Comportement d un TASEP sur Æ avec une source complexe

Dimension: px
Commencer à balayer dès la page:

Download "Comportement d un TASEP sur Æ avec une source complexe"

Transcription

1 Comportement d un TASEP sur Æ avec une source complexe Nicky Sonigo École Normale Supérieure de Lyon Neuvième Colloque Jeunes Probabilistes et Statisticiens Le Mont-Dore, 7 mai 2010 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

2 Plan 1 TASEP sur N Introduction Couplage standard et particules de seconde classe Un théorème ergodique 2 TASEP avec taux de création complexe Présentation du modèle Représentation en un processus multi-classes Loi forte des grands nombres N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

3 Plan TASEP sur N Introduction 1 TASEP sur N Introduction Couplage standard et particules de seconde classe Un théorème ergodique 2 TASEP avec taux de création complexe Présentation du modèle Représentation en un processus multi-classes Loi forte des grands nombres N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

4 TASEP sur Æ TASEP sur N Introduction TASEP = Totally Asymmetric Simple Exclusion Process (η t ) t 0 processus de Markov à temps continu sur X := {0, 1} Æ λ (0, 1] = taux de création de particule au site N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

5 TASEP sur Æ TASEP sur N Introduction Transitions possibles du TASEP sur Æ : les particules sautent vers la droite à taux 1 si le site de droite est libre; si le site de droite est occupé, la particule ne peut pas sauter; les particules sont crées en 0 avec un taux λ N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

6 TASEP sur Æ TASEP sur N Introduction Transitions possibles du TASEP sur Æ : les particules sautent vers la droite à taux 1 si le site de droite est libre; si le site de droite est occupé, la particule ne peut pas sauter; les particules sont crées en 0 avec un taux λ N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

7 TASEP sur Æ TASEP sur N Introduction Transitions possibles du TASEP sur Æ : les particules sautent vers la droite à taux 1 si le site de droite est libre; si le site de droite est occupé, la particule ne peut pas sauter; les particules sont crées en 0 avec un taux λ N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

8 TASEP sur Æ TASEP sur N Introduction Transitions possibles du TASEP sur Æ : les particules sautent vers la droite à taux 1 si le site de droite est libre; si le site de droite est occupé, la particule ne peut pas sauter; les particules sont crées en 0 avec un taux λ N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

9 Plan TASEP sur N 1 TASEP sur N Introduction Couplage standard et particules de seconde classe Un théorème ergodique 2 TASEP avec taux de création complexe Présentation du modèle Représentation en un processus multi-classes Loi forte des grands nombres N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

10 TASEP sur N Temps t t = 0 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

11 TASEP sur N Temps t t = 0 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

12 TASEP sur N Temps t t = 0 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

13 TASEP sur N Temps t t = 0 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

14 TASEP sur N Temps t t = 0 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

15 TASEP sur N Temps t t = 0 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

16 TASEP sur N Temps t t = 0 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

17 TASEP sur N Temps t t = 0 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

18 TASEP sur N Temps t t = 0 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

19 TASEP sur N Construction graphique N := (N i, i 1) = famille de processus de Poisson indépendants (ou d horloges exponentielles) sur Ê + ; Si i 0, N i a pour paramètre 1; N 1 a pour paramètre λ; η 0 : configuration initiale (déterministe ou aléatoire); (η t ) construit en fonction de η 0 et N. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

20 Plan TASEP sur N Couplage standard et particules de seconde classe 1 TASEP sur N Introduction Couplage standard et particules de seconde classe Un théorème ergodique 2 TASEP avec taux de création complexe Présentation du modèle Représentation en un processus multi-classes Loi forte des grands nombres N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

21 Couplage standard TASEP sur N Couplage standard et particules de seconde classe Couplage standard. On considère deux configurations initiales η et ξ. On construit les TASEP (η t ) et (ξ t ) partant de η et de ξ respectivement, en utilisant les mêmes horloges exponentielles. Monotonie. Le couplage standard est monotone : si η ξ, i.e. η(x) ξ(x) pour tout x N, alors presque sûrement, pour tout t 0, η t ξ t N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

