angle inscrit et angle au centre Géométrie Exercices corrigés Angle inscrit et angle au centre Géométrie Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : angle inscrit dans un cercle (reconnaissance d un

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE I) SYMETRIE AXIALE. 1) SYMETRIQUE D UN POINT PAR RAPPORT A UNE DROITE. a) Définition. On dit que A est le symétrique de A par rapport à (d). Remarque :

Plus en détail

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

Les droites, points, segments 1. Le point

Les droites, points, segments 1. Le point Les droites, points, segments 1. Le point Un point est un endroit précis du plan. On le repère avec une croix ( ). On le nomme avec une lettre majuscule. 2. La ligne et la droite Une ligne est une suite

Plus en détail

Outils de démonstration

Outils de démonstration Outils de démonstration Comment démonter que... Année 2009 et 2010 Classe: 4D,4A Collège Fontbruant -Comment démontrer qu un triangle est un triangle isocèle? -Comment démontrer qu un triangle est un triangle

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1 TABLE DES MATIÈRES 1 Les quadrilatères Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Polygones 1 1.1 Définition.................................. 1 1.2 Différentes sortes

Plus en détail

Repères dans le plan - configurations planes

Repères dans le plan - configurations planes Repères dans le plan - configurations planes ) Repères dans le plan : a) notion de repère dans un plan : Définition : Un repère est constitué d'un point origine, de deux droites orientées et graduées (axes).

Plus en détail

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI..

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI.. Fiche d'exercices EXERCICES Exercice 1 a) Rappeler la définition de la bissectrice d un angle. b) Construire et faire la liste des données de la figure suivante : BAC est un triangle rectangle en A. La

Plus en détail

Droites parallèles et perpendiculaires Groupe 1

Droites parallèles et perpendiculaires Groupe 1 Droites parallèles et perpendiculaires Groupe 1 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite perpendiculaire à la droite d et qui passe par le point C.

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très

Plus en détail

Lire les coordonnées d un point

Lire les coordonnées d un point Lire les coordonnées d un point 1) Repérer les cases 2) Repérer les nœuds : On peut repérer les nœuds d un quadrillage avec un code. La lettre indique le code de la colonne. Le nombre indique le code de

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES OLYMPIADES ACADEMIQUES DE MATHEMATIQUES SESSION 2012 MERCREDI 21 MARS 2012 (8h 12h) SUJET PREMIERE S Ce sujet comporte 5 pages numérotées de 1 à 5. Sujet S page 1 Exercice National 1 : On dit qu un nombre

Plus en détail

Minimisation d une somme de distances, points de Fermat

Minimisation d une somme de distances, points de Fermat Minimisation d une somme de distances, points de Fermat Arnaud de Saint Julien 26 décembre 2004 Table des matières 1 Présentation du problème 2 1.1 Définitions et objectifs..................................

Plus en détail

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 4 (Aix Marseille 1996) 1. Rappel : tracé de l hexagone. On place un point, qu on nomme O. On trace un cercle de centre O, de rayon

Plus en détail

SOMMAIRE ÉVALUATIONS GÉOMÉTRIE CE2

SOMMAIRE ÉVALUATIONS GÉOMÉTRIE CE2 SOMMAIRE ÉVALUATIONS GÉOMÉTRIE CE2 1. Les angles : définir, nommer, situer un angle droit, utilisation de l équerre 2. Définition, traçage : La droite, la demi-droite, le segment, le polygone 3. Reconnaître

Plus en détail

PYRAMIDE ET CONE DE REVOLUTION

PYRAMIDE ET CONE DE REVOLUTION PYRAMIDE ET CNE DE REVLUTIN I) Perspective cavalière : Les solides de l espace sont représentés en perspective cavalière. Les conventions suivantes sont à respectées : - une droite est représentée par

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Géométrie analytique. Exercices 2MS - 3MS

Géométrie analytique. Exercices 2MS - 3MS Géométrie analytique Exercices 2MS - 3MS Géométrie analytique 2MS - 3MS 1 Table des matières 1 Exercices 2 2 Solutions 10 Géométrie analytique 2MS - 3MS 2 1 Exercices 1 La droite 1.1 Lespointsci-dessousappartiennent-ilsàladroited

Plus en détail

Cahier de pratique La géométrie

Cahier de pratique La géométrie Nom : Groupe : Cahier de pratique La géométrie Éléments de géométrie 1- Réponds aux questions suivantes. a) Combien de droites peut-on faire passer par un point? b) Combien de droites peut-on faire passer

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES OLYMPIADES ACADEMIQUES DE MATHEMATIQUES SESSION 2009 MERCREDI 11 MARS 2009 (14h 18h) SUJET PREMIERE S 1 Exercice 1 : Partie A : Questions préliminaires On considère trois entiers deux à deux distincts

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de seconde session 2012 Enoncés On demandait de résoudre trois questions

Plus en détail

analytique plane 2. 2013

analytique plane 2. 2013 analytique plane 2. 2013 Maths-A TABLE DES MATIÈRES Rappels sur les vecteurs... 30 Pente d une droite... 31 Equation d une droite, première forme... 32 Equation d une droite, deuxième forme... 33 Equation

Plus en détail

Ex 1 : Vrai ou faux CM1

Ex 1 : Vrai ou faux CM1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. b)si trois points sont sur

Plus en détail

Sommaire. 1 Rappels. 2

Sommaire. 1 Rappels. 2 Sommaire 1 Rappels. 2 2 Triangle rectangle et cercle circonscrit. 7 2.1 Propriété n 1............................. 7 2.2 Exemple d utilisation de la propriété n 1.............. 8 2.3 Propriété n 2.............................

Plus en détail

Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10)

Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10) Préparation du CRPE, problèmes du jour, mai 2011 (1 à 10) Problème 1, les baguettes de bois Jean et Cécile forment chacun une ligne en mettant bout à bout des baguettes de bois. Toutes les baguettes utilisées

Plus en détail

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

4 e Révisions Triangles

4 e Révisions Triangles 4 e Révisions Triangles vant de commencer ces exercices, il faut connaître les définitions et propriétés du cours. xercice 1 Tracer les médianes et le centre de gravité G du Tracer les médiatrices et le

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

FICHES OUTILS GEOMETRIE CE2

FICHES OUTILS GEOMETRIE CE2 FICHES OUTILS GEOMETRIE 1 Reproduire avec un calque 2 Reproduire avec un quadrillage 3 Reproduire avec un gabarit 4 Les solides 5 Figures planes et polygones 6 Parallèles et perpendiculaires 7 Cercles

Plus en détail

Géométrie et Mesures CM1 Période 1

Géométrie et Mesures CM1 Période 1 Géométrie et Mesures CM1 Période 1 Ecris la lettre des figures qui sont des polygones. A B En utilisant ton compas, trouve tous les segments qui ont la même longueur que le segment [AB]. C D Avec ta règle

Plus en détail

2. Repère du plan Coordonnées d un. point Configurations planes

2. Repère du plan Coordonnées d un. point Configurations planes . Repère du plan oordonnées d un point onfigurations planes ctivité introductive : Démonter avec les milieu D est le trapèze ci-contre telle que ( D )//() D et sont les milieu respectifs des segments []

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 4 : QUADRILATERES 1. IDENTIFIER UN QUADRILATERE ABCD est une figure géométrique formée de 4 côtés et de 4 sommets : c est un quadrilatère Le segment

Plus en détail

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/ SOMMAIRE GEOMETRIE GEOM http://delautrecotedubureau.eklablog.com/ N Intitulé CE2 CM1 CM2 GEOM0 GEOM1 GEOM2 GEOM3 GEOM4 GEOM5 GEOM6 GEOM7 GEOM8 GEOM9 Les instruments Points, lignes, droites et segments

Plus en détail

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS Thème N 17 : NGLE INSRIT - NGLE U ENTRE PLYGNES REGULIERS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Pour prendre un bon départ Exercice n 1 : n considère

Plus en détail

Rappels de géométrie euclidienne. Les configurations

Rappels de géométrie euclidienne. Les configurations ERNIÈRE IMPRESSIN LE 11 mars 015 à 1:17 Rappels de géométrie euclidienne. Les configurations Table des matières 1 Rappels de géométrie euclidienne 1.1 Euclide................................... 1. Éléments

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE Sommaire Comment démontrer qu un triangle est rectangle?... 2 Comment démontrer que deux droites sont parallèles?... 4 Comment calculer une longueur?... 6 Comment démontrer que deux

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

... La planche à clous

... La planche à clous La planche à clous Si la dénomination de planche à clous donne une image instantanée de l outil, l appellation géoplan en éclaire davantage l utilisation didactique. Le géoplan est une planche sur laquelle

Plus en détail

De la symétrie centrale au parallélogramme

De la symétrie centrale au parallélogramme La géométrie en 5 doit nous permettre de passer de l identification perceptive (la reconnaissance par la vue) de figures et de configurations à leur caractérisation par des propriétés (passage du dessin

