Machines à courant continu

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Machines à courant continu"

Transcription

1 Machines à courant continu Une autre famille de machines électriques utilisent pour le stator un champ magnétique indépendant du temps (et non tournant comme les machines synchrones). Ce champ magnétique peut être créé par un aimant fixe, ou par un courant continu I S passant dans des solénoïdes. Le rotor a même structure que dans le cas de la machine synchrone : des spires rectangulaires décalées autour d un cylindre, parcourues par un courant fourni par un générateur continu. Le fait que ces machines soient alimentées par des courants continus leur vallent leur dénomination de machines à courant continu. I. Description des machines à courant continu 1. Stator Le stator, également appelé inducteur, génère dans l entrefer un champ magnétique lignes de champ sont représentées sur la figure ci dessous : B S dont les Ce champ peut être généré par un aimant (l ensemble du stator peut alors avoir une forme en U, le fond du U passant derriére le rotor, qui est placé entre les branches du U), ou par des spires entourant du fer doux (représentées par les lignes de courant I S ). La direction moyenne de B S est selon e y et ne varie pas au cours du temps. Il présente un plan d antisymétrie (xoz) ; ce plan est appelé plan neutre.

2 2. Rotor Il est identique à celui d une machine synchrone, des spires décalées autour d un matériau ferromagnétique : 3. Possibilité d un couple mécanique a) Condition de couple non nul Nous allons nous appuyer sur les résultats obtenus dans le cas de la machine synchrone. Nous avions allors établi qu il ne pouvait y avoir de couple mécanique non nul que si les champ statorique et le champ rotorique tournaient exactement à la même vitesse angulaire. Pour la machine à courant continu, le champ statorique est stationnaire ; il n y aura donc de couple que si le champ rotorique est aussi stationnaire, bien que le rotor tourne... L idée est de maintenir la figure indiquant pour chaque portion de spire le sens du courant qui la parcourt, malgrè la rotation du stator ; Ainsi on va imposer que les portions de spires situées au dessus du plan neutre soient parcourues par un courant venant vers l avant de la figure, et que celles situées au dessous du plan neutre soient parcourues par un courant allant vers l arrière de la figure, et ceux quelque soit la position du rotor. Pour celà il faut que lorsqu une spire passe d un côté à l autre du plan neutre, les sens du courant qui la parcourt soit globalement inversé. Ceci est assuré par le dispositif dit balais - collecteurs.

3 b) Dispositif balai - collecteur Il est représenté sur la figure ci dessous, concernant une seule spire du rotor : i c i balais collecteurs Ce dispositif de commutation comporte des collecteurs solidaires de la spire tournante et des balais fixes qui frottent sur les collecteurs. Les balais passent d'un collecteur à l'autre chaque fois que le cadre passe sur la ligne neutre. Le courant circulant dans le circuit extérieur (délivré par un générateur), noté i, ne change pas de sens ; le courant dans le cadre, i c vaut! i, changeant de sens par rapport au cadre à chaque demi tour. Afin que pour une spire donnée l inversion se fasse lorsqu ELLE passe le plan neutre, on devra avoir ce dispositif pour CHAQUE spire. Ce dispositif constitue l inconvénient principal de ce type de machines ; les frottements entre balais et collecteurs provoquent de l usure, donc imposent un entretien régulier. c) Choix de la commutation sur le plan neutre Le même besoin de champ rotorique stationnaire serait satisfait quelque soit la position de la commutation (qui devrait néanmoins être la même pour toutes les spires). En choisissant le plan neutre, on obtient un champ rotorique dont la direction moyenne est selon soit orthogonale à la direction du champ statorique. e x e y Or nous avons vu lors des machines synchrones que la couple maximal est obtenu lorsque ces deux champs sont orthogonaux. Placer les commutations sur le plan neutre permet d optimiser le couple moteur

4 II. Fonctionnement moteur 1. Couple obtenu La méthode à appliquer est identique à celle de la machine synchrone : déterminer l énergie magnétique contenue dans l entrefer, puis la dériver par rapport à la position angulaire à courants d excitations constants. Mais ici nous ne connaissons pas les expressions exactes des champs magnétiques statorique et rotorique dans la structure en fonction de la position angulaire (dépendance sinusoïdale pour la machine synchrone). Nous ne pouvons donc pas effectuer le calcul de façon exacte. Nous nous appuierons sur le résultat de la machine synchrone, pour laquelle nous avions obtenu : = a e L o B S M B R M sin ( ) Le couple est proportionnel à chacun des champs magnétiques ; * Il résulte de l interaction entre les champs créés par le stator et par le rotor ; * Il dépend de l angle du retard du champ rotorique sur le champ statorique. * Le coefficient global dépend de la carte exacte des champs. Nous avons déjà établi que pour la machine à courant continu, ce retard angulaire est de π/2 par construction du dispositif balais - collecteurs. Un champ magnétique est proportionnel au courant qui le génère (ou constant s il est créé par un aimant). Si I R est le courant alimentant les spires du rotor (courant qui passe dans le circuit extérieur), nous aurons un champ rotorique qui lui sera proportionnel. Donc par analogie nous aurons = I R Où Φ o est appelé flux sous un pôle ; Si le stator est constitué d un aimant permanent, c est une constante caractéristique de la constitution du moteur ; Si le stator est constitué par des solénoïdes parcourus par un courant I s alors Φ o sera lui même proportionnel à I s.

5 2. Forces électromotrices d induction Les spires du stator sont fixes (!) et soumises au champ rotorique qui a été rendu stationnaire par le dispositif balais - collecteurs. Il n apparait donc aucune fem d induction dans les spires du stator. Par contre les spires du rotor sont en mouvement, et bien que plongées dans un champ stationnaire, il y apparaîtra une fem d induction (d où le nom d induit pour le rotor dans ce moteur, et d inducteur pour le stator, à l opposé du cas de la machine synchrone). Nous avons établi à l occasion de la machine synchrone que la puissance mécanique récupérée correspond à la puissance électrique reçue par la fem d induction mutuelle. En notant e m cette fem, on aura donc - e m I R = Γ ω Donc e m = (On parle aussi de force contre électromotrice e = - e m ). 3. Equations mécanique et électrique a) Equation mécanique Le rotor entraîne une charge et est donc soumis à un couple résistant Γ r (Γ r > 0 ). L équation mécanique, résultant de l application du théorème du moment cinétque au système comportant l ensemble des pièces tournantes (dont le rotor), donne : J d = r = I R r Equation mécanique En régime permanent établi : 0 = I R r b) Equation électrique Le schéma équivalent du circuit comprenant le rotor comporte la résistance R de son bobinage, et la force électromotrice d induction totale qui y apparait. Celle ci se décompose entre la fem e m due à l interaction mutuelle avec le stator, et sa contribution propre que l on décrit par une inducance L :

6 I r U e m R L La loi des mailles donne : U = R I R + L d I R d t e m avec e m = Soit U = R I R + L d I R d t + Equation électrique En régime permanent établi : U = R I R + Rmq : Si la vitesse angulaire de rotation du moteur évolue au cours du temps, comme c est le cas lors de son démarrage, le courant I R va évoluer même si le générateur d alimentation du rotor y maintient une tension u constante. Ces moteurs sont dits à courant continu car ils sont alimentés par des générateurs continus. Mais la valeur exacte de l intensité qui les traverse peut fluctuer au cours du temps, selon les conditions d utilisation (sans pour autant changer de sens afin de maintenir un couple non nul). 4. Point de fonctionnement en régime établi Les équations en régime permanent établi sont donc : 0 = I R r et U = R I R + Le couple moteur est alors ( ) = o I R = o R ( U o ). Le couple moteur est une fonction linéaire décroissante de sa vitesse angulaire de rotation. Γ(ω) Γ (ω) r Le régime stationnaire de fonctionnement vérifie l équation mécanique 0 = Γ(ω) Γ r (ω) ω f ω Le point de fonctionnement en charge sera à l intersection des courbes Γ(ω) et Γ r (ω), dont on déduit la vitesse angulaire ω f du moteur en régime permanent.

7 Si ω augmente légèrement suite à une perturbation à partir de cette valeur ω f, le couple moteur devient inférieur au couple résistant ; donc le rotor ralentit et ω revient vers ω f. Le point de fonctionnement est stable. 5. Démarrage du moteur Notons que la courbe précédente indique que pour ω = 0, le couple moteur peut être supérieur au couple résistant ce qui signifie que le moteur va démarrer (et sortir de son précédent état permanent ). Un des gros avantages des moteurs à courant continu est qu ils peuvent démarrer sans aide extérieure, ce qui n est pas le cas pour les moteurs synchrones (ni pour les moteurs thermiques). Considérons le cas particulier où le couple résistant est de la forme Γ r (ω) = - f ω (correspondant au cas où la charge entrainée est soumise à un frottement fluide). Les équations durant la phase de démarrage seront : (I R et ω sont alors des fonctions de t ) J d = I R f ; U = R I R + L d I R d t + On tire I R de la première et on reporte dans la seconde : I R = 1 ( J d + f ) o U = R 1 ( J d + f ) + L d o d t ( J d + f ) + U = L J d 2 d t 2 + ( R J + L f ) d + ( R f + ) En tirant ω de la seconde équation et en reportant dans la première, on arrive à l équation : f U = L J o d 2 I R d t 2 + ( R J + L f ) d I R + ( R f + ) I R Soit la même équation sans second membre. Les conditions initiales sont ω( 0 + ) = 0 par inertie du moteur, et I R ( 0 + ) = 0 par continuité du courant dans L. En reportant dans la première équation, il vient d (0 + ) = 0. Selon la valeur des coefficients, on aura l un des trois régimes pseudopériodique, critique ou apériodique. Le premier de ces régimes peut poser problème, car le courant instantané y dépasse sa valeur finale ; le moteur risque de brûler durant la phase de démarrage.

