Proposition d'une solution au problème d initialisation cas du K-means

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Proposition d'une solution au problème d initialisation cas du K-means"

Transcription

1 Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére Résumer. Dans cet artcle nous présentons une smple technque d ntalsaton du k-means dans le but de maxmser la séparablté et la compacté des groupes et cec en chosssant l obet le plus mal classé comme étant le nouveau centre du groupe. L utlsaton de cette technque peut se fare sot par ntégraton drecte dans la phase d ntalsaton du classque k-means ou ben dans une approche ncrémental comme dans le cas du global k-means. Nos expérences montrent que cette technque produt des groupes qu sont smlare a celle du global k-means en un temps très rédut. Mot-clés : Analyse des données, clusterng, optmsaton, k-means, Global optmsaton. Introducton Le parttonnement des données est une tache mportante en analyse de données, elle dvse un ensemble de données en pluseurs sous ensembles, ces sous ensembles appelés groupes ou clusters. Ces groupes sont caractérsés déalement par une forte smlarté à l ntéreur et une forte dssmlarté entre les membres de dfférents groupes [3]. L usage de cette technque vse à dentfer un résumé de la structure nterne de ces données, sans aucune connassance a pror sur les caractérstques des données []. Cela touche pluseurs domanes dont la reconnassance des formes, l'magere, la bonformatque et l ndexaton des bases d mages. Dans ce cadre pluseurs méthodes ont été développées, la plus populare est celle des k moyennes (K-means), elle dot sa popularté à sa smplcté et sa capacté de trater de larges ensembles de données [4]. Cependant, la prncpale lmte de cette méthode est la dépendance des résultats des valeurs de départ (centres ntaux). À chaque ntalsaton correspond une soluton dfférente (optmum local) qu peut dans certan cas être très lon de la soluton optmale (optmum global). Une soluton naïve à ce problème consste à lancer l'algorthme pluseurs fos avec dfférentes ntalsatons et retenr le melleur regroupement trouvé. L usage de cette soluton reste lmté du fat de son coût et que l'on peut trouver une melleure partton en une seule exécuton.

2 Dans cet artcle, nous présentons dans la secton les algorthmes k-means et global k-means. La secton 3 décrt nos solutons au problème d'ntalsaton de ces algorthmes, enfn les résultats de notre expérmentaton sont décrts dans la secton 4. k-means et le Global k-means K-means défnt par McQueen [] est un des plus smples algorthmes de classfcaton automatque des données. L dée prncpale et de chosr aléatorement un ensemble de centres fxé a pror et de chercher tératvement la partton optmale. Chaque ndvdu est affecté au centre le plus proche, après l affectaton de toutes les données la moyenne de chaque groupe est calculé, elle consttue les nouveaux représentants des groupes, lorsqu ont about à un état statonnare (aucune donnée ne change de groupe) l algorthme est arrêté. Algorthme : K-means Entrée Ensemble de N données, noté par x Nombre de groupes souhaté, noté par k Sorte Une partton de K groupes C, C,... C k Début ) Intalsaton aléatore des centres C k ; Répéter ) Affectaton : générer une nouvelle partton en assgnant chaque obet au groupe dont le centre est le plus proche ; x Ck s x µ k mn x µ () Avec µ k le centre de la classe K ; 3) Représentaton : Calculer les centres assoce à la nouvelle partton ; µ x () k N x C k Jusqu à convergence de l'algorthme vers une partton stable ; Fn. Ce processus tente de maxmser la smlarté ntra-class représentée sous forme d une foncton obectve :

3 K J d( x, C ) (3) x C Dans le cas de la dstance eucldenne cette foncton est appelée foncton d erreur quadratque. J K x C x C (4) Global k-means [5] est une soluton au problème d ntalsaton du k-means, elle est fondé sur les données et vse à attendre une soluton globalement optmale. Elle consste à effectuer un clusterng ncrémental et à aouter dynamquement un nouveau centre suv par l applcaton du k-means usqu à la convergence. Les centres sont choss un par un de la façon suvante : le premer centre est le centre de gravté de l ensemble des données (résultat de l applcaton du k-means avec k=), les autres centres sont trés de l ensemble de données ou chaque donnée est une canddate pour devenr un centre, cette dernère sera testée avec le reste de l ensemble, le melleur canddat est celu qu mnmse la foncton obectf (4), l algorthme suvant permet d llustrer le prncpe : Algorthme : Global k-means Entrée Ensemble de N données, notés par x ; Nombre de groupes souhater, noté par k ; Sorte Une partton de K groupes C, C,... C k Début ) C = Centre de gravté de l ensemble des données ; Répéter ) Intalser les centres - par le résultat de l étape précédente ; 3) Trouver l éme centre : Pour chaque donnée x fare 3.) Consdère x comme étant le éme centre ; 3.) Affecter les données aux plus proche centre ; 3.3) Calculer l erreur quadratque pour C =x ; Fn fare 3.4) Garder le centre C = x qu mnmse l erreur quadratque ; 4) Applquer le k-means usqu'à la convergence ; Jusqu à obtenr une partton en k groupes ;

4 Fn. Les auteurs ont remarqué que cette soluton été lourde à cause de la stratége de chox du nouveau centre, ls ont proposé le Fast global k-means avec une nouvelle stratége permettant d accélérer le global k-means, cette stratége garde la même phlosophe que sa précédente (toutes les données peuvent être canddates pour devenr un centre), mas évte d affecter les données aux centres le plus proche (centres déà exstant en plus du centre canddat) et de calculer l erreur quadratque, sachant que l erreur quadratque dmnue en foncton du nombre de centre par un taux bn, le nouveau centre sera le canddat qu maxmse ce taux. N n max d k xn x, 0 b (5) Avec dk la dstance entre x et son plus proche centre parm les k- centres. Selon les expérmentatons des auteurs, cette technque amélore le temps d exécuton et assure de bons résultats presque auss bon que ceux fourns par la stratége précédente. 3 Stratége d ntalsaton Nous proposant une stratége d ntalsaton qu se base sur l ndvdu le plus mal classé, l algorthme d ntalsaton peut s applquer lors de l ntalsaton d une classfcaton ou au cour de la classfcaton (vor secton 3.). 3. Calcul des nouveaux centres L absence d un sgne ndquant s l optmum global est attent ou pas fat penser à la possblté d amélorer les résultats. Observant l équaton (), un obet est affecté à un groupe s l lu est le plus proche, plus la dstance dmnue plus la probablté d appartenance à ce groupe augmente, dans le cas contrare, l obet le plus lon de son groupe d appartenance est consdéré comme étant mal classé, l fera certanement un bon canddat afn de former le nouveau centre. Le global k-means est amorcé par un seul groupe ayant pour représentant le centre de gravté de l ensemble des données, dans certan cas, cette parte de l espace est vde (fgure ) ce qu permet de dégrader la classfcaton, nous proposons d amorcer l ntalsaton du k-means avec deux groupes, les centres de ces groupes dovent assurer la séparablté des données au cours de classfcaton, l est évdant de chosr les deux données les plus élognées.

5 Fg.. (a) Le centre des données en rouge, (b) le bleu et le vert représentent les deux obets les plus élogné. Ce prncpe est llustré par l algorthme suvant : Algorthme 3 ntalsaton par le mal classé. Début ) Créaton d une matrce de dstance ) Chosr les deux éléments les plus élognés (ls représentent les deux premers centres) ; TANT QUE le nombre de classes souhaté n est pas attent Fare 3) Affecter les ndvdus aux noyaux dsponbles ; 4) Sélectonner un élément mal classé (celu qu possède la plus grande dstance de son centre le plus proche) ; 5) Aouter cet ndvdu à l ensemble des noyaux ; 6) Augmenter le nombre des noyaux ; Fn TANT QUE Fn. 3. L approche ncrémental Notre approche ncrémental de classfcaton est smlare à celle du globale k-means, la dfférence entre elles résde dans les ponts suvant : Le nombre de ponts ntaux, dans notre cas deux au leu de un seul dans le global k-means. La recherche du nouveau centre ce lmte à la recherche de l élément le mal classé au leu de testé toutes les données. Algorthme 4 : Approche ncrémentale de classfcaton Entrée Ensemble de N données, notés par x ; Nombre de groupes souhater, noté par k ; Sorte

6 Début, Une partton de K groupes C C,... ) C x; Avec C x ; d ( x, x ) max d ( x, x, [.. N ] Répéter ) Intalser les centres - par le résultat de l étape précédente ; 3) Trouver l éme centre C : C x : x max ( d k ) (6), N 4) Applquer le k-means usqu'à la convergence ; Jusqu à obtenr une partton en k groupes ; Fn. Grâce au fable cout de la stratége de chox du nouveau centre, l est clar que l approche proposée est plus rapde que le global k-means. ) C k 4 TESTE ET RESULTAT L algorthme proposé a été testé avec la verson rapde du globale k-means et le k- means ntalsé avec l algorthme (3), Int k-means, sur des données artfcelles et sur des mages couleurs. Dans les deux cas nous avons exécuté le faste global k-means et le modfed fast global k-means pour un nombre de groupe k = 5, le "nt k-means" est lancé pour k =, 3, 6, Pour chaque valeur de k nous nous calculons le temps d exécuton et des ndces de la qualté, la qualté est évaluée en foncton des deux ndces suvant : Le premer ndce est l erreur quadratque moyenne, c est l ndce le plus couramment utlsé pour mesurer la compacté des groupes, de fables valeurs de cet ndce ndque une fort compacté des groupes. E N K x C d( x, C ) Le deuxème ndce est celu de Daves-Bouldn (DB), l permet de mesurer la compacté et la séparablté des groupes, de pettes valeurs du DB sont ndcatves de la présence de groupes compacts et ben séparés. (7) DB k k S( C ) S( C ) max d( C, C ) (8)

