Théorèmes de points fixes et équilibres de Nash.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Théorèmes de points fixes et équilibres de Nash."

Transcription

1 Théorèmes de points fixes et équilibres de Nash. 1. Théorèmes de point fixe 1.1. La propriété de point fixe. Nous avons montré le théorème suivant : Théorème 1. (Brower) Toute application continue f : D n D n admet un point fixe. On dit qu un espace métrique X a la propriété de point fixe si toute application continue f : X X admet un point fixe. Nous avons montré que la boule unité dans un espace Euclidien de dimension finie a la propriété de point fixe. Lemme 1.1. Soient X et Y deux espaces métriques. Si X et Y sont homeomorphes, et si X a la propriété de point fixe, alors Y admet la propriété de point fixe. Démonstration. Soit h : X Y un homeomorphisme et f : Y Y une application continue. Alors on définit l application coninue g = h g h 1 X X. Puisque X a la propriété de point fixe, il existe un point x X tel que g(x) = x. Mais alors, on a f(h(x)) = h(g(x)) = h(x), et donc h(x) est un point fixe de f. Théorème 2. Tout convexe compact d un espace Euclidien de dimension finie a la propriété de point fixe. Démonstration. On donne deux preuves. La première consiste à remarquer que, si K est une convexe compact de dimension finie, alors il existe un entier n tel que K est homéomorphe à D n. Pour la seconde, on considère un compact convexe K R n (attention, ce n n est pas forcément celui pour lequel K est homéomorphe à D n ). Il existe alors une application continue π : R n K qui fixe les points de K. Si f : K K est une application continue, alors l application f π : R n K est elle aussi continue. Soit R un réel assez grand pour que la boule D(R) de rayon R contienne K. On peut alors restreindre f π à D(R) et considérer cette application comme une application de D(R) dans D(R). Il existe alors x D(R) tel que f(π(x)) = x. Comme l image de f est contenue dans K, on en conclut que x K, et donc que π(x) = x, et donc que f(x) = x. Mentionnons dès maintenant l extension à la dimension infinie que nous montrerons plus tard dans le cadre des multi-applications : Théorème 3. (Théorème du point fixe de Tychonov) Tout convexe métrique compact a la propriété de point fixe. Dans cet énoncé, la compacité est bien essentielle, et un convexe fermé borné d un espace de Hilbert n admet pas nécessairement la propriété de point fixe, comme le montre l exemple suivant : 1

2 2 THÉORÈMES DE POINTS FIXES ET ÉQUILIBRES DE NASH Exemple. Dans l espace l 2 des suites u n de carré sommable, considérons la boule unité D, et l application f : D D u = (u 1,... u n,...) ( 1 u 2, u 1,... u n,...). On remarque que f(u) = 1 pour tout u D, si bien que f prend effectivement ses valeurs dans D. Si il existait un point fixe u, on aurait u = f(u) = 1, donc f(u) = (0, u 1, u 2,...) = (u 1, u 2,...) et donc u = 0, ce qui contredit u = 1. L application f n a donc pas de point fixe. On pourrait munir D de sa structure naturelle de convexe métrique compact donnée par la topologie faible. Il est alors tentant de penser que le théorème du point fixe de Tychonov devrait impliquer l existence d un point fixe de f. Il faut toute fois prendre garde au fait que f n est pas continue pour la topologie faible. Si C est un convexe fermé borné dans un espace de dimension infinie, il y a deux façons typiques d essayer de montrer que f admet un point fixe. La première consiste à munir C d une distance faible qui en fasse une espace métrique compact. Dans ce cas, il faut faire attention à vérifier que f est continue pour cette distance, ce qui, comme le montre l exemple ci-dessus, peut ne pas être le cas même pour des fonctions très simples. L autre consiste à montrer que l application f est compacte pour la topologie forte. C est l objet de la section suivante Le Théorème de Schauder. On détaille ici un cas particulier célèbre du Théorème de Tychonov, le Théorème de Schauder. Soit B un espace de Banach. Une application f : B B est dite compacte si l image par f de toute partie bornée de B est relativement compacte dans B (c est à dire que sa fermeture est compacte). Théorème 4. (Schauder) Soit C un convexe fermé borné de B, et f : C C une application continue et compacte. L application f admet un point fixe. Démonstration. Soit F la fermeture de f(c) dans B. F est compact par puisque f est supposée compacte. Supposons qu il existe un convexe K C tel que F K et tel que K soit compact pour la topologie de B. Alors, l application f restreinte à K prend ses valeurs dans K et elle est clairement continue, puisque f l est. Par le théorème de Tychonov, elle admet donc un point fixe. Nous avons réduit la preuve du théorème de Schauder à celle de l existence du convexe compact K. C est l objet du résultat suivant. Théorème 5. Si F est un compact d un espace de Banach B, alors l enveloppe convexe fermée K de F est compacte. Démonstration. L enveloppe convexe fermée étant la fermeture de l enveloppe convexe C, il suffit de montrer que, pour tout ɛ > 0, on peut recouvrir C par un nombre fini de boules de rayon ɛ. Comme F est compact, on peut recouvrir F par un numbre fini de boules de rayon ɛ/2. Soient χ l ensemble fini des centres de ces boules. Tout point x de C s écrit comme une combinaison convexe finie x = a k z k, avec des coefficients a k positifs tels que a k = 1, et avec z k F. Chaque point z k est dans la boule de rayon ɛ/2 centrée en un point x k χ. On a donc x k z k ɛ/2, et donc a k x k a k z k ɛ/2.

3 2. MULTI-APPLICATIONS 3 On a montré que, pour tout x C, d(x, co(χ)) ɛ/2, où co(χ) est l enveloppe convexe de χ. L ensemble χ étant fini, cette enveloppe convexe est compacte, donc contenue dans un nombre fini de boules de rayon ɛ/2. Les boules de rayon ɛ centrées aux mêmes points recouvrent alors F. 2. Multi-applications Soit X un ensemble. On appelle multi-application une correspondance F qui, a tout point x X fait correspondre une partie F (x) de X. Le graphe de la multi-application est l ensemble {(x, y) X X t. q. y F (x)} X X. On remarque que les multi-applications ne sont rien d autre que les parties de X X. Supposons maintenant que X est un espace métrique compact. On dit qu une multi-application est fermée si son graphe est fermé. Propriété 1. Une multi application est fermée si et seulement si elle satisfait l une des deux conditions équivalentes suivantes : (1) Pour toutes suites convergentes x n x et y n y telles que y n F (x n ), on a y F (x). (2) Pour tout ouvert U de K, l ensemble {x X t. q. F (x) U} est ouvert dans X. Le théorème de point fixe le plus général de ce cours est le résultat suivant : Théorème 6. (Ky Fan) Soit K un convexe métrique compact, et soit F : K K une multi-application fermée à valeurs convexes non-vides, c est à dire que, pour tout x K, F (x) est une partie convexe et non vide (et, par la fermeture de F, compacte) de K. Alors F admet un point fixe, c est à dire que il existe un point x K tel que x F (x). La version de ce théorème en dimension finie est le théorème de Kakutani mentionné dans l article de Nash. Quand on restreint ce théorème au cas des applications, on retrouve le théorème du point fixe de Tychonov, moyennant le facile : Lemme 2.1. Une application f : K K est continue si et seulement si son graphe est fermé. La démonstration du théorème de Ky Fan se fait en deux étapes, que nous énonçons maintenant : Proposition 1. Soit K un convexe métrique compact. Les deux affirmations suivantes sont équivalentes : (1) Toute application continue f : K K admet un point fixe. (2) Toute multi-application F : K K fermée et à valeurs convexes non-vides admet un point fixe. Comme on sait que (1) est vraie en dimension finie, on en conclut que (2) est vraie en dimension finie, ce qui prouve le théorème de Kakutani. On termine alors la preuve grâce à : Proposition 2. Le théorème de Kakutani implique celui de Ky Fan.

4 4 THÉORÈMES DE POINTS FIXES ET ÉQUILIBRES DE NASH. Démonstration de la proposition 1. On a déjà vu que (2) implique (1), c est bien sûr la réciproque qui demande une preuve. Soit donc F : K K une multi-application qui vérifie les hypothèses de (2). On va approcher F par des applications. Pour ceci on fixe ɛ > 0. On considère une famille finie χ de points de K telle que les boules ouvertes centrées sur χ et de rayon ɛ recouvrent K. À chaque point x χ, on associe une élément y x de F (x). On indroduit de plus une partition de l unité associée aux boules ouvertes B(x, ɛ). C est la donnée, pour chaque point x χ d une fonction φ x (z) : K [0, 1] telle que φ x (z) = 0 lorsque d(x, z) ɛ et telle que que φ x (z) = 1 x χ pour tout z K. On définit alors l application f : K z x χ φ x (z)y x K. Il est clair que cette application est continue, et elle prend bien ses valeurs dans K car la somme x χ φ x(z)y x est une combinaison convexe des points y x K. par (1), l application f admet donc un point fixe. Soit ɛ n une suite tendant vers zero, soit w n un point fixe de l application f obtenue par la construction précédente avec ɛ n. Quitte a extraire une soussuite, on suppose que la suite w n a une limite w lorsque n. Il reste à montrer que w est un point fixe de la multi-application F. Si ce n était pas le cas, on aurait d(w, F (w)) > 0. L ensemble U := {y K : d(y, F (w)) < d(w, F (w))} est alors un ouvert convexe contenant F (w), tel que d(w, U) > 0. En raison de la fermeture de F, il existe un voisinage δ > 0 de w tel que F (x) U lorsque d(x, w) < δ. Lorsque n est assez grand pour que ɛ n + d(w, w n ) < δ, on observe alors que f(w n ) U. En effet, dans l expression f(w n ) = x χ φ x(w n )y x les coefficients φ x (w n ) s annulent si d(x, w n ) ɛ n et donc si d(x, w) δ. En conséquence, les points y x qui sont effectivement chargés de coefficients positifs dans cette combinaison convexe sont tous dans U. Comme U est convexe, le point f(w n ) est lui-même dans U. Comme w n = f(w n ), les point w n sont tous dans U, et donc d(w, w n ) d(w, U) > 0, ce qui est contradictoire avec la convergence de w n vers w. Démonstration de la proposition 2. Fixons un réel ɛ > 0. Le compact K peut être recouvert par une nombre fini de boules de rayon ɛ. Soit χ l ensemble fini des centres, et soit A l espace affine (qui est donc de dimension finie) engendré par χ. Soit K A le convexe K A. Construisons une multi-application F A : K A K A qui approxime F. On définit pour ceci F A (x) comme étant l ensemble des points y K A tels que d(y, F (x)) ɛ. On remarque que F A (x) contient toujours un point de χ, est donc est toujours non-vide. On va montrer que F A satisfait les hypothèses du théorème de Kakutani, c est à dire qu elle est fermée prend des valeurs non-vides et convexes. Soit (x n, y n ) une suite de points du graph de F A qui converge vers (x, y) K A K A. On a alors d(y n, F (x n )) ɛ, donc (car F (x n ) est compact) il existe un point z n F (x n ) tel que d(x n, z n ) ɛ. Quitte a extraire une sous-suite, on peut supposer que la suite z n admet une limite dans le compact K, et, F étant fermée, on a alors z F (x) et d(y, z) ɛ, donc d(y, F (x)) ɛ. On a montré la fermeture de F A. Il reste à vérifier que F A (x) est convexe pour tout x. Pour ceci, on considère deux points y 1 et y 2 de F A (x), et deux points z 1 et z 2 dans F (x) tels que d(y 1, z 1 ) ɛ et d(y 2, z 2 ) ɛ. L existence des points z 1 et z 2 est une conséquece de la définition de F A (x) et de la compacité de F (x). On a alors, pour

5 tous a 1 et a 2 [0, 1] tels que a 1 + a 2 = 1, 2. MULTI-APPLICATIONS 5 d(a 1 y 1 + a 2 y 2, a 1 z 1 + a 2 z 2 ) a 1 d(y 1, z 1 ) + a 2 d(y 2, z 2 ) ɛ. Comme F (x) est convexe, on a a 1 z 1 + a 2 z 2 F (x), et donc a 1 y 1 + a 2 y 2 F A (x). On peut alors appliquer le théorème de Kakutani à la multi-application F A, et on conclut qu il existe un point x K A tel que x F A (x), c est à dire tel que d(x, F (x)) ɛ. Autrement dit, pour tout n N il existe un point x n K et un point z n F (x n ) tels que d(x n, z n ) 1/n. Soit n k une sous-suite telle que (x nk, z nk ) a une limite (x, z). Comme F est fermée, on a alors z F (x), et d(x, z) = 0, donc x = z F (x). On remarque que, dans cette preuve, F A n est en général pas une application même si F en est une. C est pourquoi il est plus commode de déduire directement le théorème de Ky Fan de celui de Kakutani, plutôt que de déduire le théorème de Tychonov de celui de Brouwer.

1.2.1 Topologie produit

1.2.1 Topologie produit 1. Vocabulaire: Topologie 15 1.2.1 Topologie produit 1.2.32 DÉFINITION Soit {X i, i 2 I} une famille d ensembles. On définit l ensemble produit X = Y i2i X i comme l ensemble des applications x : I![ i2i

Plus en détail

1. Espaces métriques. 1 Distance, boules, ouverts, fermés...

1. Espaces métriques. 1 Distance, boules, ouverts, fermés... 1. Espaces métriques 1 Distance, boules, ouverts, fermés... Définition 1.1. Soit E un ensemble (non vide). On appelle distance sur E une application d de E E dans [0, + [ vérifiant les trois propriétés

Plus en détail

TD1. A. Leclaire, P. Roussillon ENS Paris-Saclay M1 Hadamard

TD1. A. Leclaire, P. Roussillon ENS Paris-Saclay M1 Hadamard Analyse A. Leclaire, P. Roussillon ENS Paris-Saclay M1 Hadamard 2017-2018 TD1 Exercice 1 Autour de la continuité Soient E, F, G trois espaces topologiques et f : E F, д : F G. 1) Démontrer que f est continue

Plus en détail

Complétude et dimension d un espace vectoriel normé. Introduction et rappels. Espaces métriques. Jean-Baptiste Campesato 10 février 2010

Complétude et dimension d un espace vectoriel normé. Introduction et rappels. Espaces métriques. Jean-Baptiste Campesato 10 février 2010 Complétude et dimension d un espace vectoriel normé Jean-Baptiste Campesato 10 février 2010 Le but de cet article est de présenter les liens entre la dimension d un espace vectoriel normé et de sa possible

Plus en détail

Espaces compacts. Chapitre 3

Espaces compacts. Chapitre 3 Chapitre 3 Espaces compacts Définition 17. Soit X un espace topologique. 1. Un recouvrement de X est une famille (A i ) i I de parties de X telle que X = i I A i. Si de plus I est un ensemble fini, on

Plus en détail

2 Espaces vectoriel normés. 1 Normes. Exemple 1: K n muni de la norme N p Pour tout réel p 1 on note souvent N p la norme suivante définie sur K n

2 Espaces vectoriel normés. 1 Normes. Exemple 1: K n muni de la norme N p Pour tout réel p 1 on note souvent N p la norme suivante définie sur K n 2 Espaces vectoriel normés 1 Normes Si E est un espace vectoriel sur K = R ou C, on appelle norme sur E une application N de E dans [0, + [ telle que: 1 N(λx) = λ N(x), x E, λ K, 2 N(x + y) N(x) + N(y),

Plus en détail

Filière SMA Module de topologie

Filière SMA Module de topologie Université Mohammed V-Rabat Faculté des sciences Département de mathématiques Filière SMA Module de topologie Semestre 5 Hamza BOUJEMAA 1 Introduction Le contenu du module de topologie enseigné en semestre

Plus en détail

Théorème de Tychonov

Théorème de Tychonov Théorème de Tychonov Frédéric Bayart Nous allons dans cet article démontrer le théorème de Tychonov : Un produit d espaces compacts est compact. Ce théorème est assez facile à démontrer dans un cas particulier

Plus en détail

Topologie et Calcul Différentiel. Math360

Topologie et Calcul Différentiel. Math360 Université Pierre et Marie Curie Licence de Mathématiques Topologie et Calcul Différentiel Math360 par Jean SAINT RAYMOND 2 Version mise à jour le 28 Novembre 2005 Chapitre 1 : La droite réelle 1 LA DROITE

Plus en détail

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels 1 Normes sur un espace vectoriel Espaces de Banach Définition 1.1. (Norme) Soit V un R-espace vectoriel (abrégé R-ev dans la suite). Une norme est une application définie sur V à valeurs dans R +, notée

Plus en détail

TOPOLOGIE FAIBLE SYLVIE BENZONI

TOPOLOGIE FAIBLE SYLVIE BENZONI TOPOLOGIE FAIBLE SYLVIE BENZONI Rappelons qu une topologie sur un ensemble X est une famille de parties de X, appelées ouverts, vérifiant les trois propriétés suivantes : (1) l ensemble vide et l ensemble

Plus en détail

Chapitre 5 Espaces métriques connexes

Chapitre 5 Espaces métriques connexes Chapitre 5 Espaces métriques connexes Semaine 1 : Etude du paragraphe 1 et des sous-paragraphes 2.1 et 2.2. Faire les exercices d apprentissage 5.1 5.11 et les exercices d approfondissement 5.18 5.20.

Plus en détail

Chapitre 3: Espaces topologiques

Chapitre 3: Espaces topologiques Chapitre 3: Espaces topologiques I. Définition et exemples. Dans le chapitre précédent, nous avons défini les ouverts puis nous avons également caractérisé les points adhérents, les points intérieurs,

Plus en détail

4.1 L ensemble des réels est un corps ordonné

4.1 L ensemble des réels est un corps ordonné Table des matières 4 Propriétés de R 4. L ensemble des réels est un corps ordonné....................... 4.. Propriétés d ordre de R............................. 4..2 Valeur absolue..................................

Plus en détail

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL Université de Metz Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2010/11 1 Table des matières Chapitre

Plus en détail

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites Analyse fonctionnelle A. Leclaire ENS Cachan M1 Hadamard 2016-2017 TD9 Exercice 1 Opérateurs compacts et extraction de sous-suites Soient E,F deux espaces de Banach. On note B la boule unité fermée de

Plus en détail

TD de topologie et calcul différentiel Corrigé de la Feuille 3: Topologie des espaces métriques

TD de topologie et calcul différentiel Corrigé de la Feuille 3: Topologie des espaces métriques LM360 Mathématiques 2008 TD de topologie et calcul différentiel Corrigé de la Feuille 3: Topologie des espaces métriques Groupe de TD 5 Rappelons que la distance usuelle du plan R 2 est la distance euclidienne

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Ouverts et fermés Exercice 1 [ 113 ] [correction] Montrer que tout fermé peut s écrire comme intersection d une suite décroissante d ouverts.

Plus en détail

I ESPACES METRIQUES. d : E E R +

I ESPACES METRIQUES. d : E E R + I ESPACES METRIQUES 1. Espaces métriques 1.1 Définitions Soit E un ensemble non vide. On appelle distance sur E toute application vérifiant les propriétés suivantes : d : E E R + a) x, y E, d(x, y) = 0

Plus en détail

1 Opérateurs linéaires bornés

1 Opérateurs linéaires bornés Master Mathématiques Analyse spectrale Chapitre 2. Opérateurs bornés 1 Opérateurs linéaires bornés Soient E et F deux espaces de Banach. On appelle un opérateur borné de E dans F toute application linéaire

Plus en détail

Ministère de l Enseignement Supérieur et des recherches scientifiques Université Virtuelle de Tunis. Chapitre III : Fonction continue

Ministère de l Enseignement Supérieur et des recherches scientifiques Université Virtuelle de Tunis. Chapitre III : Fonction continue Ministère de l Enseignement Supérieur et des recherches scientifiques Université Virtuelle de Tunis Intitulé du chapitre : Chapitre III : Fonction continue Nom de l auteur : Houcine Chebli Lotfi Lassoued

Plus en détail

Résumé 11 : TOPOLOGIE

Résumé 11 : TOPOLOGIE http://mpbertholletwordpresscom Résumé 11 : TOPOLOGIE (E, ) est un espace vectoriel sur K = R ou C On note d la distance associée On note aussi B(x, r) et B(x, r) les boules ouvertes et fermées Quand nous

Plus en détail

Amphi 2: Suites - Compacité - Connexité

Amphi 2: Suites - Compacité - Connexité Amphi 2: Suites - Compacité - Connexité Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suites Soit (X, d) un espace métrique. Soit x X, et soit (x n ) n N une suite

Plus en détail

Cours 4. La connexité

Cours 4. La connexité Université de Provence Topologie 2 1 Espaces connexes Cours 4. La connexité Définition. Un espace topologique non vide X sera dit connexe si les seules parties de X à la fois ouvertes et fermées sont la

Plus en détail

Limite d une fonction en un point de R. Fonctions continues.

Limite d une fonction en un point de R. Fonctions continues. DOCUMENT 23 Limite d une fonction en un point de R. Fonctions continues. 1. Introduction et notations Considérons la fonction f : x sin x définie sur R. La valeur 0 n appartient pas à x l ensemble de définition

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

Convergence des suites monotones et applications.

Convergence des suites monotones et applications. Université Paris Est Marne-la-Vallée L Sciences Physiques 20-202 Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence

Plus en détail

Épreuve d analyse numérique

Épreuve d analyse numérique Épreuve d analyse numérique Projections convexes, décomposition, et algorithme de projections alternées Dans tout ce sujet, on se place dans un espace de Hilbert : H désigne un espace vectoriel réel complet

Plus en détail

Le Béaba des Espaces Normés et Algèbres de Banach

Le Béaba des Espaces Normés et Algèbres de Banach Le Béaba des Espaces Normés et Algèbres de Banach Alain Prouté Université Denis Diderot-Paris 7 Dernière révision de ce texte : 21 novembre 2012 Ce texte a été écrit pour le niveau Licence 2. Table des

Plus en détail

Corrigé TD 2 Tribus et mesures

Corrigé TD 2 Tribus et mesures Corrigé TD 2 Tribus et mesures Exercice 0. Soit f : E R + {+ } une fonction. Pour tout n 1 et tout i {0, 1,..., n2 n 1} on note A n = {x E : f(x) n}, B n,i = {x E : i2 n f(x) < (i + 1)2 n }, et pour un

Plus en détail

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point a de R. Opérations algébriques sur les ites. Continuité d une fonction en un point. Exemples. Pré-requis : Limites d une suite réelle

Plus en détail

2.1 Rappels sur la convergence dans les espaces topologiques. Lemme (Axiome du choix) Pour tout ensemble non vide X il existe une fonction :

2.1 Rappels sur la convergence dans les espaces topologiques. Lemme (Axiome du choix) Pour tout ensemble non vide X il existe une fonction : Chapitre 2 Opérateurs bornés 2.1 Rappels sur la convergence dans les espaces topologiques 2.1.1 Relations d ordre Soit une relation d ordre sur un ensemble X. Si Y X on définit les majorants (resp. minorants)

Plus en détail

CONCOURS 2014 DEUXIÈME ÉPREUVE DE MATHÉMATIQUES. Filière MP. (Durée de l épreuve : 4 heures) L usage d ordinateur ou de calculette est interdit.

CONCOURS 2014 DEUXIÈME ÉPREUVE DE MATHÉMATIQUES. Filière MP. (Durée de l épreuve : 4 heures) L usage d ordinateur ou de calculette est interdit. A 2014 MATH. II MP ÉCOLE DES PONTS PARISTECH, SUPAÉRO (ISAE), ENSTA PARISTECH, TÉLÉCOM PARISTECH, MINES PARISTECH, MINES DE SAINT-ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (FILIÈRE MP),

Plus en détail

Chapitre 3: Les espaces de Hilbert

Chapitre 3: Les espaces de Hilbert Université de Bourgogne Département de Mathématiques Licence de Mathématiques Compléments d analyse Chapitre 3: Les espaces de Hilbert 1. Produit scalaire et espaces de Hilbert Définition (Produit scalaire)

Plus en détail

COURS DE L3 : CALCUL DIFFÉRENTIEL. Laurent BRUNEAU Université de Cergy-Pontoise

COURS DE L3 : CALCUL DIFFÉRENTIEL. Laurent BRUNEAU Université de Cergy-Pontoise COURS DE L3 : CALCUL DIFFÉRENTIEL Laurent BRUNEAU Université de Cergy-Pontoise 2 Table des matières 1 Espaces vectoriels normés et espaces métriques 5 1.1 Notion d espace vectoriel normé.........................

Plus en détail

Espaces Métriques. par Alain Prouté Université Denis Diderot Paris 7. Exercices... 2

Espaces Métriques. par Alain Prouté Université Denis Diderot Paris 7. Exercices... 2 Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

métriques et introduction aux espaces topologiques

métriques et introduction aux espaces topologiques Chapitre 1 Généralités sur les espaces métriques et introduction aux espaces topologiques Les notations R, N, Z, Q, C sont comme d habitude. On utilisera les normes 1, 2, de R n. De même, on étudiera les

Plus en détail

Éléments de Topologie

Éléments de Topologie Chapitre 1 Éléments de Topologie 1.1 Rappel de quelques définitions Définition 1.1. Etant donné un ensemble Ω et un sous-ensemble T de P(Ω) [l ensemle de tous les sous-ensembles de Ω], on dit que T définit

Plus en détail

Chapitre 2: Le théorème de projection et ses applications

Chapitre 2: Le théorème de projection et ses applications Chapitre : Le théorème de projection et ses applications 1 décembre 007 1 Introduction En géométrie élémentaire, si P est un plan et x un point qui n appartient pas à P, il existe un unique point y P qui

Plus en détail

Analyse réelle. F. Golse

Analyse réelle. F. Golse Analyse réelle F. Golse ii Table des matières 1 Espaces de Banach 1 1.1 Rappels sur les espaces complets.................. 1 1.2 Rappels sur les espaces métriques compacts............ 3 1.3 Espaces de

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

Filière MP (groupes M/MP/MPI) (Épreuve commune aux ENS de Lyon et Cachan) Filières MP et PC (groupe I) (Épreuve commune aux ENS de Paris et Lyon)

Filière MP (groupes M/MP/MPI) (Épreuve commune aux ENS de Lyon et Cachan) Filières MP et PC (groupe I) (Épreuve commune aux ENS de Paris et Lyon) LC 1 SESSION 00 Filière MP (groupes M/MP/MPI) (Épreuve commune aux ENS de Lyon et Cachan) Filières MP et PC (groupe I) (Épreuve commune aux ENS de Paris et Lyon) MATHÉMATIQUES Corrigé de M. Quercia (michel.quercia@prepas.org)

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

AH - FONCTIONS AFFINES PAR INTERVALLES

AH - FONCTIONS AFFINES PAR INTERVALLES AH - FONCTIONS AFFINES PAR INTERVALLES Définition On appelle fonction affine par intervalles une fonction f définie et continue sur R pour laquelle il existe une subdivision a 1 < a 2 < < a n telle que

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Probabilités. Convergences des variables aléatoires. Julian Tugaut

Probabilités. Convergences des variables aléatoires. Julian Tugaut Convergences des variables aléatoires Télécom Saint-Étienne 2014 Sommaire 1 Convergence simple 2 3 4 Plan 1 Convergence simple 2 3 4 Définition Étudions pour l instant un exemple de topologie que vous

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Séance 2 : Exercices corrigés FONCTIONS CONVEXES

Séance 2 : Exercices corrigés FONCTIONS CONVEXES Mathématiques 2 1 Séance 2 : Exercices corrigés FONCTIONS CONVEXES Question 1 Un circuit électrique : exemple de système non linéaire Montrer que les lois de Kirchhoff (la somme des intensités arrivant

Plus en détail

Espaces topologiques compacts

Espaces topologiques compacts Espaces topologiques compacts 1 Introduction La compacité est une notion qui, tout comme la complètude, nous permettra de nous assurer de l existence de certains objets mathématiques. Elle permettra ainsi

Plus en détail

Corrigé de la feuille d exercices n o 1

Corrigé de la feuille d exercices n o 1 École Normale Supérieure Année 2012-2013 T.D. de Topologie, Analyse et Calcul différentiel Corrigé de la feuille d exercices n o 1 1. Espaces l p, 1 p

Plus en détail

Notes de cours d analyse Préparation au CAPES. Raphaël Danchin

Notes de cours d analyse Préparation au CAPES. Raphaël Danchin Notes de cours d analyse Préparation au CAPES Raphaël Danchin Année 2006 2007 2 3 Table des matières 1 Espaces vectoriels normés 5 1.1 Normes et distances.................................. 5 1.1.1 Définitions...................................

Plus en détail

Exercices corrigés d analyse fonctionnelle. Florent Nacry

Exercices corrigés d analyse fonctionnelle. Florent Nacry Exercices corrigés d analyse fonctionnelle Florent Nacry 15 mars 2017 Table des matières 1 Espaces topologiques 2 1.1 Axiome de Zermelo............................... 2 1.1.1 Relations d ordre............................

Plus en détail

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES 1.1. Propriétés de R On suppose connus N = {0, 1, 2, 3,...}, l anneau des entiers Z = {..., 2, 1, 0, 1, 2,...} et le corps des rationnels Q = { a a, b Z,

Plus en détail

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B EXERCICES 1 Soit E l ensemble des rationnels inférieurs à 2. 1 - Montrer que E admet une borne supérieure M dans R. 2 - Montrer que M = 2 (on pourra raisonner par l absurde). 3 - E est-il une partie fermée

Plus en détail

Chapitre 4. Applications

Chapitre 4. Applications Chapitre 4 Applications 1. Définitions et exemples Définition 4.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

École Nationale de la Statistique et de l Administration Économique. Cours d Analyse Fonctionnelle et Convexe. Philippe Bich

École Nationale de la Statistique et de l Administration Économique. Cours d Analyse Fonctionnelle et Convexe. Philippe Bich École Nationale de la Statistique et de l Administration Économique Cours d Analyse Fonctionnelle et Convexe Philippe Bich 2008-2009 Avant-propos Je tiens à remercier Hervé Moulin, Bernard Cornet, Georges

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

2. Espaces de Hilbert

2. Espaces de Hilbert 2. Espaces de Hilbert 2.1. Produits scalaires Définition 2.1.1. Soient X et Y deux espaces vectoriels complexes ; une application f : X Y est dite antilinéaire si, pour tous x, y X et tout λ C on a f(x

Plus en détail

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie SUITES NUMERIQUES 2 ème partie I- Limite d une suite a) Limite finie Définition Soit (U n ) une suite de nombres réels. On dit que la suite (U n ) admet pour limite, si tout intervalle ]a ;b[ contenant

Plus en détail

Une remarque sur les fonctions conditionnellement de type négatif

Une remarque sur les fonctions conditionnellement de type négatif Une remarque sur les fonctions conditionnellement de type négatif Vincent Lafforgue 8 février 2012 Résumé. Nous montrons qu un groupe localement compact n ayant pas la propriété (T) possède des fonctions

Plus en détail

Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05.

Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05. Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05. Liste des questions de cours 1 ) Donner les trois définitions de la notion de limite en un point : définition séquentielle,

Plus en détail

LEÇON N 15 : Construction du corps Q des rationnels. Nombres décimaux, développement décimal d un nombre rationnel.

LEÇON N 15 : Construction du corps Q des rationnels. Nombres décimaux, développement décimal d un nombre rationnel. LEÇON N 15 : Construction du corps Q des rationnels. Nombres décimaux, développement décimal d un nombre rationnel. Pré-requis : Relations d équivalence, ensembles quotient, PGCD, théorème de Gauss ; Un

Plus en détail

Fiche de cours 2 - Suites de réels.

Fiche de cours 2 - Suites de réels. Licence de Sciences et Technologies EM1 - Analyse Fiche de cours - Suites de réels. Généralités sur les suites. Définition : Une suite est une fonction u : N R, définie à partir dun certain rang au moins.

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Math IV, analyse (L2) Fiche 1

Math IV, analyse (L2) Fiche 1 UNIVERSITÉ CLAUDE BERNARD LYON Cours: O. Kravchenko Institut Camille Jordan Travaux dirigés: T. Altınel, T. Eisenkölbl & S. Richard Math IV, analyse (L) Fiche 5 février 8 Exercice (Ouvert / fermé, intérieur

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université de Nice SL2M 2009-10 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère l ensemble

Plus en détail

Suites et récurrence

Suites et récurrence Suites et récurrence 1 Suites arithmétiques et géométriques 1.1 Définitions * On dit que la suite (u n ) est arithmétique s il existe un réel r appelé raison tel que, pour tout n dans N, on ait : u n+1

Plus en détail

Chapitre 6 Comportement asymptotique et limites de fonctions Limites de suites

Chapitre 6 Comportement asymptotique et limites de fonctions Limites de suites Chapitre 6 Comportement asymptotique et ites de fonctions Limites de suites 1. Limite d une fonction en ou en. 1.1 Limite infinie d une fonction en ou en Cadre : Soit I=]a ; [, où a est un réel fixé (NB

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue 1 Nécessité de l intégrale de Lebesgue Une fonction f : [a,b] R est dite intégrable au sens de Riemann si les sommes de Riemann N 1 i=0 f(ξ i )(x i+1 x i ), a = x 0 x 1 x 2 x N =

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Chapitre 12 Limites et continuité de fonctions Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Limites et continuité de fonctions 1 / 53 Notations : On note, sauf

Plus en détail

BASES D ANALYSE FONCTIONNELLE

BASES D ANALYSE FONCTIONNELLE BASES D ANALYSE FONCTIONNELLE Jean-Yves CHEMIN Laboratoire J.-L. Lions, Case 187 Université Pierre et Marie CURIE, 4 Place Jussieu 75230 Paris Cedex 05, France Télécopie : 01 44 27 72 00, adresse électronique

Plus en détail

Limite à l infini. Branches infinies

Limite à l infini. Branches infinies DOCUMENT 25 Limite à l infini. Branches infinies 1. Introduction et notations Considérons les trois fonctons réelles f, g et h définies par : f() = + 1 + e, g() = sin, h() = 1/ 2 et donnons de grandes

Plus en détail

2.2.1 Normes sur l espace des fonctions continues sur un intervalle [a,b]

2.2.1 Normes sur l espace des fonctions continues sur un intervalle [a,b] :On pose pour toute application bornée f définie d un ensemble X dans un espace vectoriel normé E : N (f ou f = sup f X Alors N est une norme dite norme de la convergence uniforme sur B(X, E des applications

Plus en détail

Le monde cylindrique de Pacman

Le monde cylindrique de Pacman Le monde cylindrique de Pacman blogdemaths.wordpress.com Dans la toute première version du jeu vidéo Pacman, lorsque le personnage atteignait le bord gauche de l écran, il était téléporté sur le bord droit.

Plus en détail

Résumé de cours: Espaces vectoriels normés

Résumé de cours: Espaces vectoriels normés CPGE My Youssef, Rabat «Å ««É ««É ««««º««È ««ö ««««É ««Å ««««««Â«Å ««««««ã : 18 novembre 2009 Blague du jour Bientôt vous serez ingenieur, peut être ingeénieur informaticien. Vérifier sur la liste cidessous

Plus en détail

DENOMBRABILITE. P. Pansu 14 mai 2005

DENOMBRABILITE. P. Pansu 14 mai 2005 DENOMBRABILITE P. Pansu 14 mai 2005 1 Motivation Il y a t il plus de réels dans ]1, + [ ou dans l intervalle ]0, 1[? Oui, bien sûr. Des droites passant par l origine dans le plan, il y en a-t-il autant

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

COURS 6 : La droite réelle (suite)

COURS 6 : La droite réelle (suite) COURS 6 : La droite réelle (suite) Définition 0.1. Soit X une partie de R. On dit que X est dense dans R si tout intervalle ouvert non vide I de R rencontre X (c est-à-dire contient au moins un élément

Plus en détail

DECALAGES ET SYSTEMES DYNAMIQUES ASSOCIES AUX SUITES. Nicolas Chevallier 2011

DECALAGES ET SYSTEMES DYNAMIQUES ASSOCIES AUX SUITES. Nicolas Chevallier 2011 DECALAGES ET SYSTEMES DYAMIQUES ASSOCIES AUX SUITES 1 Décalage 1.1 Généralités icolas Chevallier 2011 Définition 1 Soit A un ensemble fini. 1. L application S u : A A définie par S u ω n = ω n+1 pour tout

Plus en détail

Topologie pour la Licence

Topologie pour la Licence Topologie pour la Licence Cours et exercices Clemens Berger 1 24 Janvier 2004 1 Université de Nice-Sophia Antipolis, Laboratoire J.-A. Dieudonné, 06108 Nice Cedex 2 Table des matières Préface 5 1 Espaces

Plus en détail

Chapitre 2. Espaces métriques. 2.1 Distance

Chapitre 2. Espaces métriques. 2.1 Distance Chapitre 2 Espaces métriques 2.1 Distance On dispose sur R de la distance usuelle d : R R R + (x, y) d(x, y) = x y On l utilise pour définir la convergence des suites et la continuité des fonctions. Le

Plus en détail

Des démonstrations en analyse

Des démonstrations en analyse Préparation au CAPES (IUFM/ULP) Nicole Bopp Strasbourg, novembre 007 Des démonstrations en analyse 1. Caractérisations équivalentes du fait que R est complet L une des trois propriétés ci-dessous est admise

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Analyse réelle et complexe. F. Golse, Y. Laszlo, F. Pacard et C. Viterbo

Analyse réelle et complexe. F. Golse, Y. Laszlo, F. Pacard et C. Viterbo Analyse réelle et complexe F. Golse, Y. Laszlo, F. Pacard et C. Viterbo 3 Avertissement Ce cours reprend le cours donné en 2010 par François Golse, Yves Laszlo et Claude Viterbo. Le parti pris a été de

Plus en détail

Exo7. Espaces complets. Théorème de Baire. Espaces métriques complets, espaces de Banach. Enoncés : M. Quéffelec, V. Mayer Corrections : A.

Exo7. Espaces complets. Théorème de Baire. Espaces métriques complets, espaces de Banach. Enoncés : M. Quéffelec, V. Mayer Corrections : A. Enoncés : M. Quéffelec, V. Mayer Corrections : A. Bodin Exo7 Espaces complets Théorème de Baire Exercice 1 À l aide du théorème de Baire, montrer qu un fermé dénombrable non vide X de R a au moins un point

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

ESPACES MÉTRIQUES ET CONVERGENCE DE GROMOV-HAUSDORFF

ESPACES MÉTRIQUES ET CONVERGENCE DE GROMOV-HAUSDORFF Ilaria Mondello ilaria.mondello@u-pec.fr ESPACES MÉTRIQUES ET CONVERGENCE DE GROMOV-HAUSDORFF 1. Espaces métriques : définitions et exemples Dénition 1.1. Soit X un ensemble quelconque. Une fonction d

Plus en détail

Cours de Topologie. Master 1. Année 2010/2011. Richard Zekri.

Cours de Topologie. Master 1. Année 2010/2011. Richard Zekri. Cours de Topologie. Master 1. Année 2010/2011. Richard Zekri. 9 septembre 2010 2 Table des matières 1 Rappels. 5 1.1 Topologies, ouverts, et voisinages................................ 5 1.2 Axiomes de

Plus en détail

Suites de nombres réels, première année de premier cycle universitaire

Suites de nombres réels, première année de premier cycle universitaire Suites de nombres réels, première année de premier cycle universitaire F.Gaudon 10 août 2005 Table des matières 1 Définitions 2 2 Opérations sur les suites convergentes ou divergentes 3 3 Suites extraites

Plus en détail

La proposition suivante donne des propriétés fondamentales de stabilité des opérateurs compacts.

La proposition suivante donne des propriétés fondamentales de stabilité des opérateurs compacts. Chapitre 5 Opérateurs compacts 5.1 Applications linéaires compactes Définition 5.1.1 Soient E et F deux espaces de Banach; une application linéaire continue T L(E, F) est dite compacte si l image T(B E

Plus en détail

TOPOLOGIE - SÉRIE 7. (0, x) si x [ 1, 0] (( 1) a x, x) si x [0, 1]

TOPOLOGIE - SÉRIE 7. (0, x) si x [ 1, 0] (( 1) a x, x) si x [0, 1] TOPOLOGIE - SÉRIE 7 Remarque. Voici une description très utile pour les ouvert de la topologie quotient. Si X est un espace topologique et est une relation d équivalence sur X, alors pour U ouvert dans

Plus en détail

Liste d exercices IV

Liste d exercices IV Université de Paris-Sud Orsay Année universitaire 2012-2013 S2, M1 Géométrie Liste d exercices IV (I) Exemples des variétés différentielles 1. Variété produit : Soient M et N deux variétés différentielles

Plus en détail

Chapitre V. Chapitre V : Bases et dimension

Chapitre V. Chapitre V : Bases et dimension Chapitre V Chapitre V : Bases et dimension Introduction On avait vu au Chapitre IV qu une base pour un espace vectoriel V est une partie à la fois libre et génératrice de V. Les bases constituent un outils

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis I Limites Continuités Exercice 1 : Soit ] [ la fonction définie par : Déterminer les

Plus en détail

Corrigé du Concours Blanc

Corrigé du Concours Blanc Corrigé du Concours Blanc Exercice : On considère la fonction f définie par : f(x = x + 2 2 ln(e x + et on note (C la courbe représentative de f dans un repère orthonorrnal.. Etude de la fonction f. a.

Plus en détail

5.3 Espaces vectoriels normés de dimensions finies

5.3 Espaces vectoriels normés de dimensions finies Démonstration Tout à fait similaire à celle effectuée pour les applications linéaires, sauf en ce qui concerne (v) (i) (car il n y a plus l intermédiaire (vi)). Mais on a, si (a 1,a 2 ) E 1 E 2 u( 1, 2

Plus en détail