8 III. Utilisation des machines à courant continu 1. Réversibilité Nous avons abordé l étude de cette machine sous un point de vue moteur : on apporte de l extérieur des puissances électriques, et on récupère une puissance mécanique. Comme pour les machines synchrones, toutes les équations électriques sont algébriques. On peut donc aussi utiliser cette même machine en fournissant de la puissance mécanique (un opérateur fait tourner le rotor, par exemple une chute d eau) et en récupérant de la puissance électrique générée par induction dans les bobinages du rotor : le mouvement du rotor dans le champ stationnaire du stator y provoque l apparition de forces électromotrices. On est alors en fonctionnment alternateur. Dans cette utilisation, les bobinages du rotor ne sont plus alimentés par des générateurs, mais simplement connectés sur des dipôles consommant l énergie électrique générée. Le dispositif n a d intérêt que si l on ne doit pas alimenter les spires du stator par un... générateur électrique! Le champ tournant du stator est alors généré par un aimant. 2. Représentation et câblage Un moteur à courant continu est représenté par le symbole suivant : inducteur M = induit ω Un courant doit circuler dans le bobinage de l'inducteur (stator, si celui ci n est pas réalisé avec un aimant permanent) pour créer le champ magnétique, et un autre dans le rotor. Le moteur est donc alimenté par des générateurs. On peut soit utiliser deux générateurs distincts (moteur à excitations séparées ) soit n'en utiliser qu'un (moteur à excitation série ). I i i U M = ω u M = ω u Excitations séparées Excitation série Pour un fonctionnement en générateur, le câblage est celui de l'excitation séparée (le champ magnétique du stator est créé par un aimant permanent) ; l'opérateur fait mécaniquement tourner l'induit (il impose ω) et l'on récupère la puissance électrique dans une charge branchée à la place de u soit en sortie du rotor. En l absence de système balais-collecteurs, cette fem serait alternativement positive ou négative par demie période (la normale au cadre se rapproche puis s éloigne de la

9 direction du champ du stator). Le système balais-collecteurs va permettre de lui conserver un signe constant donc une valeur moyenne non nulle. Pour un fonctionnement en moteur, les moteurs à aimant permanent pour le stator sont équivalents à ceux à excitations séparées. Si le champ magnétique du stator est créé par un aimant permanent, ou si le moteur est à excitations séparées, Φ o est une constante (ne dépendant pas du courant i dans l induit). Γ est alors proportionnel à I R. Si le moteur est à excitation série, le champ créé par le stator est en tout point proportionnel au courant qui le crée donc à I R. Φ o est alors proportionnel à I R et Γ à I R Qualités et défauts des machines à courant continu Les moteurs à courant continu peuvent fonctionner sur une pile ou une batterie. En moteur comme en générateur, ces machines ont un excellent rendement, les pertes y étant très faibles. En effet (comme pour les machines synchrones) celles ci sont dues à l effet Joule dans les bobinages (que l on peut limiter en utilisant un conducteur peu résistif), aux pertes dans le fer (limitées par l utilisation d un matériau doux et feuilleté) et aux pertes mécaniques (frottements au niveau de l axe de rotation du moteur, que l on limite par des roulements à bille ou du graissage). Leur inconvénient principal réside dans l entretien du système balais - collecteurs, qui nécessite un démontage du moteur, ce qui peut être délicat pour des moteurs peu accessibles (par exemple immergés). Leur démarrage ne posant pas de difficulté particulière, on les utilise dans des dispositifs soumis à des démarrages et arrêts fréquents (ascenceurs...).

Circuit mobile dans un champ magnétique stationnaire

Circuit mobile dans un champ magnétique stationnaire Circuit mobile dans un champ magnétique stationnaire II. Conversion de puissance mécanique en puissance électrique 1. Retour sur les rails de Laplace ( générateur ) Les rails de Laplace vus dan des chapitres

Plus en détail

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie I. PRESENTATION MACHINE A COURANT CONTINU Une machine à courant continu est un... d'énergie. Lorsque l'énergie... est transformée en énergie..., la machine fonctionne en... Lorsque l'énergie mécanique

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1. Présentation générale 1.1. Conversion d énergie La machine à courant continu est réversible, c'est-à-dire que la constitution d'une génératrice (G) est identique à celle du

Plus en détail

Machines alternatives

Machines alternatives Machines alternatives Si on déplace un aimant, on crée un champ magnétique donc la direction change au cours du temps. Le déplacement de cet aimant au voisinage d une aiguille aimantée (de boussole par

Plus en détail

LA MACHINE A COURANT CONTINU

LA MACHINE A COURANT CONTINU LA MACHINE A COURANT CONTINU I) Définition : Une machine à courant continu est une machine électrique tournante mettant en jeu des tensions et des courants continus. II) Principe de fonctionnement : Dans

Plus en détail

CH4 : La machine à courant continu

CH4 : La machine à courant continu BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH4 : La machine à courant continu Objectifs : A l issue de la leçon, l étudiant doit : 3.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

Chap.1 Conversion de puissance : Machine à courant continu

Chap.1 Conversion de puissance : Machine à courant continu Chap.1 Conversion de puissance : Machine à courant continu 1. Principe de la conversion électromécanique de puissance 1.1. Porteurs de charge d un circuit mobile dans un champ magnétique : bilan de puissance

Plus en détail

Force subie par un milieu magnétique

Force subie par un milieu magnétique Force subie par un milieu magnétique Nous savons tous qu un aimant peut attirer ou repousser des objets métalliques, ou d autres aimants. Les milieux ferromagnétiques ont la possibilité de se comporter

Plus en détail

MACHINES à COURANT CONTINU

MACHINES à COURANT CONTINU CHAPITRE 5 MACHINES à COURANT Gérard-André CAPOLINO 1 Construction de la machine Description Le principal avantage de la machine à courant continu est le contrôle simple du couple et de la vitesse Le stator

Plus en détail

Principes de la conversion d énergie

Principes de la conversion d énergie CHAPITRE 4 Principes de la conversion d énergie Gérard-André CAPOLIO Conversion d'énergie 1 Machines tournantes Construction de base Les principales parties d une machine tournante sont: Corps de la machine:

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

CH3 : La machine à courant continu à aimant permanent

CH3 : La machine à courant continu à aimant permanent Enjeu : motorisation des systèmes BTS électrotechnique 2 ème année - Sciences physiques appliquées CH3 : La machine à courant continu à aimant permanent Problématique : Le principal intérêt des moteurs

Plus en détail

Étude de la MACHINE A COURANT CONTINU

Étude de la MACHINE A COURANT CONTINU Étude de la MACHINE A COURANT CONTINU Plan de la présentation Introduction Constitution d une MCC Le Stator Le Collecteur Le Rotor Modèles et caractéristiques d une MCC Caractéristique Couple / Vitesse

Plus en détail

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES Sciences Appliquées, chap 7.2 MAGNÉTISME DANS LES MACHINES ÉLECTRIQUES 1 -Inducteur et induit...2 2 -Les pertes dans une machine électrique...2 3 -Le transformateur...3 4 -MCC et MCS...3 4.1 -Couple dans

Plus en détail

Chapitre 3 : MACHINES SYNCHRONE ET ASYNCHRONE

Chapitre 3 : MACHINES SYNCHRONE ET ASYNCHRONE Chapitre 3 : MACHINES SYNCHRONE ET ASYNCHRONE 1.Principe et description. Les machines synchones et asynchrones fonctionnent avec des champs magnétiques tournants créés par le stator. Le circuit rotorique

Plus en détail

BEP ET Leçon 22 Moteur à courant continu Page 1/10

BEP ET Leçon 22 Moteur à courant continu Page 1/10 BEP ET Leçon 22 Moteur à courant continu Page 1/10 1. FONCTIONNEMENT Stator : il est aussi appelé inducteur ou excitateur et c est lui qui crée le champ magnétique. Rotor : il est aussi appelé induit.

Plus en détail

8. PHÉNOMÈNES D INDUCTION ÉLECTROMAGNÉTIQUE Circuit déformable dans un champ d induction magnétique uniforme et constant

8. PHÉNOMÈNES D INDUCTION ÉLECTROMAGNÉTIQUE Circuit déformable dans un champ d induction magnétique uniforme et constant 8. PHÉNOMÈNES D INDUTION ÉLETROMAGNÉTIQUE 8.1 Observations expérimentales 8.1.1 ircuit déformable dans un champ d induction magnétique uniforme et constant On considère l expérience décrite au paragraphe

Plus en détail

MOTEUR A COURANT CONTINU SHUNT

MOTEUR A COURANT CONTINU SHUNT MOTEUR A COURANT CONTINU SHUNT 1 / Rôle Les moteurs à courant continu, jadis très répandus, sont actuellement utilisés pour des applications nécessitant un fort couple ou une régulation vitesse très fine.

Plus en détail

Machines à courant continu

Machines à courant continu Plan du cours Constitution Principe de fonctionnement en génératrice Principe de fonctionnement en moteur La réaction d induit Etude des transferts de puissance 1 Constitution bobine inducteur Une machine

Plus en détail

Conversion puissance Chap.4 Machine à courant continu - part1

Conversion puissance Chap.4 Machine à courant continu - part1 Conversion puissance Chap.4 Machine à courant continu - part1 1. Description et principe simplifié du fonctionnement d une MCC 1.1. Description de la machine 1.2. Explication simplifiée du principe de

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Table des matières 1. Principe de fonctionnement... 2. Schéma équivalent du moteur à courant continu... 3. Alimentation du moteur... 4. Variation de vitesse

Plus en détail

CONVERSION D ENERGIE

CONVERSION D ENERGIE CONVERSION D ENERGIE 1- Mise en situation Les principales sources d énergie mises en oeuvre industriellement sont l énergie électrique et l énergie mécanique. Disposant, en général, de l une ou de l autre

Plus en détail

Chap. IV: Machines à Courant Continue

Chap. IV: Machines à Courant Continue Chap. IV: Machines à Courant Continue 1. Principes physiques mis en jeu La machine à courant continu (MCC) est une machine réversible. C est à dire qu elle peut : - fonctionner en moteur et donc recevoir

Plus en détail

I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu

I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu Considérons un rotor très simplifié, sur lequel on a bobiné une seule spire, dont les extrémités

Plus en détail

9.1 Généralités. 9.2 Moteur asynchrone monophasé à lancer

9.1 Généralités. 9.2 Moteur asynchrone monophasé à lancer 9.1 Généralités Il existe une grande variété de moteurs monophasés adaptés à une multitude d'applications comme l usage domestique ou petit industriel en l absence de triphasé. Nous étudierons dans ce

Plus en détail

Conversion puissance Chap.4 Machine à courant continu - part1

Conversion puissance Chap.4 Machine à courant continu - part1 Conversion puissance Chap.4 Machine à courant continu - part1 1. Description et principe simplifié du fonctionnement d une MCC 1.1. Description de la machine 1.2. Explication simplifiée du principe de

Plus en détail

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI .L.Technique FOCTO CORTR : MACH YCHRO.CHAR. Alternateur La machine synchrone est un convertisseur réversible. lle peut fonctionner soit en génératrice soit en moteur. Lorsqu'elle fonctionne en génératrice,

Plus en détail

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V RAPPEL CORS ELECTRO TELEEC. Notion de base Quantité d électricité La quantité d électricité correspond au nombre d électrons transportés par un courant électrique ou emmagasinés dans une source. La quantité

Plus en détail

Chapitre 7 : Machine à courant continu à excitation indépendante

Chapitre 7 : Machine à courant continu à excitation indépendante Chapitre 7 : Machine à courant continu à excitation indépendante I / présentation, constitution 1. rappels 2. définition 3. constitution II / fonctionnement en moteur 1. symbole 2. principe du moteur 3.

Plus en détail

COURS : LES MACHINES A COURANT CONTINU

COURS : LES MACHINES A COURANT CONTINU BTS ATI1 CONSTRUCTION ELECTRIQUE COURS : LES MACHINES A COURANT CONTINU Durée du cours : 2 heures Objectifs du cours : Acquérir les connaissances de base sur les actionneurs électriques. Capacités : Analyser

Plus en détail

La machine à courant continu (MCC) Année 2006/2007

La machine à courant continu (MCC) Année 2006/2007 La machine à courant continu (MCC) Année 2006/2007 Ventilateur nduit bobiné nducteur Balais Collecteur Composition On distingue les éléments suivants: Les pôles inducteurs avec leurs enroulements (ou leurs

Plus en détail

LE MOTEUR À COURANT CONTINU

LE MOTEUR À COURANT CONTINU LE MOTEUR À COURANT CONTINU I/ RAPPELS I.1/ Notions de magnétisme! Page 1 Certaines pierres naturelles ont le pouvoir d'attirer et de retenir les matériaux ferreux. On les appelle des. Chaque aimant possède

Plus en détail

Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps.

Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps. PC 13/14 TD INDUCTION AC1 : Loi de Lenz On considère une spire circulaire (C) fixe, conductrice de résistance R soumise à un champ magnétique extérieur uniforme variable et orthogonal à la surface du circuit

Plus en détail

CH24 : L alternateur synchrone

CH24 : L alternateur synchrone BTS électrotechnique 1 ère année - Sciences physiques appliquées CH24 : L alternateur synchrone Production d énergie électrique Problématique : Des essais ont été réalisés sur un alternateur synchrone

Plus en détail

V.1 Présentation de la Machine à Courant Continu (MCC)

V.1 Présentation de la Machine à Courant Continu (MCC) Chapitre V Modélisation et Simulation de la Machine à Courant Continu 36 V.1 Présentation de la Machine à Courant Continu (MCC) V.1 Généralités Les MCC de conception usuelle sont réalisées pour différentes

Plus en détail

Machine à courant continu

Machine à courant continu Sciences de l ngénieur PAGE 172 Machine à courant continu 1 - Magnétisme 1-1 aimant permanent Un aimant permanent est un corps qui a la propriété d'attirer le fer. On distingue Les aimants naturels tels

Plus en détail

CIRCUIT DE DEMARRAGE

CIRCUIT DE DEMARRAGE CIRCUIT DE DEMARRAGE 1 - SITUATION PROBLEME Les moteurs thermiques, pour démarrer demandent à être entraînés à une vitesse de rotation suffisante : moteur à essence, 250 tr/min moteur Diesel, 350tr/min.

Plus en détail

VI.1 Présentation de Machine Synchrone (MS)

VI.1 Présentation de Machine Synchrone (MS) Chapitre IV Modélisation et Simulation des Machines Synchrones 9 VI. Présentation de Machine Synchrone (MS) La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant

Plus en détail

La machine à courant continu

La machine à courant continu La machine à courant continu 1 Généralités Historique : 1ere machine industrielle de l histoire Utilisation principalement en moteur de toute puissance (Commande et Vitesse variable simple). => tendance

Plus en détail

rincipe de fonctionnement

rincipe de fonctionnement Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette technologie de moteur permet une réalisation économique

Plus en détail

CH5 : Les machines alternatives

CH5 : Les machines alternatives BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH5 : Les machines alternatives Objectifs : A l issue de la leçon, l étudiant doit : 5.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

G.P. DNS14 Mars Spire dans un champ B. I. Spire en rotation dans un champ magnétique uniforme et constant

G.P. DNS14 Mars Spire dans un champ B. I. Spire en rotation dans un champ magnétique uniforme et constant DNS Sujet Spire dans un champ B...1 I.Spire en rotation dans un champ magnétique uniforme et constant...1 A.Dipôle résistif...3 B.Dipôle capacitif...3 II.Spire fixe dans un champ magnétique variable...3

Plus en détail

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1 PHYSIQUE II On se propose d examiner quelques principes de fonctionnement de deux types de moteurs électriques, à la fois sous les aspects électromagnétique et dynamique Les trois parties de ce problème

Plus en détail

APPLICATIONS DIRECTES

APPLICATIONS DIRECTES PSI FEUILLE D EXERCICES DE SCIENCES PHYSIQUES N 23 11/02/2017 2016/2017 Thème: Conversion électro-magnéto-mécanique (1) APPLICATIONS DIRECTES 1. Electroaimant de levage On considère l électroaimant représenté

Plus en détail

Circuit fixe dans un champ magnétique variable

Circuit fixe dans un champ magnétique variable Circuit fixe dans un champ magnétique variable II. Auto-induction 1. Flux propre et inductance propre Soit un circuit filiforme ( par exemple une bobine ) parcouru par un courant d intensité. Ce circuit

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

P15 Induction et auto-induction

P15 Induction et auto-induction Induction et auto-induction Le phénomène d induction correspond à l apparition dans un conducteur d une force électromotrice lorsque celui-ci est soumis à un champ magnétique variable. Ceci peut alors

Plus en détail

Chapitre 5 : magnétisme et champs tournants

Chapitre 5 : magnétisme et champs tournants Chapitre 5 : magnétisme et champs tournants A Rappels sur le magnétisme I mise en évidence expérimentale de l induction électromagnétique II Application : alternateur III loi de Lenz IV flux magnétique

Plus en détail

GENERATRICE. Un conducteur non alimenté qui coupe les lignes d un champ magnétique devient le siège d un force électromotrice induite (fem).

GENERATRICE. Un conducteur non alimenté qui coupe les lignes d un champ magnétique devient le siège d un force électromotrice induite (fem). GNRATRIC Un conducteur non alimenté qui coupe les lignes d un champ magnétique devient le siège d un force électromotrice induite (fem). La valeur de cette fem (notée e) est égale à la valeur absolue de

Plus en détail

Chapitre n 9 : Circuits alimentés en courant alternatif

Chapitre n 9 : Circuits alimentés en courant alternatif 5 ème OS Chapitre n 9 : Circuits alimentés en courant alternatif Considérations historiques La plupart des lampes de l époque étaient de basse résistance et devaient être montées en série, fonctionnant

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 8-9 Devoir n 6 CONVERSION DE PUISSANCE UTILISATION DE L ENERGIE EOLIENNE Un aéromoteur entraîne une génératrice électrique destinée à alimenter une installation électrique. Pour les aéromoteurs de

Plus en détail

MACHINE A COURANT CONTINU

MACHINE A COURANT CONTINU 1) Stator ( ou inducteur ) ACHINE A COURANT CONTINU a) Fonction : il crée un champ magnétique fixe ; il est souvent bipolaire, quelquefois tétrapolaire. On l appelle aussi inducteur. A) STRUCTURE b) Types

Plus en détail

LA MACHINE À COURANT CONTINU

LA MACHINE À COURANT CONTINU LA MACHINE À COURANT CONTINU Table des matières 1. Présentation... 2 1.1. Généralités... 2 1.2. Description... 3 1.2.1. Vue d'ensemble... 3 1.2.2. L'inducteur... 3 1.2.3. L'induit... 3 1.2.4. Collecteur

Plus en détail

Milieux magnétiques. Aimantation

Milieux magnétiques. Aimantation Milieux magnétiques Aimantation La différence entre courants «libres» et courants «liés» La définition du vecteur aimantation La définition du vecteur excitation magnétique L équation de Maxwell-Ampère

Plus en détail

Machine Synchrone. Alternateur synchrone

Machine Synchrone. Alternateur synchrone Machine ynchrone Alternateur synchrone Champ tournant Alternateur : principe de fonctionnement tructure du rotor (induit) tructure du stator (inducteur) Alternateur en charge «Champ tournant» Théorème

Plus en détail

LE CIRCUIT DE DEMARRAGE Démarrage 1/7

LE CIRCUIT DE DEMARRAGE Démarrage 1/7 LE CIRCUIT DE DEMARRAGE Démarrage 1/7 I DESCRIPTION - Le circuit est composé d'une batterie, d'un contacteur général et d'un démarreur ( possible : fusible, relais ). + contact + bat. + allumage II FONCTION

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 2 : MACHINE SYNCHRONE Exercice 1 Un alternateur triphasé, 1000 kva, 4600 V, connection étoile, possède une résistance par phase égale à 2 et une résistance synchrone égale à 20. En pleine

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de... et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU

MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU 1/8 Le Moteur électrique à courant continu MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU Présentation : Le système étudié est un opérateur de positionnement angulaire MAXPID constitué (voir annexe

Plus en détail

LES MOTEURS A COURANT CONTINU

LES MOTEURS A COURANT CONTINU LES MOTEURS A COURANT CONTINU 1-Présentation : Une machine à courant continu peut fonctionner en moteur ou en génératrice (dynamo). On dit qu elle est réversible. Les MCC offrent une grande souplesse de

Plus en détail

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS LIAISON REFERENTIEL B.11 Les actionneurs Machine à courant continu avec balais. Thèmes : E1 - C122 Conversion électromécanique d énergie E4 C12 Comportement énergétique des systèmes Centre d intérêt :

Plus en détail

Physique appliquée BTS 1 Electrotechnique

Physique appliquée BTS 1 Electrotechnique Physique appliquée BTS 1 Electrotechnique Electromagnétisme Electromagnétisme Page 1 sur 21 1. Champ d excitation magnétique... 3 1.1. Interprétation de l aimantation.... 3 1.2. Champ d exitation magnétique

Plus en détail

I. Le champ magnétique

I. Le champ magnétique Chap 2 : L électromagnétisme Page 1 / 7 I. Le champ magnétique Le magnétisme est l étude des phénomènes que présentent les matériaux aimantés. 1. Aimants a. Définitions b. Expériences Expérience 1 : Passons

Plus en détail

Moteur brushless. Tutoriel

Moteur brushless. Tutoriel Moteur brushless Table des matières 1. Introduction...2 1.1. Composition d'un moteur brushless...2 1.2. Fonctionnement du moteur brushless simple...2 2. Commande des moteurs brushless...3 2.1. Moteur brushless

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1 Présentation générale Tous les résultats présentés dans cette première partie du cours sont valables que la machine fonctionne en moteur ou en génératrice 11 Conversion d énergie

Plus en détail

Champ tournant, création de couple électromagnétique

Champ tournant, création de couple électromagnétique Champ tournant, création de couple électromagnétique SIMON SELLEM simon.sellem@ens-cachan.fr Motivation Toute machine tournante classique comporte un stator et un rotor. Il est nécessaire d étudier la

Plus en détail

COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT ETC SYMBOLE ACTION

COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT ETC SYMBOLE ACTION 1 PRÉSENTATION Beaucoup d'applications nécessitent un couple de démarrage élevé. Le Moteur à Courant Continu (MCC) possède une caractéristique couple/vitesse de pente importante, ce qui permet de vaincre

Plus en détail

REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE

REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE Examen Final : EL41 P07. Durée : 2 heures. Documents : non autorisés sauf une feuille manuscrite de format A4. REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE Nom : Prénom : Signature : Problème (10 points)

Plus en détail

Moteur synchrone autopiloté Moteur brushless

Moteur synchrone autopiloté Moteur brushless Moteur synchrone autopiloté Moteur brushless Moteur synchrone autopiloté Moteur brushless Moteur synchrone autopiloté OBJECTIFS Moteur brushless Identifier une machine synchrone Définir son principe de

Plus en détail

Energie mécanique fournie

Energie mécanique fournie L étude de l électromagnétisme a mis en évidence, le principe de fonctionnement des machines à courant continu: - fonctionnement en moteur, par déplacement d un conducteur parcouru par un courant et placé

Plus en détail

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients.

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. Chapitre 40 1 Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. 2 Chapitre 40 Les machines synchrones 3

Plus en détail

Moteurs éléctriques à courant continu

Moteurs éléctriques à courant continu Moteurs éléctriques à courant continu Matthieu Schaller matthieu.schaller@epfl.ch 16 mars 2008 Table des matières 1 Introduction 2 2 Partie théorique 2 2.1 Principe de fonctionnement...................

Plus en détail

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction MACHINES à INDUCTION Gérard-André CAPOLINO 1 Généralités La machine à induction est utilisée en moteur ou en générateur Toutefois, l utilisation en moteur est plus fréquente. C est le moteur le plus utilisé

Plus en détail

Fonctionnement du moteur brushless simple:

Fonctionnement du moteur brushless simple: Moteurs brushless : La technique I - Le moteur brushless : Introduction Le défaut principal des moteurs à courant continu est la présence des balais, qui engendrent des frottements, des parasites, et limitent

Plus en détail

F > I. + Alimentation 3 SYMBOLE 1 PRÉSENTATION 4 FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU 2 IDENTIFICATION DE LA FONCTION TECHNIQUE RÉALISÉE

F > I. + Alimentation 3 SYMBOLE 1 PRÉSENTATION 4 FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU 2 IDENTIFICATION DE LA FONCTION TECHNIQUE RÉALISÉE COURS TSI : CI-3 E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 1 / 6 1 PRÉSENTATION Beaucoup d'applications nécessitent un couple de démarrage élevé. Le Moteur

Plus en détail

La machine à courant continu

La machine à courant continu Travaux dirigés BTS Maintenance Industrielle Exercice n 1 : Un moteur à courant continu porte sur sa plaque, les indications suivantes Excitation séparée 160 V 2 A Induit : 160 V 22 A 1170 tr.min -1 3,2

Plus en détail

Cours n 9 : Dipôles RC et RL

Cours n 9 : Dipôles RC et RL Cours n 9 : Dipôles RC et RL Introduction Au chapitre précédent, nous avons étudié le comportement général d un circuit et également le comportement des conducteurs ohmiques. Dans ce chapitre, nous allons

Plus en détail

1 ) Transformateur monophasé. 1.1) Définition

1 ) Transformateur monophasé. 1.1) Définition Chapitre B...Transformateur monophasé ) Transformateur monophasé.) Définition Un transformateur est un quadripôle formé de deux enroulements enlaçant un circuit magnétique commun. C est une machine statique

Plus en détail

Commande de moteur à courant continu

Commande de moteur à courant continu U = E + R UNIVERSITE D ELOUED DEPARTEMENT D'ELECTROTECHNIQUE Commande de moteur à courant continu 1. Les modes de variation de vitesse Commande par tension d induit Commande par variation de flux magnétique

Plus en détail

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1 TD ELECTROTECHNIQUE 1 ère année Module MC2-2 V. Chollet - TD-Trotech07-28/08/2006 page 1 IUT BELFORT MONTBELIARD Dpt Mesures Physiques TD ELECTROTECHNIQUE n 1 Avec l aide du cours, faire une fiche faisant

Plus en détail

Le Moteur àcourant continu

Le Moteur àcourant continu Le Moteur àcourant continu Principe du générateur continu E I = = BLV.. E R Principe du moteur continu F = BIL.. U I = U R E Machine àcourant continu Constitution Enroulements Circulation du courant Création

Plus en détail

MODELISATION D UNE MACHINE A COURANT CONTINU

MODELISATION D UNE MACHINE A COURANT CONTINU 1. Introduction MODELISATION D UNE MACHINE A COURANT CONTINU COURS Une machine à courant continu est une machine électrique. Il s'agit d'un convertisseur électromécanique permettant la conversion bidirectionnelle

Plus en détail

LES MOTEURS SPECIAUX 1-Les moteurs universels : Constitution : Principe de fonctionnement : Utilisation :

LES MOTEURS SPECIAUX 1-Les moteurs universels : Constitution : Principe de fonctionnement : Utilisation : LES MOTEURS SPECIAUX 1-Les moteurs universels : Le moteur universel est un moteur de constitution identique à celle d un moteur à courant continu à excitation série. Il tient son nom di fait qu il peut

Plus en détail

Eléments de correction génératrice asynchrone

Eléments de correction génératrice asynchrone Eléments de correction génératrice asynchrone 1. Machine couplée au réseau : 1.1 Représentation de Ptr = f(g) Puissance transmise au rotor P 8000 6000 4000 2000 0-1 -0,8-0,6-0,4-0,2 0 0,2 0,4 0,6 0,8 1

Plus en détail

LA BOBINE ET LE DIPOLE RL

LA BOBINE ET LE DIPOLE RL LA BOBINE ET LE DIPOLE RL Prérequis 1. Cocher les ou la bonne réponse Un champ magnétique peut être produit par : un aimant permanant un corps isolant un corps aimanté un fil de cuivre un solénoïde parcourue

Plus en détail

r B Ainsi le rotor se comporte comme une bobine équivalente stationnaire dont le moment magnétique

r B Ainsi le rotor se comporte comme une bobine équivalente stationnaire dont le moment magnétique Etude d une machine à courant continu polyexcitation I - Rappels 1.1 - Constitution La machine est composée de trois parties : - Le stator, partie fixe de la machine, contient les enroulements de l'inducteur.

Plus en détail

L électricité : l alternateur

L électricité : l alternateur Document n 1 Les alternateurs alimentent les récepteurs électriques (gestion moteur,éclairage ) quand le moteur thermique fonctionne. Ils rechargent également batterie. la Frontière d étude Fonction globale

Plus en détail

Chapitre 4 : Electromagnétisme

Chapitre 4 : Electromagnétisme Chapitre 4 : Electromagnétisme On retrouve des charges en mouvement dans le courant électrique, mais aussi dans les champs magnétiques. Il n existe pas de charges magnétiques, et en général, et ne sont

Plus en détail

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

Le Moteur Asynchrone Triphasé

Le Moteur Asynchrone Triphasé Le Moteur Asynchrone Triphasé DOSSIER RESSOURCES Première BAC PRO ELEEC - Lycée Professionnel Clément Ader Le moteur asynchrone triphasé - Dossier ressources 1/6 I- FONCTION : Les moteurs asynchrones triphasés

Plus en détail

LA MACHINE ASYNCHRONE

LA MACHINE ASYNCHRONE Objectif terminal : A la fin de la séquence, l élève sera capable de : _ justifier le choix du convertisseur d énergie FONCTION CONVERTIR L ENERGIE LA MACHINE ASYNCHRONE Objectif intermédiaire : _ identifier

Plus en détail

Chapitre 7 : CHAMP MAGNETIQUE ET ACTIONS DU CHAMP MAGNETIQUE

Chapitre 7 : CHAMP MAGNETIQUE ET ACTIONS DU CHAMP MAGNETIQUE Chapitre 7 : CHAMP MAGNETIQUE ET ACTIONS DU CHAMP MAGNETIQUE I- Le champ magnétique : 1.1. Sources de champ magnétique : a- Les aimants : L approche d une aiguille aimantée vers un aimant droit donne les

Plus en détail

Les transformateurs monophasés

Les transformateurs monophasés monophasés Un transformateur électrique est une machine électrique qui permet de de modifier les valeurs de tension et d'intensité du courant délivrées par une source d'énergie électrique alternative,

Plus en détail

Conversion de puissance Chap6 Machine synchrone

Conversion de puissance Chap6 Machine synchrone Conversion de puissance Chap6 Machine synchrone 1. Structure d une machine synchrone à pôles lisses (excitation séparée) 1.1. Description d une machine à pôles lisses 1.2. Concepts clefs pour l étude de

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2012-2013 Devoir n 5 CONVERSION DE PUISSANCE Toutes les parties sont indépendantes. Un formulaire se trouve en fin de problème. Partie I On désire tracer expérimentalement le cycle d hystérésis B

Plus en détail

Induction et forces de Laplace

Induction et forces de Laplace Induction et forces de Laplace Chapitre 2 : Induction électromagnétique Sommaire 1 Aspect expérimental 1 1.1 Découverte du phénomène d induction électromagnétique......................... 1 1.2 Caractérisation

Plus en détail

MOTEURS A COURANT CONTINU

MOTEURS A COURANT CONTINU MOTEURS A COURANT CONTINU I- GENERALITES Les moteurs à courant continu à excitation séparée sont encore utilisés assez largement pour l entraînement à vitesse variable des machines. Leur vitesse de rotation

Plus en détail