7 Où S ( C ) d( x, C ) card( C ) xc (9) D après notre expérmentaton on, on constate que le Fast global k-means est plus coûteux en terme temps d exécuton, ce temps augmente en foncton du nombre de classes. Or dans l'algorthme nt k-means, ce nombre n'nflue pas sur le temps d exécuton, cec étant dû au nombre d'tératons effectuées pour obtenr une stablsaton (notons que ce nombre dépend des ponts de départ et du type de données, l augmente lorsque les données sont denses). Temps en seconde Fast Global k-means Int k-means Modfed FG k-means Nombre de Groupe Fg.. Temps d exécuton en foncton du nombre de groupes. En terme erreur quadratque, les solutons des tros approches possèdent la même qualté avec de légères dfférences, nous avons remarqué que lorsque l erreur quadratque d une des deux approches proposées est plus élevée que celle du global k- means (cluster mons compact), l Indce DB dmnue ce qu correspond à une forte séparaton des clusters (vor nombre de groupe égal à 6 pour nt k-means et 8 pour le modfed fast global k-means). Erreur quadratque moyenne Fast Global k-means Modfed FG k-means Int k-means Nobre de classe Fg. 3. Erreur quadratque moyenne en foncton du nombre de groupes.

8 Daves-Bouldn 0,5 0,4 0,3 0, 0, Fast Global k-means Int k-means Modfed FG k-means Nombre de Groupe Fg. 4. Indce DB en foncton du nombre de groupes. La stratége de chox du nouveau centre de groupe du global k-means favorse l élément qu peut attrer le maxmum d obet ce qu pénalse des petts groupes qu sont plus mportants dans certan cas, alors que le chox de l élément mal classé permet de les détecter, comme le montre la fgure 5, a gauche l mage orgnale suvt du résultat de classfcaton en sx classes par l algorthme Fast global k-means et le modfed Fast global k-means. Fg. 5. Exemple de classfcaton en 6 classes. 5 Concluson Dans ce paper, nous avons proposé une soluton au problème d ntalsaton. Sachant que le prncpe du k-means est de mnmser la smlarté ntra classe (compacté des groupes), ce qu ne condut pas forcément à une maxmsaton de smlarté nter classe (séparablté), l approche proposée vse à maxmser la séparaton des groupes ans que la compacté en applquant le k-means. Notons, enfn, que cette méthode est applcable avec tout algorthme nécesstant des valeurs de départ (EM, PAM, ). Malheureusement, cette technque est sensble au brut, cec arrve lorsque le nouveau centre chos est un brut (l obet le plus lon du centre de la classe d appartenance), le résultat du groupement tend à produre des groupes sans sgnfcatons, aoutant à cela le problème de chox du nombre de groupes qu condut à de mauvases solutons (fgure 4), ces deux problèmes nous permettent d envsagées des perspectves d améloraton qu seront le suet de nos futures études.

9 Références. Bors Mrkn. Clusterng for Data Mnng: A Data Recovery Approach, Chapman & Hall/CRC, Taylor & Francs Group, Boca Raton, Celeux G,.Dday E., Govaert G., Lechevaller Y., Ralam-Bondrany H. Classfcaton Automatque des Données. Bordas, Pars, Danel T. Larose. Dscoverng Knowledge n Data: An Introducton to Data Mnng, John Wley & Sons, Inc., Hoboken, New Jersey Jacob Kogan, Introducton to Clusterng Large and Hgh-Dmensonal Data, Cambrdge Unversty Press, Cambrdge, Lkas A., Vlasss M. & Verbeek J., The global k-means clusterng algorthm, Pattern Recognton, 36, pp ,003

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

3- Réseau Neurologique (NN) 3-1- Réseau classique

3- Réseau Neurologique (NN) 3-1- Réseau classique OUTILS DE PREVISION DE LA VITESSE DE VENT : APPLICATION A LA CARACTERISATION ET A L OPTIMISATION DES CENTRALES EOLIENNES POUR L'INTEGRATION DANS LES RESEAUX ELECTRIQUES A MADAGASCAR. Andramahtasoa Bernard

Plus en détail

Application du système immunitaire artificiel ordinaire et amélioré pour la reconnaissance des caractères artificiels

Application du système immunitaire artificiel ordinaire et amélioré pour la reconnaissance des caractères artificiels 9 Nature & Technology Applcaton du système mmuntare artfcel ordnare et améloré pour la reconnassance des caractères artfcels Hba Khell a, Abdelkader Benyettou a a Laboratore Sgnal Image Parole SIMPA-,

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG)

Méthodes d Extraction de Connaissances à partir de Données (ECD) appliquées aux Systèmes d Information Géographiques (SIG) UNIVERSITÉ DE NANTES FACULTÉ DES SCIENCES ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES DE L INFORMATION ET DES MATÉRIAUX Année 2006 N attrbué par la bblothèque Méthodes d Extracton de Connassances à partr

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Installation & Guide de démarrage WL510 Adaptateur sans fil /Antenne

Installation & Guide de démarrage WL510 Adaptateur sans fil /Antenne Installaton & Gude de démarrage WL510 Adaptateur sans fl /Antenne Informaton mportante à propos du WL510 Adresse IP = 192.168.10.20 Nom d utlsateur = wl510 Mot de passe = wl510 QUICK START WL510-01- VR1.1

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité Comparason de méthodes d ajustement d une dstrbuton de Webull à 3 paramètres sur une base de données de mesures de ténacté M. Marquès, N. Pérot, N. Devctor Laboratore de Condute et Fablté des Réacteurs

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

hal-00409942, version 1-14 Aug 2009

hal-00409942, version 1-14 Aug 2009 Manuscrt auteur, publé dans "MOSIM' 008, Pars : France (008)" 7 e Conférence Francophone de MOdélsaton et SIMulaton - MOSIM 08 - du mars au avrl 008 - Pars - France «Modélsaton, Optmsaton et Smulaton des

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs Combnason de dres d'experts en élctaton de los a pror. Applcaton à un modèle doseréponse pour Lstera chez la sours. Exposé ApplBugs ISABELLE ALBERT 8 / / 03 INTRODUCTION Cet exposé présente une parte du

Plus en détail

Application des Systèmes Immunitaires Artificiels Pour la Classification Plantaire

Application des Systèmes Immunitaires Artificiels Pour la Classification Plantaire SETIT 2009 5 th Internatonal Conference: Scences of Electronc, Technologes of Informaton and Telecommuncatons March 22-26, 2009 TUNISIA Applcaton des Systèmes Immuntares Artfcels Pour la Classfcaton Plantare

Plus en détail

M.Belahcene-Benatia Mebarka

M.Belahcene-Benatia Mebarka Authentfcaton et Identfcaton de Vsages basées sur les Ondelettes et les Réseaux de Neurones. M.BELAHCENE-BENATIA Mébarka. LI3C Unv.Med Khder.BISKRA Résumé : Notre but est de concevor un système d authentfcaton

Plus en détail

COMPRESSION DES IMAGES MEDICALES FIXES

COMPRESSION DES IMAGES MEDICALES FIXES COMPRESSION DES IMAGES MEDICALES FIXES PAR RESEAU DE NEURONES Nacéra Benamrane, Maître de conférences en Informatque nabenamrane@yahoo.com, + 213 41 41 53 22 Zakara Benahmed Daho Etudant doctorant z-daho@lycos.com

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation)

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation) GENESS - Generalzed System for mputaton Smulatons (Système généralsé pour smuler l mputaton) GENESS est un système qu permet d exécuter des smulatons en présence d mputaton. L utlsateur fournt un ensemble

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Mailing. Les étapes de conception d un mailing. Créer un mailing

Mailing. Les étapes de conception d un mailing. Créer un mailing Malng Malng Word 2011 pour Mac Les étapes de concepton d un malng Le malng ou publpostage permet l envo en nombre de documents à des destnatares répertorés dans un fcher de données. Cette technque sous-entend

Plus en détail

Amélioration des Délais dans les Réseaux à Débits Garantis pour des Flux Temps-Réel Sous Contrainte «(m,k)-firm»

Amélioration des Délais dans les Réseaux à Débits Garantis pour des Flux Temps-Réel Sous Contrainte «(m,k)-firm» Améloraton des Délas dans les Réseaux à Débts Garants pour des Flux Temps-Réel Sous Contrante «(m,k)-frm» Résumé : Koubâa Ans, Yé-Qong Song LORIA UHP Nancy 1 - INPL - INRIA Lorrane 2, av. de la Forêt de

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES Émle Garca, Maron Le Cam et Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle porte sur les méthodes de

Plus en détail

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE 10 ème Sémnare Internatonal sur la Physque Energétque 10 th Internatonal Meetng on Energetcal Physcs SIMULAION D UN JE URBULEN POUR LE REFROIDISSEMEN DES AUBES DE URBINE Bounegta Bachr 1, Abdelarm Maamar

Plus en détail

Youcef SMARA, Nadia OUARAB, Sihem LAAMA et Dalila CHERIFI, Algérie. Mots clés: fusion, classification floue, images multisources, zones urbaines.

Youcef SMARA, Nadia OUARAB, Sihem LAAMA et Dalila CHERIFI, Algérie. Mots clés: fusion, classification floue, images multisources, zones urbaines. Technques de fuson et de classfcaton floue d mages satelltares multsources pour la caractérsaton et le suv de l extenson du tssu urban de la régon d Alger (Algére) Youcef SMARA, Nada OARAB, Shem LAAMA

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

Le raisonnement incertain

Le raisonnement incertain 1 Plan général 2 Le rasonnement ncertan dans les systèmes experts I- Introducton aux systèmes experts II- Fondements : organsaton et fonctonnement des SE III- Le rasonnement ncertan Introducton Antone

Plus en détail

Terminal numérique TM 13 raccordé aux installations Integral 33

Terminal numérique TM 13 raccordé aux installations Integral 33 Termnal numérque TM 13 raccordé aux nstallatons Integral 33 Notce d utlsaton Vous garderez une longueur d avance. Famlarsez--vous avec votre téléphone Remarques mportantes Chaptres à lre en prorté -- Vue

Plus en détail

Modélisation et conception d algorithmes pour la planification automatique du personnel de compagnies

Modélisation et conception d algorithmes pour la planification automatique du personnel de compagnies Modélsaton et concepton d algorthmes pour la planfcaton automatque du personnel de compagnes aérennes Carmen Draghc To cte ths verson: Carmen Draghc. Modélsaton et concepton d algorthmes pour la planfcaton

Plus en détail

Prêts bilatéraux et réseaux sociaux

Prêts bilatéraux et réseaux sociaux Prêts blatéraux et réseaux socaux Quand la sous-optmalté condut au ben-être collectf Phlppe Callou, Frederc Dubut et Mchele Sebag LRI, Unverste Pars Sud F-91405 Orsay France {callou;dubut;sebag}@lr.fr

Plus en détail

Intégration des Garanties Temporelles (m,k)-firm dans les Ordonnanceurs WFQ pour les Réseaux Temps-Réel

Intégration des Garanties Temporelles (m,k)-firm dans les Ordonnanceurs WFQ pour les Réseaux Temps-Réel Intégraton des Garantes Temporelles (m,k)-frm dans les Ordonnanceurs WFQ pour les Réseaux Temps-Réel Ans KOUBAA LORIA-TRIO 2, Avenue de la Forêt de Haye 54516 Vandoeuvre Lès Nancy, FRANCE akoubaa@lora.fr

Plus en détail

Interface OneNote 2013

Interface OneNote 2013 Interface OneNote 2013 Interface OneNote 2013 Offce 2013 - Fonctons avancées Lancer OneNote 2013 À partr de l'nterface Wndows 8, utlsez une des méthodes suvantes : - Clquez sur la vgnette OneNote 2013

Plus en détail

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes EH SmartVew Servces en lgne Euler Hermes Identfez vos rsques et vos opportuntés Plotez votre assurance-crédt www.eulerhermes.be Les avantages d EH SmartVew L expertse Euler Hermes présentée de manère clare

Plus en détail

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation

Integral T 3 Compact. raccordé aux installations Integral 5. Notice d utilisation Integral T 3 Compact raccordé aux nstallatons Integral 5 Notce d utlsaton Remarques mportantes Remarques mportantes A quelle nstallaton pouvez-vous connecter votre téléphone Ce téléphone est conçu unquement

Plus en détail

Apprentissage incrémental dans un système de filtrage adaptatif

Apprentissage incrémental dans un système de filtrage adaptatif VSST'200 32 TEXTES DES COMMUNICATIONS - Tome I Apprentssage ncrémental dans un système de fltrage adaptatf Mohand BOUGHANEM, Mohamed TMAR boughane@rt.fr, tmar@rt.fr IRIT/SIG, Campus Unv. Toulouse III,

Plus en détail

Stéganographie Adaptative par Oracle (ASO)

Stéganographie Adaptative par Oracle (ASO) Stéganographe Adaptatve par Oracle ASO Sarra Kouder, Marc Chaumont, Wllam Puech To cte ths verson: Sarra Kouder, Marc Chaumont, Wllam Puech. Stéganographe Adaptatve par Oracle ASO. CORESA 12: COmpresson

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio Correctons adabatques et nonadabatques dans les systèmes datomques par calculs ab-nto Compte rendu du traval réalsé dans le cadre d un stage de quatre mos au sen du Groupe de Spectroscope Moléculare et

Plus en détail

COMPARAISON DE MÉTHODES POUR LA CORRECTION

COMPARAISON DE MÉTHODES POUR LA CORRECTION COMPARAISON DE MÉTHODES POUR LA CORRECTION DE LA NON-RÉPONSE TOTALE : MÉTHODE DES SCORES ET SEGMENTATION Émle Dequdt, Benoît Busson 2 & Ncolas Sgler 3 Insee, Drecton régonale des Pays de la Lore, Servce

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

Mémento de théorie de l information

Mémento de théorie de l information Mémento de théore de l nformaton Glles Zémor 6 octobre 204 0 Rappels de probabltés Espaces probablsés. Un espace probablsé (Ω, P ) est un ensemble Ω mun d une mesure de probablté P qu est, lorsque Ω est

Plus en détail

SmartView d EH. Vue d ensemble des risques et des occasions. Surveillance de l assurance-crédit. www.eulerhermes.ca/fr/smartview

SmartView d EH. Vue d ensemble des risques et des occasions. Surveillance de l assurance-crédit. www.eulerhermes.ca/fr/smartview SmartVew d EH Servces en lgne Euler Hermes Vue d ensemble des rsques et des occasons Survellance de l assurance-crédt www.eulerhermes.ca/fr/smartvew Les avantages du SmartVew d EH Prenez plus de décsons

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Sujets des projets. Informatique de Base Université Pierre et Marie Curie

Sujets des projets. Informatique de Base Université Pierre et Marie Curie 1 Sujets des projets Informatque de Base Unversté Perre et Mare Cure D Bernard, F Hecht, N Segun Master I / sesson 2004/2005 Table des matères 1 Sujet : Recherche rapde d un trangle contenant un pont dans

Plus en détail

Projet de fin d études

Projet de fin d études Unversté Franços Rabelas Tours Ecole Polytechnque Unverstare de Tours Département Informatque Projet de fn d études Ordonnancement Juste à Temps avec geston des stocks Chopn Antone Mrault Arnaud 3ème année

Plus en détail

Sociétés d investissement immobilier cotées (SIIC), valeur et prix : deux notes

Sociétés d investissement immobilier cotées (SIIC), valeur et prix : deux notes Socétés d nvestssement mmobler cotées (SIIC), valeur et prx : deux notes I. Dette et créaton de valeur dans les socétés foncères II. La cesson à une SIIC : un cas de dstorson fscale Laurent BATSCH CEREG-DRM,

Plus en détail

Comparaison entre un Modèle de Jeu Biforme et un Modèle de Jeu Coopératif pour un Réseau de Distribution de Produits

Comparaison entre un Modèle de Jeu Biforme et un Modèle de Jeu Coopératif pour un Réseau de Distribution de Produits Comparason entre un Modèle de Jeu Bforme et un Modèle de Jeu Coopératf pour un Réseau de Dstrbuton de Produts Lama Trqu-Sar BP 230, Laboratore de Productque de Tlemcen, Faculté des Scences de l Ingéneur,

Plus en détail

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3.

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3. Chaptre 3 : Incerttudes CHAPITRE 3 INCERTITUDES Lgnes drectrces 2006 du GIEC pour les nventares natonaux de gaz à effet de serre 3.1 Volume 1 : Orentatons générales et établssement des rapports Auteurs

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

En vue de l'obtention du. Présentée et soutenue par Elayeb Bilel Le 26 juin 2009

En vue de l'obtention du. Présentée et soutenue par Elayeb Bilel Le 26 juin 2009 THÈSE En vue de l'obtenton du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délvré par Insttut Natonal Polytechnque de Toulouse (INPT) Dscplne ou spécalté : Informatque Présentée et soutenue par Elayeb Blel Le

Plus en détail

L environnement Windows 10 sur tablette

L environnement Windows 10 sur tablette L envronnement Wndows 10 sur tablette L envronnement Wndows 10 sur tablette Wndows 10 - Prse en man de votre ordnateur ou votre tablette Actver/désactver le mode Tablette Contnuum est une nouvelle fonctonnalté

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

Analyse électromagnétique et outils de modélisation couplés. Application à la conception hybride de composants et modules hyperfréquences

Analyse électromagnétique et outils de modélisation couplés. Application à la conception hybride de composants et modules hyperfréquences UNIVERSITE DE LIMOGES ECOLE DOCTORALE Scences Technologe - Santé FACULTE des SCIENCES et TECHNIQUES de LIMOGES THESE Pour obtenr le grade de DOCTEUR DE L UNIVERSITE DE LIMOGES Année 2008 Dscplne : Electronque

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Observatore Economque et Statstque d Afrque Subsaharenne LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Une contrbuton à la réunon commune CEE/BIT sur les ndces des prx

Plus en détail

Atelier 2 La recherche d information personnalisée sur le Web

Atelier 2 La recherche d information personnalisée sur le Web Ateler 2 La recherche d nformaton personnalsée sur le Web Mare-Aude Aufaure, Hajer Baazaou Zghal, Yves Lechevaller et Chrstophe Claramunt Ateler Recherche d Informaton Personnalsée sur le WEB Mare-Aude

Plus en détail

Recherche universitaire et crédits d impôt pour R-D

Recherche universitaire et crédits d impôt pour R-D Fscalté Recherche unverstare et crédts d mpôt pour R-D Le 27 novembre 2001 Nancy Avone, CA Inctatfs fscaux à la R-D très généreux dsponbles Étude du Conference Board du Canada en 1998 Québec Jurdcton au

Plus en détail

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE C. NOTICE TECHNIQUE C.1. Introducton et grands prncpes... 5 C.1.1. Objet du calcul et champ d applcaton... 5 C.1.2. Introducton aux méthodes de calcul et vérfcatons proposées... 6 C.1.2.1. Présentaton

Plus en détail

Cours #8 Optimisation de code

Cours #8 Optimisation de code ELE-784 Ordnateurs et programmaton système Cours #8 Optmsaton de code Bruno De Kelper Ste nternet : http://www.ele.etsmtl.ca/academque/ele784/ Cours # 8 ELE784 - Ordnateurs et programmaton système 1 Plan

Plus en détail

Un protocole de tolérance aux pannes pour objets actifs non préemptifs

Un protocole de tolérance aux pannes pour objets actifs non préemptifs Un protocole de tolérance aux pannes pour objets actfs non préemptfs Françose Baude Dens Caromel Chrstan Delbé Ludovc Henro Equpe Oass, INRIA - CNRS - I3S 2004, route des Lucoles F-06902 Sopha Antpols

Plus en détail

Prêt de groupe et sanction sociale Group lending and social fine

Prêt de groupe et sanction sociale Group lending and social fine Prêt de roupe et sancton socale Group lendn and socal fne Davd Alary Résumé Dans cet artcle, nous présentons un modèle d antsélecton sur un marché concurrentel du crédt. Nous consdérons l ntroducton de

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIQUE PAR ERIC LÉVESQUE JANVIER

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Gigue temporelle et ordonnancement par échéance dans les applications temps réel

Gigue temporelle et ordonnancement par échéance dans les applications temps réel L. Davd, F. Cottet, E. Grolleau. Ggue temporelle et ordonnancement par échéance dans les applcatons temps réel. IEEE Conf. Inter. Francophone d Automatque (CIFA2000), Jullet 2000, Llle, France. Ggue temporelle

Plus en détail

Information mutuelle et partition optimale du support d une mesure de probabilité

Information mutuelle et partition optimale du support d une mesure de probabilité Informaton mutuelle et partton optmale du support d une mesure de probablté Bernard Coln et Ernest Monga Département de Mathématques Unversté de Sherbrooke Sherbrooke JK-R (Québec) Canada bernard.coln@usherbrooke.ca

Plus en détail

Mesurer la qualité de la prévision

Mesurer la qualité de la prévision Mesurer la qualté de la prévson Luc Baetens 24/11/2011 www.mobus.eu Luc Baetens 11 ans d expérence Planfcaton Optmsaton des stocks Organsaton de la Supply Chan Performance de la Supply Chan Geston de la

Plus en détail

METHODE AUTOMATIQUE POUR CORRIGER LA VARIATION LINGUISTIQUE LORS DE L INTERROGATION DE DOCUMENTS XML DE STRUCTURES HETEROGENES

METHODE AUTOMATIQUE POUR CORRIGER LA VARIATION LINGUISTIQUE LORS DE L INTERROGATION DE DOCUMENTS XML DE STRUCTURES HETEROGENES METHODE AUTOMATIQUE POUR CORRIGER LA VARIATION LINGUISTIQUE LORS DE L INTERROGATION DE DOCUMENTS XML DE STRUCTURES HETEROGENES Ourda Boudghaghen(*),Mohand Boughanem(**) yugo_doudou@yahoo.fr, bougha@rt.fr

Plus en détail

P R I S E E N M A I N R A P I D E O L I V E 4 H D

P R I S E E N M A I N R A P I D E O L I V E 4 H D P R I S E E N M A I N R A P I D E O L I V E 4 H D Sommare 1 2 2.1 2.2 2.3 3 3.1 3.2 3.3 4 4.1 4.2 4.3 4.4 4.5 4.6 5 6 7 7.1 7.2 7.3 8 8.1 8.2 8.3 8.4 8.5 8.6 Contenu du carton... 4 Paramétrage... 4 Connexon

Plus en détail

Système solaire combiné Estimation des besoins énergétiques

Système solaire combiné Estimation des besoins énergétiques Revue des Energes Renouvelables ICRESD-07 Tlemcen (007) 109 114 Système solare combné Estmaton des besons énergétques R. Kharch 1, B. Benyoucef et M. Belhamel 1 1 Centre de Développement des Energes Renouvelables

Plus en détail

éléments d'analyse statistique

éléments d'analyse statistique éléments danalse statstque applcaton à lhdrologe deuxème édton D. Ther octobre 989 R 30 73 EAU 4S 89 BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES SERVICES SOL ET SOUS-SOL Département Eau B.P. 6009-45060

Plus en détail

Modélisation des Réseaux Ad hoc par Graphes

Modélisation des Réseaux Ad hoc par Graphes SETIT 009 5 th Internatonal Conference: Scences of Electronc, Technologes of Informaton and Telecommuncatons March -6, 009 TUNISIA Modélsaton des Réseaux Ad hoc par Graphes M hamed Abdelmadd ALLALI et

Plus en détail

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS Le cabnet Enetek nous démontre les mpacts négatfs de la multplcaton des stocks qu au leu d amélorer le taux de servce en se rapprochant du clent, le dégradent

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Contribution à la définition de modèles de recherche d information flexibles basés sur les CP-Nets

Contribution à la définition de modèles de recherche d information flexibles basés sur les CP-Nets Contrbuton à la défnton de modèles de recherche d nformaton flexbles basés sur les CP-Nets Fatha Boubekeur To cte ths verson: Fatha Boubekeur. Contrbuton à la défnton de modèles de recherche d nformaton

Plus en détail

ErP : éco-conception et étiquetage énergétique. Les solutions Vaillant. Pour dépasser la performance. La satisfaction de faire le bon choix.

ErP : éco-conception et étiquetage énergétique. Les solutions Vaillant. Pour dépasser la performance. La satisfaction de faire le bon choix. ErP : éco-concepton et étquetage énergétque Les solutons Vallant Pour dépasser la performance La satsfacton de fare le bon chox. ErP : éco-concepton et étquetage énergétque Eco-concepton et Etquetage

Plus en détail

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE?

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? Boulanger Frédérc Avanssur, Groupe AXA 163-167, Avenue Georges Clémenceau 92742 Nanterre Cedex France Tel: +33 1 46 14 43

Plus en détail

Découvrir l interface Windows 8

Découvrir l interface Windows 8 Wndows 8.1 L envronnement Wndows 8 Interfaces Wndows 8 et Bureau L envronnement Wndows 8 Découvrr l nterface Wndows 8 Après s être dentfé va un compte Mcrosoft ou un compte local, l utlsateur vot apparaître

Plus en détail

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BUREAU DAPPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BAMSI REPRINT 04/2003 Introducton à l analyse des données Samuel AMBAPOUR BAMSSI I BAMSI B.P. 13734 Brazzavlle BAMSI REPRINT 04/2003 Introducton

Plus en détail

Analyse des Performances et Modélisation d un Serveur Web

Analyse des Performances et Modélisation d un Serveur Web SETIT 2009 5 th Internatonal Conference: Scences of Electronc, Technologes of Informaton and Telecommuncatons March 22-26, 2009 TUNISIA Analyse des Performances et Modélsaton d un Serveur Web Fontane RAFAMANTANANTSOA*,

Plus en détail

En vue de l'obtention du. Présentée et soutenue par Meva DODO Le 06 novembre 2008

En vue de l'obtention du. Présentée et soutenue par Meva DODO Le 06 novembre 2008 THÈSE En vue de l'obtenton du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délvré par l'unversté Toulouse III - Paul Sabater Spécalté : Informatque Présentée et soutenue par Meva DODO Le 06 novembre 2008 Ttre

Plus en détail

Prise en compte des politiques de transport dans le choix des fournisseurs

Prise en compte des politiques de transport dans le choix des fournisseurs INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE N attrbué par la bblothèque THÈSE Pour obtenr le grade de DOCTEUR DE L I.N.P.G. Spécalté : Géne Industrel Préparée au Laboratore d Automatque de Grenoble Dans

Plus en détail

CHAPITRE 2 LA SPECTROMETRIE RMN

CHAPITRE 2 LA SPECTROMETRIE RMN .J. Ducauze et D.N. Rutledge groparstech PITRE L SPETRMETRIE RMN «Spectrométre RMN» veut dre qu on s ntéresse aux nformatons qu apportent les spectres, c est-à-dre à un ensemble d observatons effectuées

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès ranças d'acoustque Lyon, 1-16 Avrl 010 Imagere acoustque en soufflere SA Arnaud Ménoret 1, Nathale Gorllot, Jean-Luc Adam 3 1 Sgnal Développement, 1 Bld Chassegne, 86000 Poters, a.menoret@sgnal-developpement.com

Plus en détail

L enseignement virtuel dans une économie émergente : perception des étudiants et perspectives d avenir

L enseignement virtuel dans une économie émergente : perception des étudiants et perspectives d avenir L ensegnement vrtuel dans une économe émergente : percepton des étudants et perspectves d avenr Hatem Dellag Laboratore d Econome et de Fnances applquées Faculté des scences économques et de geston de

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures IDEI Report # 18 Transport December 2010 Elastctés de la demande de transport ferrovare: défntons et mesures Elastctés de la demande de transport ferrovare : Défntons et mesures Marc Ivald Toulouse School

Plus en détail

T3 Comfort raccordé a IP Office

T3 Comfort raccordé a IP Office IP Telephony Contact Centers Moblty Servces T3 Comfort raccordé a IP Offce Benutzerhandbuch User's gude Manual de usuaro Manuel utlsateur Manuale d uso Gebrukersdocumentate Sommare Sommare Se famlarser

Plus en détail

Paquets. Paquets nationaux 1. Paquets internationaux 11

Paquets. Paquets nationaux 1. Paquets internationaux 11 Paquets Paquets natonaux 1 Paquets nternatonaux 11 Paquets natonaux Servces & optons 1 Créaton 3 1. Dmensons, pods & épasseurs 3 2. Présentaton des paquets 4 2.1. Face avant du paquet 4 2.2. Comment obtenr

Plus en détail

Menu Démarrer et Bureau

Menu Démarrer et Bureau Menu Démarrer et Bureau Menu Démarrer et Bureau Descrpton du Bureau Au démarrage de l ordnateur et après vous être dentfé, vous voyez apparaître le Bureau de Wndows 10. S vous utlsez une tablette ou un

Plus en détail