Seconde 2 DST2 vecteurs Sujet 1-9 février 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Seconde 2 DST2 vecteurs Sujet 1-9 février 2015"

Transcription

1 Seconde DST vecteurs Sujet 1-9 février 01 Exercice 1 : ( points) Soit ABCD un parallélogramme. I, J, K et L sont les milieux respectifs de [AB], [BC], [CD] et [DA]. Recopier et compléter les égalités suivantes à l'aide des points de la figure : a) AL + KJ = A c) BD + CJ =.D b) LJ AC = D d) AK + DL + BI = C Exercice : ( points) On donne les points A(-;), B(;-1) et C(;1). 1) Démontrer que le triangle ABC est rectangle. ) Calculer les coordonnées du point D pour que le quadrilatère ABCD soit un rectangle. Exercice 3 : (6 points) 1) Dans chacun des cas suivants, déterminer le réel m tel que les vecteurs u et v soient colinéaires. a) u -8 8 et v m b) u m - 1 et v 3 - ) Dans chacun des cas suivants, déterminer le réel m tel que les points A, B et C soient alignés. a) A(1;3) B(-;1) et C(m;) b) A(-;1) B(7;1) et C(1;m - ) Exercice : ( points) Soit (O; i ; j ) un repère orthonormé du plan. Soit A(0;3), B(-1;1) et C(-;). 1) Déterminer les coordonnées du point I milieu du segment [BC]. ) Déterminer les coordonnées du point D tel que : 3 DA + DB + DC = 0 3) Démontrer que les points D, A et I sont alignés. 1

2 Seconde DST vecteurs Sujet - 9 février 01 Exercice 1 : ( points) Soit ABCD un parallélogramme. I, J, K et L sont les milieux respectifs de [AB], [BC], [CD] et [DA]. Recopier et compléter les égalités suivantes à l'aide des points de la figure : a) BJ + KL = B c) AC + DL = C b) KI DB = C d) IC + LA + KD = D Exercice : ( points) On donne les points A(;3), B(1;-1) et C(6;). 1) Démontrer que le triangle ABC est rectangle et isocèle. ) Calculer les coordonnées du point D pour que le quadrilatère ABDC soit un carré. Exercice 3 : (6 points) 1) Dans chacun des cas suivants, déterminer le réel m tel que les vecteurs u et v soient colinéaires. a) u -1 et v m b) u m et v 3 ) Dans chacun des cas suivants, déterminer le réel m tel que les points A, B et C soient alignés. a) A(3;1) B(;-1) et C(m;-) b) A(;1) B(7;-1) et C(1;m - 1) Exercice : ( points) Soit (O; i ; j ) un repère orthonormé du plan. Soit A(0;), B(-;3) et C(;1). 1) Déterminer les coordonnées du point I milieu du segment [AC]. ) Déterminer les coordonnées du point D tel que : DA + DB + DC = 0 3) Démontrer que les points D, B et I sont alignés.

3 Seconde DST vecteurs Sujet 1-9 février 01 Exercice 1 : ( points) Soit ABCD un parallélogramme. I, J, K et L sont les milieux respectifs de [AB], [BC], [CD] et [DA]. Recopier et compléter les égalités suivantes à l'aide des points de la figure : a) AL + KJ = AI c) BD + CJ = JD b) LJ AC = DA d) AK + DL + BI = JC Exercice : ( points) On donne les points A(-;), B(;-1) et C(;1). 1) Démontrer que le triangle ABC est rectangle. ) Calculer les coordonnées du point D pour que le quadrilatère ABCD soit un rectangle. 1) AC² = ( - (-))² + (1 - )² = = 6 AB² + BC² = ( - (-))² + (-1 - )² + ( - )² + (1 - (-1))² = = 6 On a AC² = AB² + BC², donc selon la réciproque du théorème de Pythagore le triangle ABC est rectangle en B. ) Si ABCD est un parallélogramme avec un angle droit alors c'est un rectangle. Le point D est donc défini par l'égalité vectorielle : AD = BC. Soit x D + y D - = (-1) D'où : x D = 3 - = 1 et y D = + = 7 Les coordonnées de D sont : (1;7). Exercice 3 : (6 points) 1) Dans chacun des cas suivants, déterminer le réel m tel que les vecteurs a) u -8 8 et m b) u m - 1 et v 3 - u et v soient colinéaires. ) Dans chacun des cas suivants, déterminer le réel m tel que les points A, B et C soient alignés. a) A(1;3) B(-;1) et C(m;) b) A(-;1) B(7;1) et C(1;m - ) 1) a) La condition de colinéarité des deux vecteurs D'où : m = - b) La condition de colinéarité des deux vecteurs D'où : -m = 0 Soit m = - u et v s'écrit -8-8m = 0 u et v s'écrit (m - 1)(-) - 3 = 0 3

4 Seconde DST vecteurs Sujet 1-9 février 01 ) Les points A, B et C sont alignés si les vecteurs et AC sont colinéaires. a) AB = -3 - et AC m = m La condition de colinéarité des vecteurs AC s'écrit : -3(-1) + (m - 1) = 0 Soit : m = -3 + Soit m = - 1 b) AB = 1 0 et AC 1 + m = 6 m - 3 La condition de colinéarité des vecteurs AC s'écrit : 1(m - 3) - 60 = 0 Soit : m = 3 AB Exercice : ( points) Soit (O; i ; j ) un repère orthonormé du plan. Soit A(0;3), B(-1;1) et C(-;). 1) Déterminer les coordonnées du point I milieu du segment [BC]. ) Déterminer les coordonnées du point D tel que : 3 DA + DB + DC = 0 3) Démontrer que les points D, A et I sont alignés. 1) I x B + x C yb + yc ; soit : I ) 3 DA + DB + DC = ;3 DA + DA + AB + AB + AD = (-1-0) + (- - 0) -1 AD = (1-3) + ( - 3) - 3 x D - 0 = -1 y D - 3 = - 3 x D = -1 et y D = 3-3 = 1 D -1; 1 AC DA + AC = 0 3) Montrons que les vecteurs AD et AI sont colinéaires.

5 Seconde DST vecteurs Sujet 1-9 février 01 AD -1-3 et AI = = 3-3 = 0 Donc les vecteurs AD et AI sont colinéaires. Donc les points A, D et I sont alignés.

6 Seconde DST vecteurs Sujet - 9 février 01 Exercice 1 : ( points) Soit ABCD un parallélogramme. I, J, K et L sont les milieux respectifs de [AB], [BC], [CD] et [DA]. Recopier et compléter les égalités suivantes à l'aide des points de la figure : a) BJ + KL = BI c) AC + DL = LC b) KI DB = CD d) IC + LA + KD = LD Exercice : ( points) On donne les points A(;3), B(1;-1) et C(6;). 1) Démontrer que le triangle ABC est rectangle et isocèle. ) Calculer les coordonnées du point D pour que le quadrilatère ABDC soit un carré. 1) BC² = (6-1)² + ( - (-1))² = + 9 = 3 AB² = (1 - )² + (-1-3)² = = 17 AC² = (6 - )² + ( - 3)² = = 17 On a BC² = AB² + AC², donc selon la réciproque du théorème de Pythagore le triangle ABC est rectangle en A De plus AB = AC, donc ABC est rectangle isocèle en A. ) Si ABDC est un parallélogramme avec un angle droit et deux côtés consécutifs de même longueur alors c'est un carré. Le point D est donc défini par l'égalité vectorielle : CD = AB. Soit x D - 6 y D - = D'où : x D = 6-1 = et y D = - = - Les coordonnées de D sont : (;-). Exercice 3 : (6 points) 1) Dans chacun des cas suivants, déterminer le réel m tel que les vecteurs u et a) u -1 et v b) u m m et - v v soient colinéaires. ) Dans chacun des cas suivants, déterminer le réel m tel que les points A, B et C soient alignés. a) A(3;1) B(;-1) et C(m;-) b) A(;1) B(7;-1) et C(1;m - 1) 1) a) La condition de colinéarité des deux vecteurs D'où : m = - b) La condition de colinéarité des deux vecteurs D'où : m = 0 Soit m = - u et v s'écrit -1(m) - = 0 u et v s'écrit (m + 1) + 3 = 0 6

7 Seconde DST vecteurs Sujet - 9 février 01 ) Les points A, B et C sont alignés si les vecteurs a) AB = -1 - et AC m - 3 m = La condition de colinéarité des vecteurs (-1)(-3) (-)(m - 3) = 0 Soit : 3 + m 6 = 0 Soit m = 3 Soit m = 3 = 1, AC sont colinéaires. AC s'écrit : b) AB = - et AC 1 - m = - m - La condition de colinéarité des vecteurs (m - ) - = 0 Soit : m = Soit m = 6 AC s'écrit : Exercice : ( points) Soit (O; i ; j ) un repère orthonormé du plan. Soit A(0;), B(-;3) et C(;1). 1) Déterminer les coordonnées du point I milieu du segment [AC]. ) Déterminer les coordonnées du point D tel que : DA + DB + DC = 0 3) Démontrer que les points D, B et I sont alignés. 1) I x A + x C ya + yc ; soit : I ) BD 1; DA + DB + DC = 0 (0 - (-)) + ( - ( )) x D + = y D - 3 = - 1 D - 3 ;11 ( - 3) + (1-3) = - 1 x D = - 3 et yd = 11 DB + BD = BA + DB + BA + BC DB + BC = 0 7

8 Seconde DST vecteurs Sujet - 9 février 01 3) Montrons que les vecteurs BD - 1 et DI - 11 = - 1 BD et DI sont colinéaires. Donc les vecteurs BD et DI sont égaux donc colinéaires. Donc les points B, D et I sont alignés. 8

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

Géométrie dans l Espace

Géométrie dans l Espace Géométrie dans l Espace Année scolaire 006/007 Table des matières 1 Vecteurs de l Espace 1.1 Extension de la notion de vecteur à l Espace............................. 1. Calcul vectoriel dans l Espace......................................

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

DEVOIR MAISON 4 : LES VECTEURS

DEVOIR MAISON 4 : LES VECTEURS DEVOIR MAISON 4 : LES VECTEURS Ce devoir maison de révisions, de préparation au DS4 comporte deux pages. Vous traiterez au choix au moins la première ou la deuxième page. Exercice 1. Le plan est muni d

Plus en détail

Corrigé des exercices sur les vecteurs. Septembre 2010

Corrigé des exercices sur les vecteurs. Septembre 2010 Septembre 2010 Exercice 1 Soient un triangle ABC et les points I et J tels que AI = 1 AB et AJ = 3 AC 3 1 Exprimer le vecteur BJ en fonction des vecteurs BA et AC. 2 Exprimer le vecteur IC en fonction

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE].

1) Trace un carré ABCD de 3 cm de côté. 2) Place E et F respectivement les milieux de [CD] et [AD]. 3) Trace les segments [EF], [BF] et [BE]. Corrigé des programmes de construction de la séance 2 du jeudi 15/09/11 1) Trace un carré ABCD de 3 cm de côté. 2) Trace la diagonale [BD]. 3) Place E et F respectivement les milieux de [AD] et [AB]. 4)

Plus en détail

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB Chapitre 3 La notion de vecteurs CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Vecteurs Définition de la translation qui transforme un point A du plan en un point B. Vecteur AB associé. Égalité de deux vecteurs

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé.

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé. Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 Exercice 1 : (4 points) ABCDEF est un hexagone régulier de centre O. Répondre aux questions suivantes en utilisant uniquement les points de la figure. 1) Trouver

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme.

1) Construire un parallélogramme et le point, symétrique du point par rapport au point. 2) Démontrer que est un parallélogramme. Seconde Exercices sur les vecteurs Page 1 Définition, égalité de vecteurs ---------------------------------------------------------------------------------------------------- Exercice 1 : A vue d œil,

Plus en détail

Repères et coordonnées dans le plan

Repères et coordonnées dans le plan A Repères et coordonnées dans le plan Repères et coordonnées dans le plan A-1 Définir un repère et les coordonnées d un point Dans un plan (P), on considère 3 points non alignés O, I, J. les droites (OI)

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y DM Devoir maison 4 lire une abscisse placer un point d'abscisse connu convertir un nombre dans une unité donnée le triangle isocèle construction à partir d'un dessin milieu d'un segment le cercle,construction

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs I. Notion de vecteurs a) Vecteurs et translations Définition : A et B désignent deux points du plan. La translation qui transforme A en B associe à tout point C du plan l'unique point D tel que les segments

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 4 : QUADRILATERES 1. IDENTIFIER UN QUADRILATERE ABCD est une figure géométrique formée de 4 côtés et de 4 sommets : c est un quadrilatère Le segment

Plus en détail

6 ème exercices : Introduction à la géométrie

6 ème exercices : Introduction à la géométrie Droites, demi-droites et segments. Exercice 1 Réponse 1 Placer trois points A, B et C non alignés. Tracer la droite qui passe par les points B et C. Tracer le segment d extrémités A et B. Tracer la demi-droite

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Les Vecteurs ( En seconde )

Les Vecteurs ( En seconde ) Les Vecteurs ( En seconde ) Dernière mise à jour : Mardi 22 Avril 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) -1- J aimais et j aime encore les mathématiques pour elles-mêmes

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

CHAPITRE III VECTEURS

CHAPITRE III VECTEURS CHAPITRE III VECTEURS EXERCICES 1) Recopiez le point A et le vecteur u sur le quadrillage de votre feuille : 4 e Chapitre III Vecteurs a) Construisez le point B tel que AB = u. b) Construisez le point

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercice Exercices sur les vecteurs ABCD est un parallélogramme et ses diagonales se coupent en O () Compléter par un vecteur égal : a) AB = b) BC = c) DO = d) OA = e) CD = () Dire si les affirmations

Plus en détail

VECTEURS EXERCICES CORRIGES

VECTEURS EXERCICES CORRIGES Exercice n 1. VECTEURS EXERCICES CORRIGES On considère un hexagone régulier ABCDEF de centre O, et I et J les milieux respectifs des segments [AB] et [ED]. En utilisant les lettres de la figure citer :

Plus en détail

NOM : DROITE DES MILIEUX 4ème

NOM : DROITE DES MILIEUX 4ème Exercice 1 Soit ABCD un carré de côté 8cm. On appelle I le milieu de [AB] et L le milieu de [DA]. 1) Faire une figure. 2) Montrer que les droites (IL) et (BD) sont parallèles. 3) En utilisant les propriétés

Plus en détail

I-ACTIVITÉS NUMÉRIQUES (12 points)

I-ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC 1_DECEMBRE 2011 I-ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 : (4 pts) Soit les expressions 1) Calculer A et B en détaillant les étapes du calcul et écrire le résultat sous la forme d'une

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION JUIN 2008 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE Durée de l épreuve: 2h00 Métropole - La Réunion- Mayotte L emploi des calculatrices est autorisé Barème: - Activités

Plus en détail

Géométrie vectorielle plane, cours, première S

Géométrie vectorielle plane, cours, première S Géométrie vectorielle plane, cours, première S F.Gaudon 25 septembre 2015 Table des matières 1 Géométrie vectorielle dans un repère 2 1.1 Compléments sur la colinéarité.................................

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

CHAPITRE III VECTEURS

CHAPITRE III VECTEURS CHAPITRE III VECTEURS COURS 1) Exemple : force exercée par un aimant. p 2 2) Définitions et notations. p 3 3) Egalité de deux vecteurs... p 5 4) Multiplication d un vecteur par un nombre réel... p 6 5)

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

D.S. n 9 : Vecteurs 2 nde 7

D.S. n 9 : Vecteurs 2 nde 7 D.S. n 9 : Vecteurs nde 7 Vendredi 6 avril 013, 55 min. Ce sujet est à rendre avec la copie. SUJET D Nom :.................... Prénom :................. Communication: + ± Technique : + ± Raisonnement

Plus en détail

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8 CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2

Plus en détail

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme :

Exercice 1 : On considère la figure ci-contre où ABCD est un parallélogramme : Exercice 1 : On considère la figure ci-contre où est un parallélogramme : 1) Quelle est la longueur du segment [AB]? ) Quelle est la mesure de l angle BCD? Exercice : Sur la figure ci-contre, et BCEF sont

Plus en détail

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI..

Conclusion : KI = KC et LC = LI. Donc KI = KC = CL = LI.. Fiche d'exercices EXERCICES Exercice 1 a) Rappeler la définition de la bissectrice d un angle. b) Construire et faire la liste des données de la figure suivante : BAC est un triangle rectangle en A. La

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Diplôme National du Brevet Brevet Blanc n 1

Diplôme National du Brevet Brevet Blanc n 1 Janvier 2011 Diplôme National du Brevet Brevet Blanc n 1 MATHÉMATIQUES Série Collège DURÉE DE L'ÉPREUVE : 2 h 00 L usage de la calculatrice est autorisé Le candidat remettra sa copie, accompagnée des documents

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7

THEOREMES DES MILIEUX DROITES PARALLELES Exercices 1/7 DROITES PARALLELES Exercices 1/7 01 Citer les deux théorèmes des milieux. 02 Soit un triangle ABC. Soit I le milieu de [ AB ] et J le milieu de [ ] est parallèle à la droite (BC). BC. Démontrer que la

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs Notion de ecters coordonnées de ecters I. Notion de ecters a) Vecters et translations Définition : A et B désignent dex points d plan. La translation qi transforme A en B associe à tot point C d plan l'niqe

Plus en détail

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes :

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : Exercice 1 : Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : 1) ABCD est un parallélogramme donc les longueurs AB et CD sont égales. 2) MINE est un losange donc les

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

Brevet Blanc de Mathématiques. 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie.

Brevet Blanc de Mathématiques. 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Brevet Blanc de Mathématiques 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Exercice 1 : Le graphique ci contre représente une fonction h. Pour chaque question, donner

Plus en détail

Vecteurs, cours pour la classe de seconde

Vecteurs, cours pour la classe de seconde F.Gaudon 2 septembre 2009 Table des matières 1 Notions de translation et de vecteurs 2 2 Somme de vecteurs 3 3 Coordonnées de vecteurs 5 1 1 Notions de translation et de vecteurs Soient A et B deux points

Plus en détail

THEME : THEOREME DE THALES. Exercices corriges

THEME : THEOREME DE THALES. Exercices corriges THEME : THEOREME DE THALES Exercices corriges Exercice 1 : On sait que les droites (BC) et (MP) sont parallèles De plus, on a : AP = AM = 5 et AC = 6. Calculer AB. Dans les triangles ACB et APM P [AC]

Plus en détail

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 2 sur 6 II) Vecteurs : 1) Qu est ce qu un vecteur? Un vecteur ( non nul ) est la donnée de trois éléments : 1) une

Plus en détail

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%.

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%. 3 ème REVISIONS BREVET EXERCICE 1 : Soit P = (x 2) (2x + 1) (2x + 1)² 1. Développer et réduire P. 2. Factoriser P. 3. Résoudre l équation (2x + 1) (x + 3) = 0 4. Pour x = 3, écrire P sous forme fractionnaire.

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

DNB, Métropole, correction, mathématiques

DNB, Métropole, correction, mathématiques DNB, Métropole, correction, mathématiques jeudi 28 juin 2012 Activités numériques, 12 points Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Exercice n o 1 1.

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Réponse BC² = AB² + AC. Réponse

Réponse BC² = AB² + AC. Réponse 1 Théorème de Pythagore Si un triangle est rectangle alors le carré de son hypoténuse est égal à la somme des carrés des côtés de l angle droit. Si un triangle est rectangle alors le carré de son hypoténuse

Plus en détail

CORRECTION DU BREVET 2013

CORRECTION DU BREVET 2013 CORRECTION DU BREVET 01 Nouvelle-Calédonie Exercice 1 1) Une fourmi se déplace à 4 cm/s. ) La distance de la Terre à la Lune est,844 10 km. ) Une écriture simplifiée de 1 est 1 (d après la calculatrice).

Plus en détail

Fiche méthode : Vecteurs dans un repère

Fiche méthode : Vecteurs dans un repère Table des matières 1 Calcul des coordonnées 2 1.1 Cas général................................................ 2 1.2 exemple.................................................. 2 2 vecteurs égaux 2 2.1 rappels...................................................

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique

Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique Correction Deuxième partie du cahier-de-vacances Demande Si vous trouvez un lien

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Seconde Suite du cours sur les vecteurs Page 1 sur 9

Seconde Suite du cours sur les vecteurs Page 1 sur 9 Seconde Suite du cours sur les vecteurs Page 1 sur 9 III) Somme de vecteurs : 3) Somme de vecteurs et configurations : a) Parallélogramme Propriété : Parallélogramme Si ABCD est un parallélogramme alors

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Chapitre n 10 : «Les triangles»

Chapitre n 10 : «Les triangles» Chapitre n 10 : «Les triangles» I. Rappels Vocabulaire A, B et C sont les sommets. [ AB], [ BC ] et [ AC ] sont les trois côtés du triangle. BAC, BCA et ABC sont les trois angles du triangle. Le point

Plus en détail

Test E22 NOM : Classe :...

Test E22 NOM : Classe :... Test E22 NOM : Classe :... Exercice 1: ABCDEFGH est le cube ci-contre. 1. a) Donner deux droites parallèles. ---------------------------------------------------------- b) Donner deux droites sécantes.

Plus en détail

Mathématiques. Première S. Rédaction : Philippe Bardy Sébastien Cario Isabelle Tenaud. Coordination : Jean-Michel Le Laouénan

Mathématiques. Première S. Rédaction : Philippe Bardy Sébastien Cario Isabelle Tenaud. Coordination : Jean-Michel Le Laouénan Mathématiques Première S Rédaction : Philippe Bardy Sébastien Cario Isabelle Tenaud Coordination : Jean-Michel Le Laouénan Ce cours est la propriété du Cned Les images et textes intégrés à ce cours sont

Plus en détail

BREVET BLANC MATHEMATIQUES

BREVET BLANC MATHEMATIQUES BREVET BLANC MATHEMATIQUES Avril 2014 ---------- Durée de l épreuve : 2 heures ---------- Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Le sujet est à rendre avec la copie L usage de la calculatrice

Plus en détail

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin.

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin. COLLÈGE LA PRÉSENTATION BREVET BLANC Mai 2013 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles Brevet Blanc de Mathématiques 18/01/11 PARTIE NUMERIQUE Exercice 1 1) Ecrire les nombres A et B sous la forme de fractions irréductibles A= 13 3 4 3 2 5 B=5+ 1+ 1 8 3 4 A= 13 3 4 3 5 2 A= 13 3 10 3 B=

Plus en détail

TD d exercices sur les vecteurs et la géométrie analytique.

TD d exercices sur les vecteurs et la géométrie analytique. TD d exercices sur les vecteurs et la géométrie analytique. Exercice 1 : (Brevet 2006) 1) Placer les points A (-3 ; 1), B (-l,5 ; 2,5) et C (3 ; -2) dans un repère orthonormé (O, I, J). 2) Montrer que

Plus en détail

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Activités 1, 2 et 3 sur les translations I ) Vecteurs 1) Qu est ce qu un vecteur? Idée à retenir : «Un vecteur sert à décrire un déplacement» Un vecteur

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

DIPLÔME NATIONAL DU BREVET PONDICHÉRY - SESSION 2007

DIPLÔME NATIONAL DU BREVET PONDICHÉRY - SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-01-correction.php#c... DIPLÔME NATIONAL DU BREVET PONDICHÉRY - SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction et la présentation

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques avril 2011 L'usage de la calculatrice est autorisé. I Activités numériques 12 points II Activités géométriques 12 points III Problème 12 points Qualité de rédaction et présentation

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

Cours de mathématiques. Thomas Rey

Cours de mathématiques. Thomas Rey Cours de mathématiques Thomas Rey Classe de seconde le 29 août 2010 «Ce qui est affirmé sans preuve peut être nié sans preuve.» EUCLIDE D ALEXANDRIE Table des matières 1 Fonctions numériques 5 1.1 Notion

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES L usage de la calculatrice est autorisé. Durée : 2 heures. Le barème tient compte de la qualité de la rédaction et de la présentation

Plus en détail

Géométrie Vectorielle

Géométrie Vectorielle Géométrie Vectorielle M Renf Jean-Philippe Javet Sources : http://www.josleys.com Table des matières Vecteurs, composantes - points, coordonnées. Les vecteurs..........................................

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

Le théorème de Thalès et droite des milieux

Le théorème de Thalès et droite des milieux Le théorème de Thalès et droite des milieux A) Droite des milieux. 1. Théorème de la droite des milieux. Théorème : Dans un triangle, si une droite passe par le milieu d un côté et est parallèle à un second

Plus en détail

Ex 1 : Vrai ou faux CM1

Ex 1 : Vrai ou faux CM1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. b)si trois points sont sur

Plus en détail

Nombres complexes et géométrie euclidienne

Nombres complexes et géométrie euclidienne 19 Nombres complexes et géométrie euclidienne Le corps C des nombres complexes est supposé construit voir le chapitre 7. On rappelle que C est un corps commutatif et un R-espace vectoriel de dimension,

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Repérage et configurations du plan

Repérage et configurations du plan I Repères et coordonnées a) Repères Définition : (O ;I,J) est un repère du plan. Il est constitué d un triplet de points non alignés. O est appelé origine du repère La droite graduée (O ;I) est l axe des

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail