Calcul mental-minitest: triangles et quadrilatères

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Calcul mental-minitest: triangles et quadrilatères"

Transcription

1 Calcul mental-minitest: triangles et quadrilatères triangles et quadrilatères Lycée Français de Barcelone sixième (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 1 / 21

2 Question 1 Nommer le polygone ci-dessus. Nommer les diagonales. Citer deux côtés opposés. (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 2 / 21

3 Question 2 En utilisant le codage, déterminer la nature du quadrilatère ABCD (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 3 / 21

4 Question 3 Nommer le quadrilatère ci-dessus et donner sa nature. (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 4 / 21

5 Question 4 Donner la nature du quadrilatère ABCD (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 5 / 21

6 Question 5 IJKL est un carré. Ajouter tous les codages possibles sur la figure (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 6 / 21

7 Question 6 Le quadrilatère ABCD ci-dessus est-il un losange? (oui/non) un rectangle? (oui/non) un carré? (oui/non) (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 7 / 21

8 Question 7 ABCD est un carré. En utilisant seulement les tracés présents sur la figure, citer tous les triangles rectangles sur cette figure. (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 8 / 21

9 Question 8 ABCD est un carré. Citer tous les carrés sur cette figure. (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 9 / 21

10 Question 9 ABC est un triangle isocèle en B Le point B appartient-il à la médiatrice du segment [AC]? Pourquoi? (on pourra faire une figure à main levée pour aider à répondre) (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 10 / 21

11 Question 10 ABCD est un losange. Le point B appartient-il à la médiatrice du segment [AC]? Pourquoi? (on pourra faire une figure à main levée pour aider à répondre) (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 11 / 21

12 Question 1 Nommer le polygone ci-dessus. Le quadrilatère ci-dessus peut se nommer ACBD par exemple Nommer les diagonales. Les diagonales sont [AB] et [CD] Citer deux côtés opposés. [AC] et [BD] sont deux côtés opposés. [AD] et [BC] sont aussi deux côtés opposés. (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 12 / 21

13 Question 2 En utilisant le codage, déterminer la nature du quadrilatère ABCD ABCD est un rectangle car il y 4 angles droits (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 13 / 21

14 Question 3 Nommer le quadrilatère ci-dessus et donner sa nature. On peut le nommer ABDC et c est un losange car il a 4 côtés de même longueur (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 14 / 21

15 Question 4 Donner la nature du quadrilatère ABCD C est un quadrilatère quelconque car ses diagonales se coupent en leurs milieux mais ne sont ni de même longueur (rectangle) ni perpendiculaire (losange) Remarque : En fait, ce quadrilatère n est pas tout à fait quelconque car c est un parallélogramme(les côtés opposés sont parallèles et de même longueur et les diagonales se coupent en leurs milieux. (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 15 / 21

16 Question 5 IJKL est un carré. Ajouter tous les codages possibles sur la figure voir figure (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 16 / 21

17 Question 6 Le quadrilatère ABCD ci-dessus est-il un losange? Oui car ses diagonales se coupent en leurs milieux et sont perpendiculaires. un rectangle? oui car il y a 4 angles droits un carré? oui car ses diagonales se coupent en leurs milieux, sont perpendiculaires et de même longueur (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 17 / 21

18 Question 7 ABCD est un carré. En utilisant seulement les tracés présents sur la figure, citer tous les triangles rectangles sur cette figure. Il y a 7 triangles rectangles sur la figure : ABD rectangle en A, BCD rectangle en C, AEB rectangle en E, AED rectangle en E, HIE rectangle en E, BFG rectangle en F et CGJ rectangle en C (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 18 / 21

19 Question 8 ABCD est un carré. Citer tous les carrés sur cette figure. ABCD et EFGH (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 19 / 21

20 Question 9 ABC est un triangle isocèle en B Le point B appartient-il à la médiatrice du segment [AC]? Pourquoi? (on pourra faire une figure à main levée pour aider à répondre) Le triangle ABC est isocèle en B donc AB=BC et les points A et C sont équidistants de B donc B appartient à la médiatrice du segment [AC]. (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 20 / 21

21 Question 10 ABCD est un losange. Le point B appartient-il à la médiatrice du segment [AC]? Pourquoi? (on pourra faire une figure à main levée pour aider à répondre) ABCD est un losange donc quatre côtés sont de même longueur donc AB=BC et les points A et C sont équidistants de B donc B appartient à la médiatrice du segment [AC]. (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 21 / 21

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 4 : QUADRILATERES 1. IDENTIFIER UN QUADRILATERE ABCD est une figure géométrique formée de 4 côtés et de 4 sommets : c est un quadrilatère Le segment

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

Droites parallèles et perpendiculaires Groupe 3

Droites parallèles et perpendiculaires Groupe 3 Droites parallèles et perpendiculaires Groupe 3 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite (d4) passant par A et parallèle à (d2). Trace la droite (d5)

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

Parallélogrammes particuliers

Parallélogrammes particuliers Parallélogrammes particuliers C H A P I T R E 16 Énigme du chapitre. Construire un parallélogramme ABCD de périmètre 36 cm de périmètre et dont la longueur AB est le double de la longueur BC. Objectifs

Plus en détail

Géom1. Connaitre le vocabulaire et les instruments géométriques

Géom1. Connaitre le vocabulaire et les instruments géométriques Connaitre le vocabulaire et les instruments géométriques Géom1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer,

Plus en détail

ISEFC Juin 2007 Département de Mathématiques MA115. Série d exercices: Géométrie élémentaire du Plan

ISEFC Juin 2007 Département de Mathématiques MA115. Série d exercices: Géométrie élémentaire du Plan ISEFC Juin 2007 Département de Mathématiques MA115 Série d exercices: Géométrie élémentaire du Plan Exercice 1: Soient (ABC) et (ABD) deux triangles tels que C et D soient de part et d autre de la droite

Plus en détail

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes :

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : Exercice 1 : Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : 1) ABCD est un parallélogramme donc les longueurs AB et CD sont égales. 2) MINE est un losange donc les

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Propriété 3 : Un parallélogramme a un centre de symétrie.

Propriété 3 : Un parallélogramme a un centre de symétrie. Chapitre 8 Parallélogramme 1) Définition et propriétés a) Définition Rappel : Nous allons nous intéresser ici à une catégorie de polygones souvent rencontrés en géométrie : les quadrilatères, qui sont

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Construction avec une équerre

Construction avec une équerre Construction avec une équerre Perpendiculaire, médiatrice, parallèles, parallélogramme, losange, carré. Sommaire 1. Une perpendiculaire 2. Deux parallèles 3. Deux parallèles : angles alternes-internes,

Plus en détail

SECTIONS AGRANDISSEMENT REDUCTION

SECTIONS AGRANDISSEMENT REDUCTION ECTION AGRANDIEMENT REDUCTION * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * A - ECTION D'UN PAVE DROIT PAR UN PLAN La section d'un pavé droit par un plan

Plus en détail

LES BASES DE LA GEOMETRIE.

LES BASES DE LA GEOMETRIE. Chapitre 2 LES BASES DE LA GEOMETRIE. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle

Plus en détail

Lycée Denis-de-Rougemont Neuchâtel et Fleurier. Exercices de révision Mathématiques de niveau 1 GÉOMÉTRIE

Lycée Denis-de-Rougemont Neuchâtel et Fleurier. Exercices de révision Mathématiques de niveau 1 GÉOMÉTRIE Lycée Denis-de-Rougemont Neuchâtel et Fleurier Exercices de révision Mathématiques de niveau 1 GÉOMÉTRIE 2002 Exercice 1 On donne une sphère s par son équation (x 1) 2 + (y + 1) 2 + z 2 = 9 et les points

Plus en détail

MILIEUX ET PARALLELES DANS UN TRIANGLE. CORRECTION(s) EXERCICES SERIE 1

MILIEUX ET PARALLELES DANS UN TRIANGLE. CORRECTION(s) EXERCICES SERIE 1 THEME : Correction MILIEUX ET PARALLELES DANS UN TRIANGLE CORRECTION(s) EXERCICES SERIE 1 Exercice : Soit ABC un triangle. Soit D le milieu de [BC]. Soit M le milieu de [AD]. Les parallèles à la droite

Plus en détail

Attention! Pour être droit, l angle doit longer en même temps les deux plus petits côtés de ton équerre!

Attention! Pour être droit, l angle doit longer en même temps les deux plus petits côtés de ton équerre! Deux droites sont perpendiculaires si elles se coupent en formant un angle droit. On peut vérifier que deux droites sont perpendiculaires en utilisant une équerre. (d2) (d2) ttention! Pour être droit,

Plus en détail

Polygones réguliers. Corrigé

Polygones réguliers. Corrigé 1 ère partie 1. Dans le dossier «ch 7» ouvre le fichier «polygones reg1» de type GEOGEBRA (vous le trouverez dans poste de travail, sous «3b/commun» ou «3d/commun») 2. D après les codages, quelle est la

Plus en détail

EVALUATION DES COMPETENCES MATH - FRANÇAIS. Niveau : adolescent. Mathématiques. Cahier de l'élève

EVALUATION DES COMPETENCES MATH - FRANÇAIS. Niveau : adolescent. Mathématiques. Cahier de l'élève EVALUATION DES COMPETENCES MATH - FRANÇAIS Niveau : adolescent Mathématiques Cahier de l'élève Nom : Prénom : Classe : U.L.I.S. Etablissement : Lycée Brossaud Blancho Saint-Nazaire J'ai besoin d'un crayon,

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

Triangles Triangles.odt clicprof.free.fr 1/10

Triangles Triangles.odt clicprof.free.fr 1/10 Triangles Table des matières 1Quelques rappels sur les triangles...2 1Médiatrices...2 2Bissectrices...2 3Nature d'un Triangle...2 Triangle isocèle...2 Triangle équilatéral...2 Triangle rectangle...2 2Construction

Plus en détail

Corrigé fiche 1 géométrie

Corrigé fiche 1 géométrie orrigé fiche 1 géométrie 1. On trace la droite (). vec l équerre, on trace une perpendiculaire (µ) à () passant par. Puis une autre perpendiculaire à (µ) passant par. 2. onstruction : cf. cours. La médiatrice

Plus en détail

PREMIERS ELEMENTS DE GEOMETRIE.

PREMIERS ELEMENTS DE GEOMETRIE. Cours de Mr Jules v1.0 Classe de Sixième Contrat 2 p.1 PREMIERS ELEMENTS DE GEOMETRIE. I. Le point : 2 II. Droites, demi droites, segments de droite : 2 A. La Droite : 2 B. La Demi droite : 3 C. Le Segment

Plus en détail

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que ANNEXES I. Documents cinquième a. Fiche modèle à rendre avec la figure Noms : Données Je sais que D après la propriété J en conclus que Travail en groupe Exercice Groupe 1 Construire un triangle ABC rectangle

Plus en détail

Parallélogrammes particuliers

Parallélogrammes particuliers Tout est dans le socle. I.Le rectangle Parallélogrammes particuliers 1) éfinition n appelle rectangle un quadrilatère qui a quatre angles droits. remarque 1: si un quadrilatère a trois angles droits, alors

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Cinquième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Dans un triangle non aplati, la longueur de chaque côté est inférieure à la somme des deux autres côtés.

Dans un triangle non aplati, la longueur de chaque côté est inférieure à la somme des deux autres côtés. DROITES REMARQUABLES I Construction de triangles 1. Inégalité triangulaire : Voir une présentation ici et une illustration ici Propriété admise Dans un triangle non aplati, la longueur de chaque côté est

Plus en détail

Test E22 NOM : Classe :...

Test E22 NOM : Classe :... Test E22 NOM : Classe :... Exercice 1: ABCDEFGH est le cube ci-contre. 1. a) Donner deux droites parallèles. ---------------------------------------------------------- b) Donner deux droites sécantes.

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

Compléter cette figure en construisant le symétrique de chaque nombre par rapport au point O.

Compléter cette figure en construisant le symétrique de chaque nombre par rapport au point O. Exercice 1 : Compléter cette figure en construisant le symétrique de chaque nombre par rapport au point O. Exercice 2 : Compléter le plus simplement chacune des figures pour qu elles aient le point O comme

Plus en détail

Dans chaque cas, dire si la droite (d) est la médiatrice du segment [AB] en justifiant la réponse.

Dans chaque cas, dire si la droite (d) est la médiatrice du segment [AB] en justifiant la réponse. sixième Corrigé DS n 6 durée 50mn Exercice 1 ( 3 points ) Dans chaque cas, dire si la droite (d) est la médiatrice du segment [AB] en justifiant la réponse. Figure 1 La droite (d) passe par les deux points

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Configurations fondamentales - Seconde

Configurations fondamentales - Seconde Configurations fondamentales - Seconde Exercices de géométrie plane avec GéoPlan : puzzle, triangle, point fixe. Sommaire 1. Puzzle et triangle isocèle 2. Puzzle et carrés 3. Propriété de Thalès 4. Utiliser

Plus en détail

#2 Triangles, médiatrices et cercle circonscrit

#2 Triangles, médiatrices et cercle circonscrit #2 Triangles, médiatrices et cercle circonscrit I Construction d un triangle connaissant ses 3 longueurs Activité 1 : Construis un triangle dont les côtés mesurent 3, 5 et 9 cm. Que remarque-t-on? Réponse

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Renforcer ses compétences en mathématiques Devoir n 1

Renforcer ses compétences en mathématiques Devoir n 1 Renforcer ses compétences en mathématiques Devoir n 1 I. Conseils pour mieux réussir Le devoir 1 porte sur les notions des chapitres I, II, III, IV et V. EXERCICE 1 Voir la division euclidienne. Il peut

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

Mercredi 28 janvier Collège La Charme

Mercredi 28 janvier Collège La Charme BREVET BLANC ÉPREUVE DE MATHÉMATIQUES Mercredi 28 janvier 2009 Collège La Charme Durée : 2 heures L emploi des calculatrices est autorisé En plus des point prévus pour chacune des trois parties de l épreuve,

Plus en détail

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme :

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme : Exercice 1 : On considère la figure ci-contre où est un parallélogramme : 1) Quelle est la longueur du segment [AB]? ) Quelle est la mesure de l angle BCD? Exercice : Sur la figure ci-contre, et BCEF sont

Plus en détail

CHAPITRE 9 GÉOMÉTRIE

CHAPITRE 9 GÉOMÉTRIE CHAPITRE 9 GÉOMÉTRIE A) Le triangle (Rappels) 1) Droites et points remarquables a) Médianes et centre de gravité Les médianes sont les droites issues des sommets et passant par le milieu du côté opposé

Plus en détail

Théorème de Varignon. Par Mathtous

Théorème de Varignon. Par Mathtous Théorème de Varignon Par Mathtous En regardant ici ou là sur Internet, j'ai remarqué que la démonstration de ce célèbre théorème est, sinon fausse, du moins incomplète : il n'est pas exact que deux droites

Plus en détail

Exercices de géométrie au collège

Exercices de géométrie au collège Exercices de géométrie au collège Cinq constructions réalisées avec GéoPlan : triangle, cercle, carré. Sommaire. Carré, cercles et tangente. Carré et triangle équilatéral. Angle inconnu 6. Comparer deux

Plus en détail

Chapitre 02 : THÉORÈMES DES MILIEUX

Chapitre 02 : THÉORÈMES DES MILIEUX Chapitre 02 : THÉORÈMES DES MILIEUX I) Théorème de la droite des milieux : (permet de démontrer que deux droites sont parallèles) Théorème Définition : Dans un triangle, la droite qui passe par les milieux

Plus en détail

DROITES REMARQUABLES CAS PARTICULIERS

DROITES REMARQUABLES CAS PARTICULIERS THEME : DROITES REMARQUABLES CAS PARTICULIERS Cas particulier 1 : Le triangle isocele Isocèle : ( de isos, " égal " et skelos, " jambe ' ) qui a deux jambes. La véritable orthographe adoptée par le Dictionnaire

Plus en détail

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE].

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE]. Corrigé des programmes de construction de la séance 2 du jeudi 15/09/11 1) Trace un carré ABCD de 3 cm de côté. 2) Trace la diagonale [BD]. 3) Place E et F respectivement les milieux de [AD] et [AB]. 4)

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE 1 Les instruments pour reproduire 2 Reproduire des figures planes 3 Les polygones 4 Les quadrilatères 5 Le carré et le rectangle 6 Les triangles 7 Construire des figures géométriques

Plus en détail

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE I) SYMETRIE AXIALE. 1) SYMETRIQUE D UN POINT PAR RAPPORT A UNE DROITE. a) Définition. On dit que A est le symétrique de A par rapport à (d). Remarque :

Plus en détail

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé.

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Connaître le vocabulaire et le codage en géométrie Géom1 La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

Évaluation géométrie - mesure CM1 N 1

Évaluation géométrie - mesure CM1 N 1 Évaluation géométrie - mesure CM1 N 1 Exercice 1 Trace le segment [AU] = 4 cm qui est perpendiculaire à [AB] passant par A. Marque le point I milieu de [AB]. perpendiculaires Trace le segment [IP] = 3

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

Les parallélogrammes particuliers

Les parallélogrammes particuliers Les parallélogrammes particuliers I Une histoire de famille Le parallélogramme fait partie de la famille des quadrilatères: Ce sont des polygones à 4 cotés, 4 angles, 2 diagonales et c'est tout. Ils peuvent

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

(d après La géométrie pour le plaisir - J. et L. DENIERE - Editions Kim)

(d après La géométrie pour le plaisir - J. et L. DENIERE - Editions Kim) Trace deux cercles (C) et (C') de centre et de rayons respectifs 8 cm et 9 cm. Sur le cercle (C), place un point et reporte 6 fois la longueur du rayon (8 cm). n obtient les points, B, C, D, E, F. Trace

Plus en détail

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS 1 PUZZLE À 3 PIÈCES 1. DESCRIPTION Ce jeu est construit à partir du découpage d un carré en 3 pièces à l aide de deux segment (l un joignant le milieu d un côté à l un des deux sommets opposés, l autre

Plus en détail

Ex 1 : Vrai ou faux CM1

Ex 1 : Vrai ou faux CM1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. b)si trois points sont sur

Plus en détail

Chapitre VIII : Polygones et aires

Chapitre VIII : Polygones et aires Classe de Sixième Chapitre VIII : Polygones et aires Année scolaire 2008/2009 Introduction : Un polygone est une figure fermée à plusieurs côtés dont les sommets sont reliés par des segments. Exemples

Plus en détail

Leçon 29. Droites remarquables du triangle

Leçon 29. Droites remarquables du triangle Tout ce qui est en bleu sera dit à l'oral ou nous sera éventuellement utile pour les questions venant du jury; le reste sera projeté. Leçon 29. Droites remarquables du triangle Introduction (à l'oral):

Plus en détail

Fiche No 2 Droites remarquables

Fiche No 2 Droites remarquables Fiche No 2 Droites remarquables GeoGebra 5 e fiche No 2 Toutes les commandes traitées dans cette fiche concernant les droites remarquables se trouvent sur la 4 e icône : 1) Dessiner une droite perpendiculaire

Plus en détail

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

Médiatrice, cercle circonscrit et médiane d un triangle

Médiatrice, cercle circonscrit et médiane d un triangle 3ème Géométrie 2015/2016 hapitre édiatrice, cercle circonscrit et médiane d un triangle Plan du cours 1 édiatrice d un segment......................................................... 2 2 ercle circonscrit

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Utiliser les propriétés des symétries axiale ou centrale.

Utiliser les propriétés des symétries axiale ou centrale. Chapitre 4 Éléments de Géométrie Ce que dit le programme CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Coordonnées d un point du plan Abscisse et ordonnée d un point dans le plan rapporté à un repère orthonormé.

Plus en détail

DISTANCES ET AIRES. unité 4

DISTANCES ET AIRES. unité 4 unité 4 DISTCS T IS es trois leçons de cette quatrième unité sont consacrées à la géométrie : la leçon 10 porte sur le cercle (définition, vocabulaire, tracé) et la construction, à la règle et au compas,

Plus en détail

La boîte P ne peut pas paver la boîte Q car par exemple 200 n'est multiple ni de 36, ni de 48, ni de 54.

La boîte P ne peut pas paver la boîte Q car par exemple 200 n'est multiple ni de 36, ni de 48, ni de 54. Corrigé Exercice 1 1 point On prolonge le côté de 11cm jusqu'à 17 cm. On trace un angle droit. On trace la diagonale et on complète le rectangle. "Lors de l'agrandissement d'une figure, les angles restent

Plus en détail

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page Géométrie Table des matières N Leçon Niveau 1 Niveau 2 Niveau 3 Page DANS LE PLAN 3 Gé1 Les lignes X X X 4 Gé2 La droite X X X 5 Gé3 Les points alignés X X 5 Gé4 Le segment X X 6 Gé5 La demi-droite X X

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Troisième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

LES TRIANGLES. Dans un triangle, la longueur de chaque côté est inférieure à la somme des 2 autres. L INEGALITE TRIANGULAIRE :

LES TRIANGLES. Dans un triangle, la longueur de chaque côté est inférieure à la somme des 2 autres. L INEGALITE TRIANGULAIRE : I) L inégalité triangulaire : 1) Propriété : Dans un triangle, la longueur de chaque côté est inférieure à la somme des 2 autres. B A C L INEGALITE TRIANGULAIRE : BC BA + AC BA BC + AC AC AB + BC 2) Conséquences

Plus en détail

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé.

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Activités numériques (12 points) Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Exercice 1 :(détailler chacun des calculs suivants)

Plus en détail

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 Q.C.M : (Issues de brevets) 1. L'expression développée de (3 x 5) 2 est : a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 (3 x 5) 2 =(3 x) 2 2 3 x 5+ 5 2 =9 x 2 30 x+ 25 2. On considère la fonction f définie

Plus en détail

Angles IJ = Exercice : (Rennes 99)

Angles IJ = Exercice : (Rennes 99) Angles Exercice : (Lyon 96) 1) Construire un triangle IJK tel que : JK 8 cm ; IJ 4,8 cm ; KI 6,4 cm. 2) Démontrer que le triangle IJK est un triangle rectangle. 3) Calculer la mesure en degrés de l'angle

Plus en détail

EXTRAITS DU B.O. SPECIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires

EXTRAITS DU B.O. SPECIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires XTTS.. SP N 6 28 ÛT 2008 onnaissances apacités ommentaires *Médiatrice d un segment. *onnaître et utiliser la définition de la médiatrice ainsi que la caractérisation de ses points par la propriété d équidistance.

Plus en détail

DROITES ET PLANS DE L'ESPACE

DROITES ET PLANS DE L'ESPACE 1 DROITES ET PLANS DE L'ESPACE I. Positions relatives de droites et de plans 1) Positions relatives de deux droites Propriété : Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non

Plus en détail

ABCD est un carré donc les distances des côtés sont égales. On note.

ABCD est un carré donc les distances des côtés sont égales. On note. Exercice 1 ABCD est un carré donc les distances des côtés sont égales. On note. Pour construire E et F, on a tracé un quart de cercle de centre D passant par B. On peut ainsi noter car ils correspondent

Plus en détail

6 ème exercices : Introduction à la géométrie

6 ème exercices : Introduction à la géométrie Droites, demi-droites et segments. Exercice 1 Réponse 1 Placer trois points A, B et C non alignés. Tracer la droite qui passe par les points B et C. Tracer le segment d extrémités A et B. Tracer la demi-droite

Plus en détail

Sommaire. Séquence 1 MATHÉMATIQUES

Sommaire. Séquence 1 MATHÉMATIQUES Sommaire Séquence 1 MATHÉMATIQUES Séance 1 : Numération - Les fractions Séance 2 : Calcul - Multiplier un nombre à 2 chiffres par un nombre à 2 chiffres Séance 3 : Mesures - Le périmètre du carré et du

Plus en détail

Chapitre 4 - Les triangles

Chapitre 4 - Les triangles Chapitre 4 - Les triangles I- Définitions et triangles particuliers Un triangle est un polygone qui a trois côtés. Dessiner trois triangles : un quelconque (classique), un qui est équilatéral et un qui

Plus en détail

Les programmes de géométrie en

Les programmes de géométrie en Les programmes de géométrie en 2010-2011 Ecole primaire CYCLE 1 Dessiner un rond, un carré, un triangle CYCLE 2 Les élèves enrichissent leurs connaissances en matière d orientation et de repérage. Ils

Plus en détail

ÉTAPE 1 : Reproduction, agrandissement. Reproduction n o 1. Bilan de l analyse. Cahier de bord DESSINS GÉOMÉTRIQUES 6 e

ÉTAPE 1 : Reproduction, agrandissement. Reproduction n o 1. Bilan de l analyse. Cahier de bord DESSINS GÉOMÉTRIQUES 6 e ÉTPE 1 : Reproduction, agrandissement Reproduction n o 1 Reproduis ci-contre ce dessin géométrique. ilan de l analyse E 8 cm F D H O G 6 cm C Page 1/11 Pour reproduire un dessin, il est utile de commencer

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

EXERCICES CORRIGES DE MATH

EXERCICES CORRIGES DE MATH EXERCICES CORRIGES DE MATH PAR Ahmed Mowgli, PROFESSEUR DE MATH ET PHYSIQUE-CHIMIE Ce document est la propriété de son auteur, vous avez le droit de l utiliser, de le lire et même de le travailler! Je

Plus en détail

COLLEGE ROLAND DORGELES 75018 PARIS. GEOMETRIE EN 3ème

COLLEGE ROLAND DORGELES 75018 PARIS. GEOMETRIE EN 3ème COLLEGE ROLAND DORGELES 75018 PARIS GEOMETRIE EN 3ème Démontrer qu'un point est le milieu d un segment... 2 Démontrer qu'un point est le centre du cercle circonscrit d un triangle... 3 Démontrer qu'un

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points ide-mémoire Géométrie Cycle 3 Sommaire 1. Distinguer : point, droite, segment, demi-droite, alignement de points 2. Mesurer et tracer des segments 3. Se repérer dans un quadrillage 4. Repérer les angles

Plus en détail

Le point M image de M est défini par : O est le milieu de [ M M ] (D) est la médiatrice de [ M M ] OM OM et. MOM' α.

Le point M image de M est défini par : O est le milieu de [ M M ] (D) est la médiatrice de [ M M ] OM OM et. MOM' α. Seconde Les transformations du plan Les transformations. e sont des fonctions, l ensemble de départ est formé de tous les points du plan. Les notations sont les mêmes que pour les fonctions numériques.

Plus en détail

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 :

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Bien que sa base soit un polygone régulier ( un carré), la pyramide 1 n est pas régulière car sa hauteur ne passe pas par

Plus en détail

Triangles. I. Construction de triangles. 1. Inégalité triangulaire

Triangles. I. Construction de triangles. 1. Inégalité triangulaire Triangles I. Construction de triangles 1. Inégalité triangulaire Exercice : 1. Tracer un segment [AB] tel que AB = 8 cm. Tracer un cercle de centre A et de rayon 5 cm. 2. On veut construire un cercle de

Plus en détail

Dossier n 22 : Exemples d étude de configurations faisant l objet de constructions géométriques à la règle et au compas.

Dossier n 22 : Exemples d étude de configurations faisant l objet de constructions géométriques à la règle et au compas. Dossier n : Exemples d étude de configurations faisant l objet de constructions géométriques à la règle et au compas Rédigée par Cécile COURTOIS, le juillet 003 Cecile-courtois@wanadoofr I Situation par

Plus en détail

Chapitre n 6 : «Perpendiculaires et parallèles»

Chapitre n 6 : «Perpendiculaires et parallèles» Chapitre n 6 : «Perpendiculaires et parallèles» I. Droites perpendiculaires 1/ Activité Rappels On note les droites à l'aide de parenthèses... Une lettre minuscule entre parenthèses La droite ci-contre

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Géométrie dans l'espace 1. Rappels de géométrie dans l'espace 1.1. Positions relatives de droites et plans 1.1.1. Position relative de deux plans Définition : On dit que deux plans sont strictement parallèles

Plus en détail

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD].

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD]. Prismes 1 Prisme à base un triangle rectangle 1 Pavés droits 1 Le pavé droit 1 Le cube Pyramides pyramide dans pavé droit ctivité pyramide à base rectangulaire, d'arêtes égales. alques et résultats. 4

Plus en détail

TICE. Ce livret illustre les compétences techniques utilisées dans les pages du manuel pour le logiciel de géométrie dynamique Cabri.

TICE. Ce livret illustre les compétences techniques utilisées dans les pages du manuel pour le logiciel de géométrie dynamique Cabri. TICE Ce livret illustre les compétences techniques utilisées dans les pages du manuel pour le logiciel de géométrie dynamique Cabri. 1 Déplacer un objet... Placer un nouveau point... Placer un point à

Plus en détail

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1 TABLE DES MATIÈRES 1 Les quadrilatères Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Polygones 1 1.1 Définition.................................. 1 1.2 Différentes sortes

Plus en détail

CHAPITRE III GEOMETRIE

CHAPITRE III GEOMETRIE CHAPITRE III GEOMETRIE A) Vocabulaire, définitions, notations p 2 (ex 1 à 13) B) Constructions I (droites, segments, médiatrices, cercles)... p 7 (ex 14 à 31) C) Constructions II (demi-droites, angles,

Plus en détail

NOM : DROITE DES MILIEUX 4ème

NOM : DROITE DES MILIEUX 4ème Exercice 1 Soit ABCD un carré de côté 8cm. On appelle I le milieu de [AB] et L le milieu de [DA]. 1) Faire une figure. 2) Montrer que les droites (IL) et (BD) sont parallèles. 3) En utilisant les propriétés

Plus en détail

A d2. A d2. A d2 GEOM 1 : TRACER DES DROITES PARALLELES ET PERPENDICULAIRES 1. a) Trace une droite d3 perpendiculaire à d2 et passant par le point A

A d2. A d2. A d2 GEOM 1 : TRACER DES DROITES PARALLELES ET PERPENDICULAIRES 1. a) Trace une droite d3 perpendiculaire à d2 et passant par le point A GEOM 1 : TRACER DES DROITES PARALLELES ET PERPENDICULAIRES 1 a) Trace une droite d3 perpendiculaire à d2 et passant par le point A et coupant la droite d1. b) Que peux-tu dire des droites d1 et d2? Des

Plus en détail

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GEOMETRIE GEOM 0 GEOM 1 GEOM 2 GEOM 3 GEOM 4 GEOM 5 GEOM 6 GEOM 7 GEOM 8 GEOM 9 GEOM 10 GEOM 11 GEOM 12 GEOM 13 Points, lignes, droites

Plus en détail