Plus en détail

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES Thème N 13: SYMTR ( 3 ) - PRLLLOGRMM (2) - MONSTRTON (2) - QURLTRS - NGLS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TVT 1: O 1 er PROPRT: n utilisant

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2

ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2 ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2 Exercice des 24 h du Mans Une voiture part de la ligne de départ. Elle se déplace en ligne

Plus en détail

Construction de polygones avec Géogebra Inspiration Web : http://www.abacom.com/~oraby/fr/mathematiques/index.html

Construction de polygones avec Géogebra Inspiration Web : http://www.abacom.com/~oraby/fr/mathematiques/index.html Construction de polygones avec Géogebra Inspiration Web : http://www.abacom.com/~oraby/fr/mathematiques/index.html Nous vous proposons quelques constructions possibles de polygones réguliers à l'aide du

Plus en détail

La translation dans le plan

La translation dans le plan La translation dans le plan Définitions: Une translation plane qui transforme le point A en le point B est un déplacement rectiligne dans le plan (glissement) qui amène le point A sur le point B. Le point

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave Géométrie C.M.1 Ecole primaire de Provenchères sur Fave Sommaire Dans le plan Le point p. 03 La droite p. 04 La demi-droite p. 05 Le segment de droite p. 06 Droites sécantes p. 07 Droites perpendiculaires

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Ces quelques formules sont censées être sues à la fin de la classe de quatrième!

Ces quelques formules sont censées être sues à la fin de la classe de quatrième! Ces quelques formules sont censées être sues à la fin de la classe de quatrième! I. Multiplication et division de nombres relatifs Le produit (ou le quotient) de deux nombres de même signe est positif.

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Notes de cours. Annexe A : Retour sur les formules d aire

Notes de cours. Annexe A : Retour sur les formules d aire Notes de cours Rappel : Les polygones, le périmètre et l aire 4.1 Le système international d unités (SI) 4.2 L aire d un triangle, d un rectangle et d un parallélogramme 4.3 L aire d un trapèze et d un

Plus en détail

Le Centre d education en math ematiques et en informatique Ateliers en ligne Euclide Atelier no 3 G eom etrie analytique c 2014 UNIVERSITY OF WATERLOO

Le Centre d education en math ematiques et en informatique Ateliers en ligne Euclide Atelier no 3 G eom etrie analytique c 2014 UNIVERSITY OF WATERLOO Le Centre d éducation en mathématiques et en informatique Ateliers en ligne Euclide Atelier n o 3 Géométrie analytique c 014 UNIVERSITY OF WATERLOO BOÎTE À OUTILS Voici quelques formules et équations utiles

Plus en détail

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles Brevet Blanc de Mathématiques 18/01/11 PARTIE NUMERIQUE Exercice 1 1) Ecrire les nombres A et B sous la forme de fractions irréductibles A= 13 3 4 3 2 5 B=5+ 1+ 1 8 3 4 A= 13 3 4 3 5 2 A= 13 3 10 3 B=

Plus en détail

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d.

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d. I. Définition : M M' N M est le point symétrique de M par rapport à la droite d signifie que : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la

Plus en détail

Tangentes et raccords. 1 DÉFINITION Tangent : élément géométrique qui a un seul point de contact avec une surface ou/et une courbe

Tangentes et raccords. 1 DÉFINITION Tangent : élément géométrique qui a un seul point de contact avec une surface ou/et une courbe Tangentes Page 1 of 9 1 DÉFINITION Tangent : élément géométrique qui a un seul point de contact avec une surface ou/et une courbe 2 TYPES ET CONSTRUCTION 2.1 Droite tangente à un cercle Le rayon qui aboutit

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points

Plus en détail

CHAPITRE VI. Utiliser les propriétés d un parallélogramme relatives à ses côtés, ses diagonales ou ses angles

CHAPITRE VI. Utiliser les propriétés d un parallélogramme relatives à ses côtés, ses diagonales ou ses angles HPITRE VI PRLLÉLGRMMES MPÉTENES ÉVLUÉES NS E HPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences

Plus en détail

Milieux, parallèles et triangles

Milieux, parallèles et triangles hapitre. Milieux, parallèles et triangles.théorème de la droite des milieux Dans un triangle, la droite qui passe par les milieux de deux cotés dans le socle est le milieu de [] llustration: Dans, est

Plus en détail

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H.

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H. D 9 E EE D EUE Soit un triangle. Ses hauteurs [], [] et [] se coupent au point. es milieux de [], [] et [] sont respectivement, et, ceux de [], [] et [] sont respectivement, et. Démontre qu il existe un

Plus en détail

Coordonnées Équation de droites

Coordonnées Équation de droites Coordonnées Équation de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Coordonnées dans le plan 2 1.1 Repères coordonnées d un point.................................... 2 1.2

Plus en détail

Programme de 5 ème en mathématiques

Programme de 5 ème en mathématiques Programme de 5 ème en mathématiques 1. PRIORITE DES OPERATIONS ; DISTRIBUTIVITE 3 I. Suite d opérations sans parenthèses 3 II. Suites d opérations avec parenthèses 4 III. Ecritures avec des lettres 5 IV.

Plus en détail

Digisibles. digisible.

Digisibles. digisible. igisibles ) Essayer chiffre des dizaines, chiffre des unités : : ou encore ou bien 36... )L'idée est d'utiliser le I comme chiffie des milliers. 000 étant divisible par,,8... on cherche à partir des trois

Plus en détail

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes :

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : Exercice 1 : Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : 1) ABCD est un parallélogramme donc les longueurs AB et CD sont égales. 2) MINE est un losange donc les

Plus en détail

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre...

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre... Définition et vocabulaire : Définition : Un quadrilatère est une figure géométrique qui a quatre côtés. Vocabulaire : R. Ce quadrilatère est un quadrilatère non croisé.. Il peut se nommer :. R,, S et E

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Constructions géométriques

Constructions géométriques Constructions géométriques Objectifs : - reconnaître deux droites parallèles et deux droites perpendiculaires - savoir déterminer une distance d un point à une droite - connaître les constructions géométriques

Plus en détail

CH.III LES ISOMETRIES

CH.III LES ISOMETRIES CH.III LES ISOMETRIES 1. Isométries et figures superposables Activités 1. Les six drapeaux suivants sont parfaitement superposables deux à deux. Complète le tableau ci-dessous : Du drapeau n vers le n

Plus en détail

«Nous allons apprendre à décrire correctement une forme en employant le vocabulaire mathématique correct.»

«Nous allons apprendre à décrire correctement une forme en employant le vocabulaire mathématique correct.» OBJECTIFS : Etre capable d établir un classement des différents quadrilatères. Etre capable d énoncer les différentes caractéristiques de chacun des quadrilatères. Etre capable de les dessiner. COMPÉTENCES

Plus en détail

Dizaines et centaines

Dizaines et centaines Comprendre ce que vaut un chiffre Dizaines et centaines 2 centaines = 200 unités 0 dizaines 1 dizaine = 10 unités 1 centaine = 100 unités 2 dizaines = 20 unités 2 centaines = 200 unités 205 ou 1 centaine

Plus en détail

Angles inscrits au collège

Angles inscrits au collège Angles inscrits au collège Angles inscrits égaux et supplémentaires, théorème limite de cocyclicité, milieux d'arcs et bissectrices, quadrilatères inscriptibles. Sommaire 1. Angles inscrits 2. Angle inscrit

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

Géométrie - notion : Solides de l espace

Géométrie - notion : Solides de l espace Géométrie - notion : Solides de l espace 1. Généralités a) Définition Un solide est une portion d espace délimitée et envisagée comme un tout déformable (dictionnaire Petit Larousse). b) Classification

Plus en détail

Chapitre VIII : Polygones et aires

Chapitre VIII : Polygones et aires Classe de Sixième Chapitre VIII : Polygones et aires Année scolaire 2008/2009 Introduction : Un polygone est une figure fermée à plusieurs côtés dont les sommets sont reliés par des segments. Exemples

Plus en détail

Petit lexique de géométrie

Petit lexique de géométrie Petit lexique de géométrie à l usage des élèves de sixième et de cinquième M. PARCABE Petit lexique de géométrie à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain-Fournier

Plus en détail

Symétrie axiale Symétrie par rapport à une droite Cours

Symétrie axiale Symétrie par rapport à une droite Cours Symétrie axiale Symétrie par rapport à une droite Cours Sont abordés dans ce cours : (cliquez sur le chapitre pour un accès direct) CHAPITRE 1 : symétrie axiale et figures symétriques par rapport à une

Plus en détail

Les Vecteurs ( En seconde )

Les Vecteurs ( En seconde ) Les Vecteurs ( En seconde ) Dernière mise à jour : Mardi 22 Avril 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) -1- J aimais et j aime encore les mathématiques pour elles-mêmes

Plus en détail

Série d exercices : Géométrie dans l espace

Série d exercices : Géométrie dans l espace Prof :Khammour.Khalil Année Scolaire :2013/2014 Exercice n 1 : Série d exercices : Géométrie dans l espace 4 ème Math Tunis,Tél :27509639 L espace est muni d un repère orthonormé. Pour chacune des propositions

Plus en détail

Formulaire : Toute la Géométrie du Collège 2 nde

Formulaire : Toute la Géométrie du Collège 2 nde Formulaire : Toute la Géométrie du Collège nde Comment trouver la propriété dont vous avez besoin? Grâce à la table des matières bien sûr!! Table des matières I. Rappels sur la logique et les démonstrations

Plus en détail

Collège Jules Ferry Génelard. Correction du Brevet Blanc n 1 année 2006-2007. Mathématiques 7 5 + 11 10 = 14

Collège Jules Ferry Génelard. Correction du Brevet Blanc n 1 année 2006-2007. Mathématiques 7 5 + 11 10 = 14 Collège Jules Ferry Génelard Correction du Brevet Blanc n 1 année 200-2007 Activités numériques (12 points) Mathématiques Exercice 1 : On donne A = 7 5 + 3 5 x 11 = 7 5 + 11 10 = 14 10 + 11 10 = 25 10

Plus en détail

Compétence C5: Construire une hauteur d un triangle

Compétence C5: Construire une hauteur d un triangle Compétence C5: Construire une hauteur d un triangle Etape 1 : Reconnaissance visuelle de droites perpendiculaires (à vue ou utilisation de l équerre dans certains cas) Exercice 1 : Demander à l élève de

Plus en détail

Méli-mélo de preuves graphiques Parimaths - Niveau débutant

Méli-mélo de preuves graphiques Parimaths - Niveau débutant Méli-mélo de preuves graphiues Parimaths - Niveau débutant Diego Izuierdo 1er février 014 Tous les exercices de cette séance doivent être résolus en faisant des dessins, en coloriant, en complétant des

Plus en détail

DIFFÉRENTS TYPES DE RAISONNEMENT RENCONTRÉS AU COLLÈGE. sixième. Nombres et calculs. Critères de divisibilité. Comparaison des décimaux

DIFFÉRENTS TYPES DE RAISONNEMENT RENCONTRÉS AU COLLÈGE. sixième. Nombres et calculs. Critères de divisibilité. Comparaison des décimaux DIFFÉRENTS TYPES DE RAISONNEMENT RENCONTRÉS AU COLLÈGE sixième Organisation de données Nombres et calculs Critères de divisibilité Propriétés des droites parallèles et perpendiculaires Propriétés de la

Plus en détail

Exercice 1 1/ Calculer en détaillant et donner le résultat sous la forme d'une fraction irréductible : A = 2 5 2 15 4

Exercice 1 1/ Calculer en détaillant et donner le résultat sous la forme d'une fraction irréductible : A = 2 5 2 15 4 Il sera tenu compte de la qualité de la rédaction et de la présentation (4 points). L usage de la calculatrice est autorisé conformément à la circulaire n 99-186 du 16 novembre 1999. PREMIÈRE PRTIE : TIVITÉS

Plus en détail

6 ème exercices : Introduction à la géométrie

6 ème exercices : Introduction à la géométrie Droites, demi-droites et segments. Exercice 1 Réponse 1 Placer trois points A, B et C non alignés. Tracer la droite qui passe par les points B et C. Tracer le segment d extrémités A et B. Tracer la demi-droite

Plus en détail

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I.

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I. Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5 I) Rappels sur les configurations du plan COURS pages 248 et 249 du manuel Exercice 2 page 268 (utiliser la rotation de centre C et d angle 60 ) Exercices

Plus en détail

Fiche d activité. Introduire les formules d aire

Fiche d activité. Introduire les formules d aire Fiche d activité Introduire les formules d aire L objectif de cette activité est d introduire les formules d aire des rectangles, carrés et triangles. Matériel - Papier quadrillé dont les carreaux mesurent

Plus en détail

géométrie analytique

géométrie analytique Faculté des Sciences ppliquées Géométrie et géométrie analytique Notes théoriques et applications à destination des étudiants préparant l examen d admission aux études d ingénieur civil de l Université

Plus en détail

I Etude des pays organisateurs des différentes coupes du monde de football masculin

I Etude des pays organisateurs des différentes coupes du monde de football masculin LA COUPE DU MONDE DE FOOTBALL Vous allez devoir réaliser un travail à l'aide des outils informatiques. Vous devez travailler à deux : vous pouvez travailler avec un autre élève de votre classe ou d'une

Plus en détail