22 TASEP sur N Particules de seconde classe Couplage standard et particules de seconde classe : particule de première classe : particule de seconde classe (ξ t ) : (η t ) : λ N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

23 TASEP sur N Particules de seconde classe Couplage standard et particules de seconde classe Interprétation Les particules de première classe ont priorité sur celles de seconde classe : transtion à taux 1; les particules de seconde classe peuvent reculer, voire même sortir du système : on dit que la particule meurt; N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

24 Plan TASEP sur N Un théorème ergodique 1 TASEP sur N Introduction Couplage standard et particules de seconde classe Un théorème ergodique 2 TASEP avec taux de création complexe Présentation du modèle Représentation en un processus multi-classes Loi forte des grands nombres N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

25 Mesures invariantes TASEP sur N Un théorème ergodique Mesures invariantes ν λ la mesure produit de Bernoulli de paramètre λ est invariante pour le TASEP sur Æ; pour tout ρ max( 1 2, 1 λ), il existe une mesure invariante µλ ρ qui est asymptotiquement produit de densité ρ. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

26 Mesures invariantes TASEP sur N Un théorème ergodique Mesures invariantes ν λ la mesure produit de Bernoulli de paramètre λ est invariante pour le TASEP sur Æ; pour tout ρ max( 1 2, 1 λ), il existe une mesure invariante µλ ρ qui est asymptotiquement produit de densité ρ. Soit π une mesure produit sur Æ pour laquelle ρ := lim x η(x) π existe. Soit (η t ) le processus de mesure initiale π. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

27 Théorème ergodique TASEP sur N Un théorème ergodique Théorème (Liggett 1975) Si λ 1 2 Si λ 1 2 alors lim t πs λ(t) = alors lim t πs λ(t) = { µ λ ρ, si ρ 1 2, µ λ 1, si ρ { µ λ ρ, si ρ > 1 λ ν λ, si ρ 1 λ. où S λ (t) est le semi-groupe de Markov du TASEP sur Æ. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

28 Plan TASEP avec taux de création complexe Présentation du modèle 1 TASEP sur N Introduction Couplage standard et particules de seconde classe Un théorème ergodique 2 TASEP avec taux de création complexe Présentation du modèle Représentation en un processus multi-classes Loi forte des grands nombres N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

29 TASEP avec taux de création complexe Présentation du modèle TASEP sur Æ avec source complexe Taux de création de particules = λ(η). λ(η) dépend de la configuration actuelle. Dépendance à portée finie (ou d espérance finie) : λ(η) ne dépend que des R 1 premiers sites. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

30 TASEP avec taux de création complexe Présentation du modèle TASEP sur Æ avec source complexe Taux de création de particules = λ(η). λ(η) dépend de la configuration actuelle. Dépendance à portée finie (ou d espérance finie) : λ(η) ne dépend que des R 1 premiers sites. Un exemple. α 0, α 1 (0, 1]; λ(η) := α 0 (1 η(1)) + α 1 η(1). N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

31 TASEP avec taux de création complexe Présentation du modèle TASEP sur Æ avec source complexe α 0 α 1 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

32 TASEP avec taux de création complexe Présentation du modèle TASEP sur Æ avec source complexe Supposons que α 1 α 0. Le processus est encore monotone au sens où l on peut coupler deux dynamiques issues de configurations ordonées de sorte que cet ordre soit préservé au cours du temps. On pose α 0 = λ et α 1 = λ + ǫ et on suppose que 0 < λ < λ + ǫ < 1 2. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

33 Plan TASEP avec taux de création complexe Représentation en un processus multi-classes 1 TASEP sur N Introduction Couplage standard et particules de seconde classe Un théorème ergodique 2 TASEP avec taux de création complexe Présentation du modèle Représentation en un processus multi-classes Loi forte des grands nombres N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

34 TASEP avec taux de création complexe Représentation en un processus multi-classes Représentation en un processus multi-classes 1 λ 2 ǫ 1 ǫ 3 2 ǫ i i 1 N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

35 TASEP avec taux de création complexe Représentation en un processus multi-classes Représentation en un processus multi-classes On obtient un processus (ξ t ) sur Æ Æ ; le processus η t (x) := 1 ξt(x) 0 est un TASEP avec source complexe; le processus ζ t (x) := 1 ξt(x)=1 est un TASEP classique. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

36 Plan TASEP avec taux de création complexe Loi forte des grands nombres 1 TASEP sur N Introduction Couplage standard et particules de seconde classe Un théorème ergodique 2 TASEP avec taux de création complexe Présentation du modèle Représentation en un processus multi-classes Loi forte des grands nombres N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

37 TASEP avec taux de création complexe Loi forte des grands nombres Loi forte des grands nombres Soit N (i) t le nombre de particules de classe i qui ont été crées entre 0 et t et qui sont toujours en vie au temps t. Soit N t le nombre total de particules crées entre 0 et t et qui sont toujours en vie au temps t : N t = i=1 N (i) t. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

38 TASEP avec taux de création complexe Loi forte des grands nombres Loi forte des grands nombres Théorème (S. 2009) Pour tous λ, ǫ > 0 tels que λ + ǫ < 1 2, N t/t converge presque sûrement vers une constante v(λ, ǫ). De plus : v(λ, ǫ) = λ(1 λ)(1 + q(λ)ε + o(ε)). où q(λ) est la probabilité de survie de la particule de seconde classe pour un TASEP de mesure initiale 21ν λ. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

39 TASEP avec taux de création complexe Loi forte des grands nombres Loi forte des grands nombres Théorème (S. 2010) Pour tout λ [0, 1], q(λ) = (1 2λ)1 λ 1. 2 En particulier, si λ < 1, on a presque sûrement : 2 N t lim t t = λ(1 λ)(1 + ε(1 2λ) + o(ε)). N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

40 TASEP avec taux de création complexe Loi forte des grands nombres Loi forte des grands nombres Esquisse de preuve : Lemme On montre d abord un lemme donnant des estimées a priori sur le densité de particules de classe i : lim sup t N (i) t t = O(ǫ i 1 ). Pour calculer la limite à l ordre 1, il suffit donc de ne considérer que les particules de première et de seconde classe. N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

41 TASEP avec taux de création complexe Loi forte des grands nombres Loi forte des grands nombres Le théorème ergodique de Liggett nous donne que N (1) t l ordre de λ(1 λ)t ; est de Le nombre de particules de seconde classe entrées entre 0 et t est de l ordre de λ(1 λ)ǫt ; Si ǫ est suffisamment petit, les particules de seconde classe n interagissent qu une fois qu elles sont loin dans le système donc leur probabilité de survie est approximativement q(λ). N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

42 TASEP avec taux de création complexe Loi forte des grands nombres T.M. Liggett. Ergodic theorems for the asymmetric simple exclusion process. Transactions of the American Mathematical Society, 213 : , T.M. Liggett. Interacting Particle Systems. Springer, N. Sonigo. Semi-infinite TASEP with a Complex Boundary Mechanism. Journal of Statistical Physics, 136(6) : , September N. Sonigo. Survival Probability of a Second-class Particle in a semi-infinite TASEP. en cours, N. Sonigo (ENS Lyon) TASEP avec source complexe 7 mai / 29

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Équation de Langevin avec petites perturbations browniennes ou

Équation de Langevin avec petites perturbations browniennes ou Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

MODELES DE DUREE DE VIE

MODELES DE DUREE DE VIE MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Module 7: Chaînes de Markov à temps continu

Module 7: Chaînes de Markov à temps continu Module 7: Chaînes de Markov à temps continu Patrick Thiran 1 Introduction aux chaînes de Markov à temps continu 1.1 (Première) définition Ce module est consacré aux processus à temps continu {X(t), t R

Plus en détail

Temps et thermodynamique quantique

Temps et thermodynamique quantique Temps et thermodynamique quantique Journée Ludwig Boltzmann 1 Ensemble Canonique Distribution de Maxwell-Boltzmann, Ensemble canonique ϕ(a) = Z 1 tr(a e β H ) Z = tr(e β H ) 2 La condition KMS ϕ(x x) 0

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Condition de stabilité d'un réseau de les d'attente à deux stations et N classes de clients 1

Condition de stabilité d'un réseau de les d'attente à deux stations et N classes de clients 1 General Mathematics Vol. 18, No. 4 (2010), 85108 Condition de stabilité d'un réseau de les d'attente à deux stations et N classes de clients 1 Faiza Belarbi, Amina Angelika Bouchentouf Résumé Nous étudions

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Web Science. Master 1 IFI. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.

Web Science. Master 1 IFI. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice. Web Science Master 1 IFI Andrea G. B. Tettamanzi Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.fr 1 Annonce : recherche apprenti Projet Géo-Incertitude Objectifs

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

HÖLDER CONTINUITY AND WAVELETS

HÖLDER CONTINUITY AND WAVELETS Laurent SIMONS HÖLDER CONTINUITY AND WAVELETS Dissertation présentée en vue de l obtention du grade de Docteur en Sciences Promoteurs : Françoise BASTIN Samuel NICOLAY 24 Juin 2015 Plan Partie I Continuité

Plus en détail

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE JEAN-DENIS FOUKS, EMMANUEL LESIGNE ET MARC PEIGNÉ J.-D. Fouks. École Supérieure d Ingénieurs de Poitiers. 40 avenue du Recteur Pineau, 860 Poitiers

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Curriculum Vitae Ismaël Bailleul

Curriculum Vitae Ismaël Bailleul Curriculum Vitae Ismaël Bailleul Date de naissance 2 décembre 1979 Nationalité Français Adresse Administrative Institut de Recherche Mathématiques de Rennes 263 Avenue du Général Leclerc, 35042 RENNES

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

POURQUOI LA LOI DE BENFORD N EST PAS MYSTÉRIEUSE

POURQUOI LA LOI DE BENFORD N EST PAS MYSTÉRIEUSE Math. & Sci. hum. / Mathematics and Social Sciences (46 e année, n 82, 2008(2), p. 7 5) POURQUOI LA LOI DE BENFORD N EST PAS MYSTÉRIEUSE Nicolas GAUVRIT, Jean-Paul DELAHAYE 2 résumé La loi dite de Benford

Plus en détail

Maîtrise universitaire ès sciences en mathématiques 2012-2013

Maîtrise universitaire ès sciences en mathématiques 2012-2013 1 / 6 Remarques liminaires : Ce master à (3 semestres) permet 2 orientations distinctes : - Un master général : "Mathématiques, Systèmes dynamiques et phénomènes d'évolution" - Un master qui permet de

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Sommaire. Couverture de zone de surveillance dans les réseaux de capteurs. De quoi parle-t-on ici (1/2)? Objectif. De quoi parle-t-on ici (2/2)?

Sommaire. Couverture de zone de surveillance dans les réseaux de capteurs. De quoi parle-t-on ici (1/2)? Objectif. De quoi parle-t-on ici (2/2)? ouverture de zone de surveillance dans les réseaux de capteurs Jean arle, Master Recherche Informatique Option Informatique Mobile 008-009 s Jean arle - Master Recherche Informatique 008-009 Objectif e

Plus en détail

Master of Science en mathématiques 2013-2014

Master of Science en mathématiques 2013-2014 Remarques liminaires : 1 Ce master à (3 semestres) permet 2 orientations distinctes : 1) Un master général en mathématiques 2) Un master qui permet de choisir des mineurs en finance, statistique, informatique

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Approximation diophantienne uniforme et dimension de Hausdorff

Approximation diophantienne uniforme et dimension de Hausdorff Approximation diophantienne uniforme et dimension de Hausdorff Lingmin LIAO Travaux en collaboration avec Yann Bugeaud, Dong Han Kim et Micha l Rams Université Paris-Est Créteil Séminaire de Probabilités

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

PRÉCIS DE SIMULATION

PRÉCIS DE SIMULATION PRÉCIS DE SIMULATION P. Del Moral Centre INRIA Bordeaux Sud-Ouest & Institut de Mathématiques de Bordeaux Université Bordeaux I, 351, cours de la Libération 33405 Talence, France Table des matières 1

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

F1C1/ Analyse. El Hadji Malick DIA

F1C1/ Analyse. El Hadji Malick DIA F1C1/ Analyse Présenté par : El Hadji Malick DIA dia.elmalick1@gmail.com Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire

Plus en détail

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon 1916 2001 Monsieur X 1951 2 Où

Plus en détail

14. Introduction aux files d attente

14. Introduction aux files d attente 14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Cours de gestion des risques d assurances et de théorie de la ruine. Stéphane Loisel

Cours de gestion des risques d assurances et de théorie de la ruine. Stéphane Loisel Cours de gestion des risques d assurances et de théorie de la ruine Stéphane Loisel ISFA, 2005-2006 Table des matières I Modélisation de la charge sinistre : du modèle individuel au modèle collectif 5

Plus en détail

Mesure et Intégration (Notes de cours de L3)

Mesure et Intégration (Notes de cours de L3) Mesure et Intégration (Notes de cours de L3) Ahmed Zeriahi Version préliminaire-octobre 2011 Avertissement : Ceci est une version préliminaire des notes du cours que l auteur a dispensé en troisème année

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Master of Science en mathématiques 2015-2016

Master of Science en mathématiques 2015-2016 Remarques liminaires : 1/9 Ce master à 90 ECTS (3 semestres) permet 2 orientations distinctes : - Un master général en mathématiques - Un master qui permet de choisir des mineurs en finance, statistique

Plus en détail

Marché de l occasion et exigences de rénovation énergétique. Rencontre de l Observatoire 21 mai 2015

Marché de l occasion et exigences de rénovation énergétique. Rencontre de l Observatoire 21 mai 2015 Marché de l occasion et exigences de rénovation énergétique Rencontre de l Observatoire 21 mai 2015 Logements neufs / logements d occasion 7 700 logements d occasion vendus en 2013 dans l aire urbaine

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Peut-on imiter le hasard?

Peut-on imiter le hasard? 168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

2008/03. La concentration des portefeuilles : perspective générale et illustration

2008/03. La concentration des portefeuilles : perspective générale et illustration 2008/03 La concentration des portefeuilles : perspective générale et illustration Olivier Le Courtois Professeur de finance et d assurance UPR Economie, Finance et Gestion EMLYON Christian Walter Actuaire

Plus en détail

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Probabilités avancées. Florin Avram

Probabilités avancées. Florin Avram Probabilités avancées Florin Avram 24 janvier 2014 Table des matières 1 Mise en scène discrète 3 1.1 Espace des épreuves/résultats possibles, événements, espace probabilisé, mesure de probabilités, variables

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Sommaire Chapitre 1 Chapitre 2 Chapitre 3 Chapitre 4 Chapitre 5 Chapitre 6 Chapitre 7. ARC EPS Eco-microbiologie Prévisionnelle Statistique

Sommaire Chapitre 1 Chapitre 2 Chapitre 3 Chapitre 4 Chapitre 5 Chapitre 6 Chapitre 7. ARC EPS Eco-microbiologie Prévisionnelle Statistique ARC EPS Eco-microbiologie Prévisionnelle Statistique 1 Objectifs de l ARC EPS 2 Partenaires 3 Moyens 4 Problématique Microbiologique 5 Démarche et Résultats 6 Perspectives 7 Valorisation LES OBJECTIFS

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud

Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud Eddy Caron, Frédéric Desprez, Adrian Muresan, Frédéric Suter To cite this version: Eddy Caron, Frédéric Desprez, Adrian

Plus en détail

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus.

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus. JF WALHIN* J PARIS* * Université Catholique de Louvain, Belgique Le Mans Assurances, Belgique RÉSUMÉ Nous proposons une méthodologie générale pour construire un système bonus-malus équilibré basé sur une

Plus en détail

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail