PRODUITS DE TAUX D INTERET Modèles de marché ENSAE - DEA MASE Université Paris IX Dauphine- Séance 7. Moez MRAD. Société Générale - R&D

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "PRODUITS DE TAUX D INTERET Modèles de marché ENSAE - DEA MASE Université Paris IX Dauphine- Séance 7. Moez MRAD. Société Générale - R&D"

Transcription

1 PRODUIS DE AUX D IERE oèles e marché ESAE - DEA ASE Unversé Pars IX Dauphne- Séance 7 oez RAD Socéé Générale - R&D oez RAD / SG R&D Fxe Income 5//5

2 PA oèle bor Forwar ognormal G ou F. Défnon u moèle. Passage e G à HJ.3 Prcng es caps e floors n avance e n arrears ans le careg.4 Dynamques es ffrérens lbors forwar Calbraon u moèle G. Calbraon es volalés. Calbraon es corrélaons 3 Smulaon one Carlo un moèle G oez RAD / SG R&D Fxe Income 5//5

3 3 Inroucon : oèles e arché e bor are oel ou bor Forwar ognormal es un moèle consru e elle façon à coller auomaquemen aux prx e caps européens. e Swap are oel ou Swap Forwar ognormal es un moèle consru e elle façon à coller auomaquemen aux prx e swapons européennes. Remarques : Ces eux marchés ou moèles son ncompables. D où la nécessé e fare aenon lors u hege e cerans prous exoques. On essae quan même e fare coexser les eux moèles quan on les calbre. oez RAD / SG R&D Fxe Income 5//5

4 4 oèle e marché G ou F Références : Damano rgo & Fabo ercuro Ineres Rae oels heory an Pracce Sprnger arco Avellanea & Peer aurence uanave oellng of Dervave Secures CHAPA & HA/CRC oez RAD / SG R&D Fxe Income 5//5

5 oez RAD / SG R&D Fxe Income 5//5 5 3 are usela & are Ruows arngale ehos n fnancal oellng Sprnger 997. Défnon u moèle e marché G u : Abour une manère rgoureuse une formule fermée pour le prx un cap/floor. a ynamque u aux bor es onnée par : Γ Γ Γ w w Pour ou on pose : Γ

6 6 Dans le care G es supposée éermnse G HJ.... Passage e G à HJ * On spose une courbe e prx ZC nale On suppose que nore horzon es un mulple e la péroe u bor On ravalle onc avec une gamme scrèe... On connaî égalemen les volalés es lbors e onc leurs ynamques On se onne égalemen Γ oez RAD / SG R&D Fxe Income 5//5

7 oez RAD / SG R&D Fxe Income 5//5 7 a ynamque u lbor ermnal es onnée par : * * w On connaî onc l es égal à ou nsan à :. s s ε Comme on connaî égalemen Γ on peu rouver la volalé Γ : Γ Γ

8 oez RAD / SG R&D Fxe Income 5//5 8 On répèe l opéraon pour Prncng es caps e floors ans le care G a valeur en un caple échéance sur eurbor 6 mos fxng en - es onnée par :. s r F e E C s Ce qu onne [ ] F E C Fnalemen on oben : [ ] C Avec - e / ln u u u u u u

9 9 Exercce Ausemen e convexé n arrears ans G : Calcul u Prx un caple n arrears. es prx es caps e floors son auo-calés par rappor au marché : oèle e lac pour les lbor forwar 976 a ynamque u aux bor es onnée par : w es une consane srcemen posve es la probablé e marché oez RAD / SG R&D Fxe Income 5//5

10 oez RAD / SG R&D Fxe Income 5//5 e prx un caple es alors onné par : [ ] [ ] F E C Avec - e / ln On vo onc que pour passer une formule à une aure l suff e prenre u u

11 oez RAD / SG R&D Fxe Income 5//5.4 Dynamques e fférens aux lbor forwar So <> - Pour < < e la ynamque es onnée par :.... w ρ - Pour e la ynamque es onnée par : w - Pour << e la ynamque es onnée par :.... w ρ

12 Calbraon u moèle G Pluseurs formes e volalés son possbles ou on éé ulsées : - Volalés saonnares les plus ulsées : foncon - Volalés non saonnares: foncon Parm les volalés saonnares on sngue: - Volalés séparables: φ ψ Exemple : cse ou cse exp λ - Volalés non-séparables Exp vol e Rebonao: a b c b Ψ : [ a ] e c oez RAD / SG R&D Fxe Income 5//5

13 3. Calbraon e la volalé e Rebonao On ulse le fa que : h ² Ψ a b c ² E on mnmse le crère suvan n arche h Fnalemen la volalé G ulsée es : arché avec φ ² / Ψ φ Ψ a* b* c* * a* b* c* *² oez RAD / SG R&D Fxe Income 5//5

14 oez RAD / SG R&D Fxe Income 5//5 4. Calbraon es corrélaons : On ulse les volalés es swapons eurpéennes. On peu ouours écrre un aux swap comme combnason lnéare e lbor : w S

15 5 So on approche w en w Rebonao. So on ulse es approxmaons plus fnes Hull e Whe D Aspremon. On a fnalemen : h Vol xs w w ρ swapon On mnmsan les écars quaraques enre les volalés e marché e les volalés héorques on esme les corrélaons. Remarques : On peu chercher ces corrélaons en ulsan : - So es expressons paramérques u ype exponenel comme la forme e Rebonao ρ exp β ou les formes plus fnes e Schoenmaers. - So es expressons rgonomérques cf rgo & ercuro oez RAD / SG R&D Fxe Income 5//5

16 oez RAD / SG R&D Fxe Income 5//5 6 3 Smulaon one Carlo un moèle G De plus en plus e prous exoques e aux son prcés par C Exp : CRA Swapons ermua Afn e prcer ces prous on o se mere sous une seul probablé : Exemple : la proba forwar assocés à la ernère mauré u prou on peu auss se mere sous la probablé e roll En gelan le rf enre aes e scrésaon e on a ε ρ ~ ~ ~ ~ exp

17 7 Avanages e nconvénens e G Il es auomaquemen calbré aux prx e marché es caps. Dans le cas ou les volalés son séparables on es ans un care maroven Possblé e résoure les EDP e prcng u mons en réusan la menson e raval Dans un care général volalés e Rebonao par exemple le care e raval n es plus maroven. as possblé ulser es echnques one Carlo e reprou pas le smle e marché es caples. e semane prochane oez RAD / SG R&D Fxe Income 5//5

MODELES DE LA COURBE DES TAUX Université d Evry Séance 9. Moez Mrad / Philippe Priaulet

MODELES DE LA COURBE DES TAUX Université d Evry Séance 9. Moez Mrad / Philippe Priaulet ODEES DE A COURBE DES AUX Unversé Evry Séance 9 oez ra / Phlppe Praule PA oèle bor Forwar ognormal BG ou F. Défnon u moèle. Passage e BG à HJ.3 Prcng es caps e floors ans le carebg.4 Dynamques es ffrérens

Plus en détail

MODELES DE LA COURBE DES TAUX Université d Evry Séance 8. Moez Mrad / Philippe Priaulet

MODELES DE LA COURBE DES TAUX Université d Evry Séance 8. Moez Mrad / Philippe Priaulet MODEES DE A COURE DES AUX Unveré Evry Séance 8 Moez Mra / Phlppe Prale PA Rappel r le moèle Heah-Jarrow-Moron Changemen e nmérare. Généralé. Mere orwar 3 Evalaon e coverre e pro e ax 3. Opon r n zéro-copon

Plus en détail

PRODUITS DE TAUX D INTERET Pricing et couverture de produits de taux ENSAE - DEA MASE Université Paris IX Dauphine- Séance 6.

PRODUITS DE TAUX D INTERET Pricing et couverture de produits de taux ENSAE - DEA MASE Université Paris IX Dauphine- Séance 6. PRODUIS D AU D IR Prcng e coverre e pro e ax SA - DA MAS Unveré Par I Daphne- Séance 6 Moez MRAD SG - R&D AU/CRDI Moez MRAD / Socéé Générale R&D AU/CRDI 8//5 PLA Rappel r le moèle Heah-Jarrow-Moron Changemen

Plus en détail

TD 2 Cinétique chimique

TD 2 Cinétique chimique TD Cnéque chmque Exercce Oxydaon de l ammonac L ammonac peu s oxyder ; l équaon sœchomérque de la réacon peu s écrre : 4 NH + 5 O NO + 6 H O S a un momen donné, l ammonac dsparaî à la vesse de, mol.l -.s

Plus en détail

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique,

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique, Plan Défnon, Régresson Lnéare Mulple Massh-Réza Amn Technques d Analyse de Données e Théore de l Informaon Maser M IAD Parcours Recherche amn@polea.lp6.fr Hsorque, Inerpréaon géomérque de la soluon, Len

Plus en détail

Résumé. n Nous avons vu dans le cours précédent l estimation paramétrique pour la classification et régression pour des variables à une dimension.

Résumé. n Nous avons vu dans le cours précédent l estimation paramétrique pour la classification et régression pour des variables à une dimension. Résué Données ulvarables CHAPIRE 5: Méhoes ulvarables n ous avons vu ans le cours précéen l esaon paraérque pour la classfcaon e régresson pour es varables à une enson. n Dans ce cours nous allons vor

Plus en détail

Chapitre 1.1a Les oscillations

Chapitre 1.1a Les oscillations Chapre 1.1a Les oscllaons La cnémaque La cnémaque es l éue u mouvemen un obje en foncon u emps. Pour ce fare, nous avons recours au conceps e poson, vesse e accéléraon : Poson : ( uné : m Vesse : v ( uné

Plus en détail

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur :

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur : Formulare d élecrcé Pons de cours Condensaeur Explcaons ou ulsaons Un condensaeur es composé de deux armaures méallques séparé par un solan appelé délecrque. S une armaure se charge posvemen, l aure es

Plus en détail

Utilisation des fonctions B-splines pour modéliser la survie relative non proportionnelle

Utilisation des fonctions B-splines pour modéliser la survie relative non proportionnelle Ulsaon des foncons -splnes pour modélser la surve relave non proporonnelle Roch Gorg Laboraore d Ensegnemen e de Recherche sur le Traemen de l Informaon Médcale Faculé de médecne de Marselle - Unversé

Plus en détail

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les L essenel du cours proposé par Mahmoud Gazzah Le condensaeur, le dpôle Descrpon sommare d un condensaeur Défnon e symbole : Un condensaeur es consué de deux armaures méallques séparées par un solan appelé

Plus en détail

t = effectif de la partie 100 effectif total

t = effectif de la partie 100 effectif total Chapre I : Pourcenages Exra du programme : - Coecen mulplca assocé à un pourcenage - Iéraon de pourcenages - Analyse des varaons de pourcenages - Comparason de pourcenage - Approxmaon lnéare dans le cas

Plus en détail

Chapitre 1.14 L intégrale en cinématique

Chapitre 1.14 L intégrale en cinématique Chapre.4 L négrale en cnémaque L négrale En mahémaque, on éfn l négrale une foncon f ( el que F( f ( e '( ( F F où F ( es la foncon qu onne la valeur e l are sous la courbe e la foncon f ( ans l nervalle

Plus en détail

APPRENTISSAGE PAR COMBINAISON DE CLASSIFIEURS ELEMENTAIRES («dopage» ou «Boosting»)

APPRENTISSAGE PAR COMBINAISON DE CLASSIFIEURS ELEMENTAIRES («dopage» ou «Boosting») APPRENISSAGE PAR COMBINAISON DE CLASSIFIEURS ELEMENAIRES («dopage» ou «Boosng») Pr. Faben Mouarde Cenre de Roboque (CAOR) MINES Pars ech (ENSMP) PSL Research Unversy Faben.Mouarde@mnes-parsech.fr hp://people.mnes-parsech.fr/faben.mouarde

Plus en détail

Interaction d un système quantique à deux états avec des ondes électromagnétiques

Interaction d un système quantique à deux états avec des ondes électromagnétiques Ineracon d un sysème quanque à deux éas avec des ondes élecromagnéques Exemple de l ammonac NH 3 - Influence d un champ élecrque saque sur les nveaux d énerge. - Influence d un champ élecrque nhomogène

Plus en détail

Décomposition d une fraction rationnelle en éléments simples

Décomposition d une fraction rationnelle en éléments simples Décomposon d une fracon raonnelle en élémens smples I Premère éape Dvson eucldenne de polynômes On rappelle que procéder à la dvson eucldenne d un polynôme A par un polynôme B non nul, c es écrre A BQ

Plus en détail

2 LES DIPOLES PASSIFS ELEMENTAIRES

2 LES DIPOLES PASSIFS ELEMENTAIRES ES DPOES PASSFS EEMENTAES. nroducon es composans ulsés en élecronque présenen des bornes élecrques ou pôles permean leur connexon dans un réseau. On dsngue : - les dpôles ( pôles) comme les réssances,

Plus en détail

Nous considérons une petite portion de paroi de surface S. La pression est le quotient de l intensité moyenne de cette force par la surface S :

Nous considérons une petite portion de paroi de surface S. La pression est le quotient de l intensité moyenne de cette force par la surface S : Comlémen VI. age /v Presson cnéque Nous allons rerendre le calcul de la resson cnéque en consdéran un modèle mons smlse que celu du chare VI. C es-à-dre en ne smlfan as l agaon moléculare. Nous commençons

Plus en détail

Volatilité locale et la formule de Dupire

Volatilité locale et la formule de Dupire Chapre 4 Volalé locale e la formule de Dupre Modèle à volalé locale. Modèle CEV. Valorsaon d opons dans les modèles à volalé locale. EDP e formule de Dupre (en ermes des prx d opons). Formule de Dupre

Plus en détail

DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE

DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE.- Hamlonen de spn On consdère une parcule de spn placée dans un champ magnéque saque B Bu e un champ ournan à la vesse angulare

Plus en détail

Régimes transitoires

Régimes transitoires ÉLECTOCINÉTIQUE chapre 3 égmes ransores En régme connu, les composanes capacves e nducves d un crcu son analogues respecvemen à un crcu ouver e à un cour-crcu. Elles n on donc aucun nérê. Cependan, s un

Plus en détail

CHAPITRE 4 HACHEURS. Convertisseur Continu (DC) - Continu (DC) Figure 4-1. Schéma de principe du hacheur. R 1. I d. U d

CHAPITRE 4 HACHEURS. Convertisseur Continu (DC) - Continu (DC) Figure 4-1. Schéma de principe du hacheur. R 1. I d. U d nversé e Savoe Lcence EEA Moue 6 Énerge e conversseurs 'énerge CHAPRE 4 HACHERS 1. nroucon - nérê es hacheurs Les hacheurs son es conversseurs saques connu-connu permean e fabrquer une source e enson connue

Plus en détail

Jeux stratégiques de marché dans le modèle à générations imbriquées.

Jeux stratégiques de marché dans le modèle à générations imbriquées. Jeux sraégques de marché dans le modèle à généraons mbrquées Francs de MOROGUES GREQAM (UMR CRS 6579), rue de la Charé 300 Marselle Tél: 0494077 e-mal: dmorogue@ehesscnrs-mrsfr Documen de raval du GREQAM

Plus en détail

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE LECON & : LES CRCS A CORAN ALERNAF MONOPHASE LES CRCS A CORAN ALERNAF MONOPHASE - Dfférens formes de courans (e de enson Dans l'ensemble des formes de courans, nous pouvons effecuer une premère paron :

Plus en détail

E3 Régimes transitoires

E3 Régimes transitoires I Défnons E3 égmes ransores I.1 égme lbre, régme ransore e régme conn Défnon : On appelle réponse lbre o régme lbre d n crc, l évolon de cel-c en l absence de o généraer. e régme d crc es d conn o saonnare)

Plus en détail

Etude d un onduleur de tension autonome monophasé :

Etude d un onduleur de tension autonome monophasé : L ONDULUR AUONOM de d n ondler de enson aonome monophasé Défnon Un ondler es n conversser saqe conn alernaf. L ondler es d aonome qand l mpose sa propre fréqence à la charge (ce q es dfféren de l ondler

Plus en détail

Estimation économétrique des fonctions d importation de produits agricoles de l Afrique de L Ouest

Estimation économétrique des fonctions d importation de produits agricoles de l Afrique de L Ouest Esmaon économérque des foncons d mporaon de produs agrcoles de l Afrque de L Oues Par Mourad Ayouz CIRAD ECOPOL CNRS CIRED UMR 8568 Ths repor was prepared by Mourad Ayouz as a background paper o he Susanably

Plus en détail

Série d exercices N 5

Série d exercices N 5 GENIE ELECTRIQUE Sére d exercces N 5 Prof : Mr Raouaf Abdallah PARTIE N 1 : «A.L.I en mode lnéare» «Amplfcaeur Lnéare Inégré» Nveau : 4 ème Sc.Technque Mode lnéare :... L ALI es déal donc = = e =... Exercce

Plus en détail

Amplificateurs différentiels et opérationnels

Amplificateurs différentiels et opérationnels UNIVESITE MOHAMMED V Faculé des Scences, aba Amplfcaeurs dfférenels e opéraonnels Chapre 3 1 Amplfcaeur dfférenel L amplfcaeur dfférenel, pare à couplage par les émeeurs (BJT) (pare à couplage par les

Plus en détail

Pondérations longitudinales et transversales dans les échantillons rotatifs * * * Application à l'enquête SILC

Pondérations longitudinales et transversales dans les échantillons rotatifs * * * Application à l'enquête SILC Pondéraons longudnales e ransversales dans les échanllons roafs * * * Applcaon à l'enquêe SILC Pascal ARDILLY, INSEE PLAN / Vson longudnale e vson ransversale 2/ Un oul : le parage des pods 3/ La pondéraon

Plus en détail

Courant continu et courants alternatifs

Courant continu et courants alternatifs Classe : 2ME BEP Méers de l élecroechnque Couran connu e couran alernaf Leu : Salle de cours & salle de mesures Objecf Dfférencer les caracérsques d un couran connu e d un couran alernaf,. Savors : S.2

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. avec Eviews. Semestre d été Rosario Monter Internef - bureau 613

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. avec Eviews. Semestre d été Rosario Monter Internef - bureau 613 Ecole des HEC Unversé de Lausanne FINANCE EMPIIQUE avec Evews Semesre d éé 6 osaro Moner Inernef - bureau 613 osaro.moner@unl.ch MODELE DE MACHE E EGESSION LINEAIE Basé sur les noes FESlde_LM.pdf 1, 8

Plus en détail

Lycée Galilée Gennevilliers. chap. 2. Jallu Laurent

Lycée Galilée Gennevilliers. chap. 2. Jallu Laurent ycée Gallée Gennevllers e dpôle, sére chap. Jallauren I. e solénoïde... résenaon... uo nducon... 3 Tenson aux bornes du solénoïde... 3 Symbole... 3 II. e dpôle, sére... 4 échelon de enson... 4 Inerpréaon

Plus en détail

Hacheur série. 1. Présentation. 2. Principe de fonctionnement. Le hacheur est un convertisseur statique continu-continu. Symbole synoptique :

Hacheur série. 1. Présentation. 2. Principe de fonctionnement. Le hacheur est un convertisseur statique continu-continu. Symbole synoptique : Termnale STI hacheur sére Hacheur sére. Présenaon e hacheur es un conersseur saque connu-connu Symbole synopque : Tenson connue fxe Tenson connue réglable Ou plus exacemen : enson oujours de même sgne,

Plus en détail

Valeur économique de dettes subordonnées pour des sociétés non-vie

Valeur économique de dettes subordonnées pour des sociétés non-vie Valeur économque de dees subordonnées our des socéés non-ve - Franços Bonnn (Hram Fnance) - Frédérc Planche (Unversé Lyon, Laboraore SAF) - Monassar Tammar (Prm Ac) - Amédée de Clermon-Tonnerre (Cohen

Plus en détail

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C...

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C... égme ransore Table des maères 1 Crc C sére soms à n échelon de enson 2 1.1 chelon de enson............................. 2 1.2 Charge d n condensaer......................... 2 1.2.1 Condons nales.........................

Plus en détail

BILAN EN ELECTRICITE : RC, RL ET RLC

BILAN EN ELECTRICITE : RC, RL ET RLC IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux

Plus en détail

PONDÉRATIONS LONGITUDINALES

PONDÉRATIONS LONGITUDINALES PONDÉRATIONS LONGITUDINALES DANS L ENQUÊTE EMPLOI DE L INSEE Pascal Ardlly Insee, Déparemen des méhodes sasques Conexe e objecfs Source Enquêe Emplo rmesrelle en France Objecf Sur une pérode donnée, esmer

Plus en détail

Irréversibilité de l Investissement, Sous-utilisation des Capacités de Production et Croissance de Long Terme

Irréversibilité de l Investissement, Sous-utilisation des Capacités de Production et Croissance de Long Terme Irréversblé de l Invesssemen, Sous-ulsaon des Capacés de Producon e Crossance de Long Terme Séphane Jame EUREQua, Unversé Pars I Résumé Ce arcle propose une rénerpréaon dans le cadre d un modèle d équlbre

Plus en détail

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris Geson de producon cour erme en conee nceran EDF R&D École enrale Pars Geson de producon à cour erme Encadrans ndusrels : Gérald Vgnal - Jérôme Quenu Encadran académque : Yves Dallery-Mchel Mnou Snda Ben

Plus en détail

TD2 Ener3 Exercices : hacheurs

TD2 Ener3 Exercices : hacheurs Exercces : hacheurs 1 217-218 Hacheur quare quadrans Une machne à couran connu es almenée par le conversseur don le schéma es représené cdessous. Les ordres d'ouverures e de fermeures des nerrupeurs commandés

Plus en détail

Analyse des composantes principales : cas d un échantillon des prestataires logistiques de la région du grand Casablanca

Analyse des composantes principales : cas d un échantillon des prestataires logistiques de la région du grand Casablanca Inernaonal Journal of Innovaon and Scenfc Research ISSN 35-804 Vol No Nov 04, 37-378 04 Innovave Sace of Scenfc Research Journals h://wwwjsrssr-journalsorg/ Analyse des comosanes rncales : cas d un échanllon

Plus en détail

Chapitre II- Le marché financier à l avenir incertain

Chapitre II- Le marché financier à l avenir incertain Chapre II- Le marché nancer à l avenr nceran Les agens économques qu achèen des res son movés par une espérance de renablé supéreure à celle que peu leur procura l épargne de sans rsque du marché monéare.

Plus en détail

Combiner des apprenants: le boosting

Combiner des apprenants: le boosting Types d expers Combner des apprenans: le boosng A. Cornuéjols IAA (basé sur Rob Schapre s IJCAI 99 alk)! Un seul exper sur l ensemble de X! Un exper par sous-régons de X (e.g. arbres de décsons)! Pluseurs

Plus en détail

Modèles d analyse des biographies en temps discret Exemple d utilisation

Modèles d analyse des biographies en temps discret Exemple d utilisation Modèles d analyse des bographes en emps dscre Exemple d ulsaon Jean-Mare Le Goff Cenre Lnes Pôle Naonal de recherche Lves Unversé de Lausanne Plan Deux ypes de données dscrèes Modèles à emps dscre Modèle

Plus en détail

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques Revue es Scences e e la Technologe - RST- Volume 3 1 / janver 2012 Opmsaon u plan e geson u sock une enreprse e srbuon es prous pharmaceuques D. Bellala, M.S. oune, A. Abessme Laboraore 'Auomaque e e Proucque

Plus en détail

La régression logistique PLS : Application à la détection de défaillance d entreprises

La régression logistique PLS : Application à la détection de défaillance d entreprises Busness Scool W O R K I N G P A P E R S E R I E S Workng Paper 04-38 La régresson logsque PLS : Applcaon à la déecon de défallance d enreprses BEN JABEUR Sam p://.pag.fr/fr/accuel/la-recerce/publcaons-wp.ml

Plus en détail

PROJECTION CARTOGRAPHIQUE CONIQUE CONFORME DE LAMBERT

PROJECTION CARTOGRAPHIQUE CONIQUE CONFORME DE LAMBERT SERVICE DE GEODESIE ET NIVELLEMENT NOTES TECHNIQUES NT/G 71 PROJECTION CARTOGRAPHIQUE CONIQUE CONFORME DE LAMBERT S G N 2 7 8 1 0 Algorithmes 1 ère édition Janvier 1995 I N S T I T U T G E O G R A P H

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

L EXTRACTION DE LA TENDANCE CYCLE I. LES TECHNIQUES DE DECOMPOSITION ENTRE TENDANCE ET CYCLE

L EXTRACTION DE LA TENDANCE CYCLE I. LES TECHNIQUES DE DECOMPOSITION ENTRE TENDANCE ET CYCLE L ETRACTION DE LA TENDANCE CYCLE Préparé par : Mr ZOHRA AASSIF Le présen raval a pour bu de présener les echnques d exracon de la endance cycle. Les echnques son dverses e mulples, on se concenrera c sur

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Laboratoire génie électrique 3Stech Série d exercices N 8 Moteur pas à pas Page 1 /10

Laboratoire génie électrique 3Stech Série d exercices N 8 Moteur pas à pas Page 1 /10 Laboraore géne élecrque ech ére d exercces Moeur pas à pas Page /0 Exercce Un moeur pas à pas à aman permanen ayan les caracérsques suvanes : phases au saor, deux pôles au roor, sa commuaon es bdreconnelle

Plus en détail

ANNEXE 1 - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS

ANNEXE 1 - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS ANNEXE - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS L'hypohèse d'une réparon des événemens démographques unforme sur l'année gnore la sasonnalé des décès e des nassances qu peu êre déermnée ans

Plus en détail

VITESSE DE RÉACTION I. INTRODUCTION II. VITESSE DE RÉACTION POUR UN SYSTÈME FERMÉ

VITESSE DE RÉACTION I. INTRODUCTION II. VITESSE DE RÉACTION POUR UN SYSTÈME FERMÉ VITESSE DE ÉCTION I. INTODUCTION I. Équlbre e évoluon vers l équlbre On consdère une réacon chmque noée de façon générale : ν + ν +... + ν ν ' ' + ν ' ' +... + ν ' '. P P On peu la noer égalemen : ν +

Plus en détail

Fondements théoriques et base méthodologique de l analyse empirique de la notion de convergence économique

Fondements théoriques et base méthodologique de l analyse empirique de la notion de convergence économique Fondemens héorques e base méhodologque de l analyse emprque de la noon de convergence économque Isabelle SAE Maser 1 «Ingénere économque» 006-007 Depus la révoluon margnalse des années 1870 la macroéconome

Plus en détail

FX 24 - EQUATIONS DIFFÉRENTIELLES

FX 24 - EQUATIONS DIFFÉRENTIELLES Lycée Thiers FX 24 - EQUATIONS DIFFÉRENTIELLES EDL - 1 Soit n N. Résoudre sur ], + [ l équation différentielle 2t + = t n. Résoudre sur R l équation différentielle ch (t) + sh (t) = 1 1 + t 2. Soit I un

Plus en détail

Chapitre 2. Le mouvement rectiligne

Chapitre 2. Le mouvement rectiligne Chapre Le mouvemen reclgne Objec nermédare 1. Employer les équaons du mouvemen reclgne unormémen accéléré (m.r.u.a.) à un corps lbre ou en chue lbre. Vesse moyenne La vesse moyenne v 1 (enre 1 e ) es déne

Plus en détail

SOMMAIRE. 1 ) RAPPEL D ELECTROMAGNETISME (INDUCTION ) page 2

SOMMAIRE. 1 ) RAPPEL D ELECTROMAGNETISME (INDUCTION ) page 2 Cours moeur pas à pas OMMAE ) APPEL D ELECTOMAGNETME (NDUCTON ) page ) PNCPE DU MOTEU PA A PA page 3. ) PNCPE DE COMMANDE page 3. ) DENTON DE TYPE DE EQUENCEMENT page 3.3 ) LE DEENT TYPE DE MOTEU page

Plus en détail

Intégrateur. v e. 20log T 0

Intégrateur. v e. 20log T 0 G. Pnson - Physque Applquée Foncons négraon e dérvaon - A22 / A22 - Foncons négraon e dérvaon τ = = τ ( )d éponse à un échelon (réponse ndcelle) Inégraeur : = E < : = = E τ E -a. éponse en fréquence =

Plus en détail

Finance 1 Université d Evry Val d Essonne Séance 5. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne Séance 5. Philippe PRIAULET Finance Universié d Evry Val d Essonne Séance 5 Philippe PRIAULE Plan Les caps floors e collars Présenaion de quelques opions exoiques de aux Inroducion à la noion de Value a Risk Evaluaion e couverure

Plus en détail

PROJECTION CARTOGRAPHIQUE MERCATOR TRANSVERSE

PROJECTION CARTOGRAPHIQUE MERCATOR TRANSVERSE SERVICE DE GEODESIE ET NIVELLEMENT NOTES TECHNIQUES NT/G 76 PROJECTION CARTOGRAPHIQUE MERCATOR TRANSVERSE S G N 2 7 8 1 5 Algorithmes 1 ère édition Janvier 1995 I N S T I T U T G E O G R A P H I Q U E

Plus en détail

BEAT : UN SIMULATEUR VIRTUEL DE DEFAUTS DE ROULEMENTS

BEAT : UN SIMULATEUR VIRTUEL DE DEFAUTS DE ROULEMENTS BEAT : UN SIMULATEUR VIRTUEL DE DEAUTS DE ROULEMENTS Béchr Badr, Marc Thomas e Sadok Sass Déparemen de géne mécanque, École de echnologe supéreure, Monréal Marc.homas@esml.ca aculy of Engneerng, Sohar

Plus en détail

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET VALORIAION D OPION DIGIALE EN IUAION DE MARCHE INCOMPLE Parck NAVAE Chrsophe VILLA CREREG, Insu de Geson de Rennes REUME L objecf prncpal poursuv dans ce arcle, es d éuder quelques applcaons e exensons

Plus en détail

INF135 Travail Pratique #1 Remise le 16 octobre 2012

INF135 Travail Pratique #1 Remise le 16 octobre 2012 École de Technologe Supéeue Pa : Fancs Boudeau, ÉcThé Révson : Aïda Ouangaoua INF35 Taval Paque # Remse le 6 ocobe 0 Inaon à la pogammaon en géne mécanque Taval ndvduel. Objecfs - Mee en applcaon des noons

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

U, I [V] [A] Il existe plusieurs types de courants ou de tensions pour lesquels nous pouvons tracer ces représentations :

U, I [V] [A] Il existe plusieurs types de courants ou de tensions pour lesquels nous pouvons tracer ces représentations : Régme alernaf snusoïdal Chapre 13 Régme alernaf snusoïdal Sommare Défnons des valeurs de courans alernafs Producon d une enson alernave Valeurs de crêe, moyenne e effcace Représenaons emporelles e vecorelles

Plus en détail

Courant continu et courants alternatifs

Courant continu et courants alternatifs Classe : 2ME BEP Méers de l élecroechnque Couran connu e couran alernaf Leu : Salle de cours & salle de mesures Objecf Dfférencer les caracérsques d un couran connu e d un couran alernaf,. Savors : S.2

Plus en détail

Exercices : Série 1 Corrigés

Exercices : Série 1 Corrigés Exercices : Série 1 Corrigés 1 Durée nécessaire pour doubler le PIB par habian Déniions : y 0 : PIB par ravailleur au débu y T : PIB par ravailleur après T années g : aux de croissance [%] r : aux de croissance

Plus en détail

Exercices sur la valeur moyenne, la valeur efficace et la puissance

Exercices sur la valeur moyenne, la valeur efficace et la puissance Exercces sur la valeur moyenne, la valeur cace e la pussance Ce documen es une complaon des exercces posés en devors survellés d élecrcé au déparemen Géne Elecrque e Informaque Indusrelle de l IU de Nanes.

Plus en détail

Conversion analogique numérique (CAN)

Conversion analogique numérique (CAN) Conversion analogique numérique (CAN) Schéma foncionnel d un sysème de raiemen numérique de l informaion : Grandeur physique Capeur Filrage Passe bas Amplificaion Echanillonnage Conversion analogique numérique

Plus en détail

Salaire, productivité et demande de travailleurs âgés

Salaire, productivité et demande de travailleurs âgés Salare, producvé e demande de ravalleurs âgés Parck Auber (INSEE e CREST-LEI) 1 VERSION PROVISOIRE 13 févrer 23 Dans cee éude, nous esmons le profl de la producvé selon l âge par l esmaon d une foncon

Plus en détail

Intégrale dépendant d'un paramètre

Intégrale dépendant d'un paramètre ntégrale dépendant d'un paramètre Contents 1 Continuité d'une intégrale à paramètre 3 1.1 Théorème.......................................... 3 1.1.1 Enoncé....................................... 3 1.1.2

Plus en détail

α α acc β γ Γ 2 1 δ ϵ η θ Θ λ λ e,i,n λ D lnλ e,i ν e,i 1 ξ 1 ρ e Ω σ 2 τ e,i 3 1 φ A ϕ ψ ω ω p 1 a 2 A 2 A ext 2 2 A g 2 B B r d D v 3 1 e R E 1 E f 1 F L F acteur S G h h r hν H H I sp I j 2 J B 2 J

Plus en détail

Numéro 2007/04 - Juillet 2007 Guide pratique des comptes chaînés

Numéro 2007/04 - Juillet 2007 Guide pratique des comptes chaînés uméro 27/4 - Julle 27 Gude praque des compes chaînés Luc EYRAUD Gude praque des compes chaînés Luc Eyraud Ce documen de raval n engage que ses aueurs. L obje de sa dffuson es de smuler le déba e d appeler

Plus en détail

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression Modélsaon e smulaon de l hydroformage de lners méallques pour le sockage d hydrogène sous haue presson J.C. Geln, C. Labergère,. Boudeau, S. Thbaud Insu FEMTO-ST, Déparemen Laboraore de Mécanque Applquée

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVERISSEMEN Ce oumen es le fru 'un long raval approuvé par le ury e souenane e ms à sposon e l'ensemble e la ommunaué unversare élarge Il es soums à la propréé nelleuelle e l'aueur Ce mplque une oblgaon

Plus en détail

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π edressemen monophasé commandé C.P.G.E-SI-SAFI edressemen monophasé commandé Inroducon : Un monage redresseur commandé perme d obenr une enson connue réglable à parr d une enson alernave snusoïdale. L ulsaon

Plus en détail

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale...

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale... GUIDE PRATIQUE sur le modèle sandard SST pour les rsques de marché Edon du 23 décembre 204 Table des maères Bu... 2 I. Généralés sur la quanfcaon des rsques dans le SST... 2 I. Modèle analyque... 3 I..

Plus en détail

Techniques d extensométrie

Techniques d extensométrie TRAVAUX PRATIQUES DE DIMENSIONNEMENT DES STRUCTURES Technques d eensoére TP n 1 : Module d Young e Coeffcen de Posson TP n 1 : Module d Young e coeffcen de conranes 1 Module d Young e coeffcen de Posson

Plus en détail

( ) ( ) 1 C 2. TF06 - Final P Exercice 1 Échangeur à courants croisés Données : ( ) ( ) MH 1/1 01/07/2012. eau froide, fluide non-brassé

( ) ( ) 1 C 2. TF06 - Final P Exercice 1 Échangeur à courants croisés Données : ( ) ( ) MH 1/1 01/07/2012. eau froide, fluide non-brassé F6_P_final_exo_.xmcd F6 - Final P - Exercice Échangeur à couran croié Donnée : eau froide, fluide non-braé c P : 484 E : 3 C : 8 C air chaud, fluide braé m : 3 U : m c P : 9 E : 5 C : C Onu lielaméhodedunu(nombred'uniéderanfer)

Plus en détail

EXERCICES DIRIGES 7 et 8 Synchronisation de processus CORRECTION. Exécution. Boucle. Prélever Requête Exécuter Requête Déposer Ordre.

EXERCICES DIRIGES 7 et 8 Synchronisation de processus CORRECTION. Exécution. Boucle. Prélever Requête Exécuter Requête Déposer Ordre. Méhodes de Programmaon sysème 2001-2002 EXERCICES DIRIGES 7 e 8 Synchronsaon de processus CORRECTION Exercce 1 Acquson Exécuon Impresson Boucle Boucle Boucle Acquérr Requêe Déposer Requêe REQUETE M cases

Plus en détail

Chapitre 1 Convertisseurs alternatif/continu

Chapitre 1 Convertisseurs alternatif/continu Lycée La Fayee Page CPGE AS cours de scences ndusrelles géne élecrque Chapre Conversseurs alernaf/connu. GENERALIES n conversseur alernaf/connu perme d almener une arge sous une enson connue évenuellemen

Plus en détail

PONDÉRATIONS LONGITUDINALES

PONDÉRATIONS LONGITUDINALES PONDÉRATIONS ONGITUDINAES DANS ENQUÊTE EMPOI DE INSEE Pascal Ardlly Insee, Déparemen des méhodes sasques, 165 Bd Garbald 69003 yon, France pascal.ardlly@nsee.fr Résumé. enquêe rmesrelle sur l Emplo perme

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Caractérisation du propulseur PEGASES : diagnostics du filtre magnétique et du faisceau : optimisation de la

Caractérisation du propulseur PEGASES : diagnostics du filtre magnétique et du faisceau : optimisation de la Caractérisation du propulseur PEGASES : diagnostics du filtre magnétique et du faisceau : optimisation de la géométrie Denis Renaud To cite this version: Denis Renaud. Caractérisation du propulseur PEGASES

Plus en détail

PROJECTION CARTOGRAPHIQUE GAUSS - LABORDE

PROJECTION CARTOGRAPHIQUE GAUSS - LABORDE SERVICE DE GEODESIE ET NIVELLEMENT NOTES TECHNIQUES NT/G 73 PROJECTION CARTOGRAPHIQUE GAUSS - LABORDE S G N 2 7 8 1 2 Algorithmes 1 ère édition Janvier 1995 I N S T I T U T G E O G R A P H I Q U E N A

Plus en détail

La méthodologie d étude d évenement : Une méthode et des outils à s approprier en finance

La méthodologie d étude d évenement : Une méthode et des outils à s approprier en finance evue des Scences Humanes Unversé Mohamed Khder Bskra No :9 La méhodologe d éude d évenemen : Une méhode e des ouls à s approprer en fnance Unversé de Skkda ésumé: Les éudes d événemens son largemen applquées,

Plus en détail

Problèmes de Mathématiques Matrices et carrés magiques

Problèmes de Mathématiques Matrices et carrés magiques Dans tout le problème, n est un entier supérieur ou égal à 2. On désigne par M n (IR) l algèbre des matrices carrées d ordre n à coefficients réels. Pour tout A de M n (IR), on note a ij le coefficient

Plus en détail

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites Analyse fonctionnelle A. Leclaire ENS Cachan M1 Hadamard 2016-2017 TD9 Exercice 1 Opérateurs compacts et extraction de sous-suites Soient E,F deux espaces de Banach. On note B la boule unité fermée de

Plus en détail

Préparation à l écrit Année Un problème de Capes blanc

Préparation à l écrit Année Un problème de Capes blanc Capes de Mathématiques Université Joseph Fourier Préparation à l écrit Année 2008-2009 Un problème de Capes blanc Préambule Dans tout le suet, n désigne un entier fixé 2. On utilise les notations et observations

Plus en détail

Chap.4 Application du 2 e principe aux réactions chimiques Evolution et équilibre d un système chimique

Chap.4 Application du 2 e principe aux réactions chimiques Evolution et équilibre d un système chimique Chap.4 Applcaton du e prncpe aux réactons chmques Evoluton et équlbre d un système chmque 1. Entrope standard de réacton 1.1. (Rappels) e prncpe de la thermodynamque 1.. Défnton et méthodes de calcul de

Plus en détail

TABLE DES MATIERES 1 LA NOTION D ERREUR ET DE BRUIT DE MESURE 1 2 METHODES D ESTIMATION 3 3 EXEMPLES D ESTIMATION DE PARAMETRES 13

TABLE DES MATIERES 1 LA NOTION D ERREUR ET DE BRUIT DE MESURE 1 2 METHODES D ESTIMATION 3 3 EXEMPLES D ESTIMATION DE PARAMETRES 13 ves JAOT Oobre 5 TABLE ES MATIERES LA OTIO ERREUR ET E BRUIT E MESURE METHOES ESTIMATIO 3. Paramères lés par une relaon lnéare 4.. Méhode des mondres arrés lnéares 4.. Méhode de Gauss-Marov 6. Paramères

Plus en détail

Calculer une enveloppe convexe

Calculer une enveloppe convexe Calculer une enveloppe convexe Préparaton à l agrégaton opton Calcul formel Antone Chambert-Lor (verson revue par Mchel Coste) 1. Introducton Sot A une parte du plan ; de nombreux problèmes géométrques

Plus en détail

C. Azizieh ULB

C. Azizieh ULB Modélisation des taux d intérêt (II) C. Azizieh ULB 2014-2015 1/32 Table des matières 1 Modélisation des taux d intérêt - partie II 2/32 Le modèle de Vasicek ne permet pas une calibration parfaite sur

Plus en détail

Surveillance par observateurs des systèmes dynamiques hybrides

Surveillance par observateurs des systèmes dynamiques hybrides N d Ordre : 41188 Unversé de Llle 1: Scences e Technologes Laboraore d Auomaque, de Géne Informaque e Sgnal LAGIS UMR CNRS 8219 Ecole Docorale SPI 072 THÈSE Présenée en vue de l obenon du grade de DOCTEUR

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL Chapitre 15 : FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Objets du calcul différentiel du premier ordre 2 1.1 Dérivées partielles et gradient..................................

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail