Université Lyon 1 Année Master Mathématiques Générales 1 ère année Analyse appliquée aux équations aux dérivées partielles

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Université Lyon 1 Année Master Mathématiques Générales 1 ère année Analyse appliquée aux équations aux dérivées partielles"

Transcription

1 Université Lyon Année Master Mathématiques Générales ère année Analyse appliquée aux équations aux dérivées partielles Feuille 4. Intégration Notations n N λ n est la mesure de Lebesgue dans R n. H k est la mesure de Hausdorff k-dimensionnelle. Cas particulier : H est la mesure de longueur. Donc une courbe et dl l intégrale de longueur. Cas particulier : H est la mesure de surface. Donc S f(x) dh (x) = f(x) dh (x) = S f dl, avec f ds, avec S une surface et ds l intégrale de surface. La norme euclidienne standard sur R n est désignée par x x. B(x, r) et S(x, r) sont respectivement la boule ouverte et la sphère centrées en x et de rayon r dans R n (par rapport à la norme euclidienne standard). ω n = λ n (B(0, )) (=volume de la boule unité). σ n = H n (S(0, )) (=superficie de la sphère unité). Exercice. (Paramétrisations concrètes) Donner des formules pour :. f(x, y) dl. x+y=. f(x, y) dl. C(0,) 3. (Dans R 3 ) S(0,) f(x, y, z) ds. 4. L intégrale sur un k-plan dans R n. Exercice. (Changements de coordonnées sphériques généralisées) Soient x R n, r > 0.. Si f est H n -intégrable ou mesurable positive sur S(x, r), montrer l identité f dh n = r n f(x + ry) dh n (y). S(x,r) S(0,). Si f est λ n -intégrable ou mesurable positive sur B(x, r), montrer l identité f dλ n = r n f(x + ry) dλ n (y). B(x,r) B(0,) 3. Calculer λ n (B(x, r)) et H n (S(x, r)) en fonction de ω n et σ n.

2 4. Généralisation des propriétés. et.? Exercice 3. (Intégrales de référence) Déterminer pour quelles valeurs du paramètre a les intégrales suivantes sont finies :. B(0,) x dx. a. x dx. a R n \B(0,) Exercice 4. (Formules de ω n et σ n ) En calculant de deux manières différentes R n e x σ n = πn/ (n/), ω π n/ n = (n/ + ). Donner l expression de ces quantités selon la parité de n. On rappelle que la fonction d Euler est donnée par et que (/) = π. (t) = 0 x t e x dx, t > 0, dx, montrer les identités suivantes : Exercice 5. (Propriétés de la mesure superficielle sur la sphère) Soit A une partie borélienne de S(0, ). Soit B = B(A) = 0 t. Montrer que B est une partie borélienne de R n et que H n (A) = nλ n (B).. En déduire que σ n = nω n. 3. Soit R O(n). Déterminer B(R(A)). En déduire que la mesure sur la sphère S(0, ) est invariante par isométries linéaires. 4. Soit f : S(0, ) R intégrable et impaire par rapport à l une des coordonnées. Montrer que f(x) dh n (x) = 0. S(0,) 5. Calculer S(0,) x dh n (x). ta. Exercice 6. (Mesure d un cône) Calculer la superficie du cône circulaire droit C := {x R n ; x n + x x n =, 0 x n }. Exercice 7. (Intégration par parties)

3 Soient R n un ouvert lipschtzien, et f, g C (). On suppose que soit est relativement compact, soit l une des fonctions f ou g est à support compact. Montrer la formule d intégration par parties f j g = ν j fg dh n g j f. Exercice 8. (Formules de Green) Soient un ouvert borné de classe C et u, v C (). Montrer les identités suivantes :. u v = u v u v (première formule de Green) (. (u v v u) = u v v u ) (deuxième formule de Green). Exercice 9. (Aire d un domaine délimité par une courbe) Soit une courbe simple dans le plan, délimitant un domaine de classe C. On considère, sur, l orientation positive par rapport à. En utilisant le théorème fluxdivergence div f = n f pour un choix convenable du champ de vecteurs f, montrer la formule suivante aire() = (x dy y dx). Exercice 0. (Formules de la moyenne) Soit f C (R n ).. Montrer que la fonction G :]0, + [ R définie pour tout r > 0 par G(r) = f(x) dh n (x) est de classe C et que G (r) = r n r n S(0,r) S(0,r) x f(x) dh n (x) pour tout r > 0.. En déduire que G (r) = f(x) dx pour tout r > 0. r n B(0,r) 3. Établir la première formule de la moyenne : si f C (B(0, R)) C(B(0, R)) est harmonique (càd solution de f = 0 dans ), alors f(0) = f(x) dh n (x). H n (S(0, R)) S(0,R) 4. Établir la deuxième formule de la moyenne : si f C (B(0, R)) C(B(0, R)) est harmonique, alors f(0) = f(x) dλ n (x). λ n (B(0, R)) B(0,R) 3

4 5. En déduire le principe du maximum (minimum) : si une fonction harmonique dans un ouvert connexe admet un point de maximum (minimum), alors elle est constante. 6. En déduire l unicité { de la solution du problème de Dirichlet : si est un ouvert borné, u = f dans alors le problème u = g sur a au plus une solution u C () C(). Exercice. (Identité de Pohozaev) Soit un ouvert de classe C. Notations. Si u C () et x, on note par u (x) = u(x) ν(x) la dérivée normale de u au point x u τ u (x) = u(x) (x) ν(x) le gradient tangentiel de u au point x. Autrement dit : u τ est la projection orthogonale de u sur ν. Soit f C (R). Soit u C () telle que u = f (u) dans. n. En multipliant l équation u = f (u) par x u = x j j u, obtenir l identité de Pohozaev n { = u + n f(u) x νf(u) x ν ( u ) + x ν j= u τ } u x u. τ. Application. { Montrer que, si est une boule, alors la seule solution u C () du u = u 3 dans problème est u 0. u = 0 sur Exercice. (formule de la co-aire) Soit un ouvert. Soit ϕ : R une fonction de classe C sans point critique. Montrer que pour toute fonction f : R "convenable" (on précisera le sens du mot) on a la formule de la co-aire f dh n dt = f ϕ dλ n. R {ϕ=t} Exercice 3. (le rôle de la solution fondamentale) Soit, pour x R n \ {0}, ln x, si n = n (x) = π., si n 3 (n )σ n x n 4

5 ( n est la solution fondamentale de.) () Montrer l identité n ( ϕ) = ϕ, ϕ C c (R n ). () Montrer que, si f Cc (R n ) et n 3, alors l équation u = f a exactement une solution u C (R n ) telle que u(x) = 0. lim x Exercice 4. (le rôle de la fonction de Green) Soit un ouvert borné de classe C. On suppose que, { pour tous f C () et ϕ C 3 ( ), il y a une solution u C u = f dans () du problème (P ) u = ϕ sur. Soit, pour x, g(x, ) la solution du problème (P) pour f = 0 et ϕ = n (x ). On pose G(x, y) := n (x y) + g(x, y), x, y. (G est la { fonction de Green de.) u = f dans Montrer que la solution de (P) si ϕ = 0, c est-à-dire de, est donnée par u = 0 sur la formule u(x) = G(x, y)f(y) dy, x. Autrement dit : si on sait résoudre (P) pour f = 0 et ϕ quelconque, alors on sait résoudre (P) pour ϕ = 0 et f quelconque. 5

Université Lyon 1 Année Master Mathématiques Générales 1 ère année Analyse appliquée aux équations aux dérivées partielles

Université Lyon 1 Année Master Mathématiques Générales 1 ère année Analyse appliquée aux équations aux dérivées partielles Université Lyon 1 Année 213-214 Master Mathématiques Générales 1 ère année Analyse appliquée aux équations aux dérivées partielles Feuille 7 - Équations de transport I- Solutions classiques Exercice 1.

Plus en détail

Épreuve d analyse numérique

Épreuve d analyse numérique Épreuve d analyse numérique Projections convexes, décomposition, et algorithme de projections alternées Dans tout ce sujet, on se place dans un espace de Hilbert : H désigne un espace vectoriel réel complet

Plus en détail

Université Paris Dauphine DUMI2E 2e année. Calcul différentiel et optimisation I. Sujets d examen François BOLLEY

Université Paris Dauphine DUMI2E 2e année. Calcul différentiel et optimisation I. Sujets d examen François BOLLEY Université Paris Dauphine DUMI2E 2e année Calcul différentiel et optimisation I Sujets d examen 2006-2007 François BOLLEY Université Paris Dauphine DUMI2E 2e année Calcul différentiel Contrôle continu

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

Fonctions de deux variables

Fonctions de deux variables MTB - ch5 Page 1/19 Fonctions de deux variables I Topologie de R 2 On note R 2 l'ensemble des couples de nombres réels. On assimile R 2 au plan usuel muni d'un repère, en confondant un point géométrique

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Université Pierre & Marie Curie Année 2016-2017 Module 2M256 Analyse vectorielle, intégrales multiples Fonctions de plusieurs variables 1 Calcul vectoriel Exercice 1. (Produit scalaire) Soient u, v, w

Plus en détail

Équations différentielles - Cours no 2 Résultats Généraux sur les équations différentielles

Équations différentielles - Cours no 2 Résultats Généraux sur les équations différentielles Équations différentielles - Cours no 2 Résultats Généraux sur les équations différentielles 1 Problème de Cauchy Cadre : I intervalle ouvert de R, Ω ouvert connexe d un espace de Banach E, f application

Plus en détail

Baccalauréat S Amérique du Sud novembre 2005

Baccalauréat S Amérique du Sud novembre 2005 Durée : 4 heures Baccalauréat S Amérique du Sud novembre 5 EXERCICE 1 Commun à tous les candidats 4 points Les parties A et B sont indépendantes Alain fabrique, en amateur, des appareils électroniques.

Plus en détail

A. Popier (Le Mans) EDP, solutions classiques. 1 / 52

A. Popier (Le Mans) EDP, solutions classiques. 1 / 52 ÉQUATIONS AUX DÉRIVÉES PARTIELLES, SOLUTIONS CLASSIQUES. DIFFÉRENCES FINIES. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP, solutions classiques. 1 / 52 PLAN DU COURS 1 FORMULES

Plus en détail

Introduction aux équations à dérivées partielles

Introduction aux équations à dérivées partielles Université de Metz Master de Mathématiques er semestre Introduction aux équations à dérivées partielles par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2005/06 Contenu Chapître.

Plus en détail

Baccalauréat S (obligatoire) Polynésie septembre 2009

Baccalauréat S (obligatoire) Polynésie septembre 2009 Baccalauréat S (obligatoire) Polynésie septembre 2009 EXERCICE 1 Commun à tous les candidats 4 points On considère le cube OABCDEFG d arête de longueur 1 représenté ci-dessous. Il n est pas demandé de

Plus en détail

Compléments mathématiques et notations

Compléments mathématiques et notations Compléments mathématiques et notations 1 Variations, dérivées et approximations Valeurs approchées : notation On utilise plusieurs notations pour exprimer que deux variables ou valeurs sont proches sans

Plus en détail

Différentielle seconde, extremums.

Différentielle seconde, extremums. Différentielle seconde, extremums Exercice 1 Soit A une matrice de taille n n Pour tout x R n, on pose qx) = x, Ax Montrer que q est C et calculer son gradient et sa matrice hessienne Indication On remarquera

Plus en détail

Mathématique MATH-F-112/ Exercices

Mathématique MATH-F-112/ Exercices Mathématique MATH-F-112/1112 - Exercices 2016-2017 1 Analyse vectorielle 1.1 Vecteurs et opérateurs diérentiels 1. (a) Calculer le gradient de F au point (2, 1) si F (x, y) = x 3 + y 3 3xy (b) Calculer

Plus en détail

Calcul Différentiel et Intégral. Examen final - Mardi 13 janvier 2015

Calcul Différentiel et Intégral. Examen final - Mardi 13 janvier 2015 Université Toulouse 3 Année 214-215 Département de Mathématiques L2 Parcours Spécial Calcul Différentiel et Intégral Examen final - Mardi 13 janvier 215 Durée : 2h Aucun document (ni calculatrice, ni téléphone,

Plus en détail

Outils mathématiques. Applications linéaires - Matrices

Outils mathématiques. Applications linéaires - Matrices Licence Sciences de la Terre et Environnement Outils mathématiques Applications linéaires - Matrices Exercice. On considère dans la base canonique de R les deux applications linéaires suivantes : σ u +

Plus en détail

Exercices : Préparation à l oral

Exercices : Préparation à l oral Mathématiques Année 26-27 Lycée Pothier - PSI F. Blache Exercices : Préparation à l oral Exercice. Calcul mental : 8 699 et 99. 2. Déterminer le plus grand facteur premier du nombre 89999. Exercice 2 Soit

Plus en détail

Exercice 2. Calculer les dérivées partielles et la différentielle pour les fonctions suivantes : f 1 (x, y) = 4 x 5 y + 6 f 1 x = f 1

Exercice 2. Calculer les dérivées partielles et la différentielle pour les fonctions suivantes : f 1 (x, y) = 4 x 5 y + 6 f 1 x = f 1 L Chimie, 04-05 Léo Glangetas Université de Rouen NOM Prénom Groupe Note sur 0: Test en mathématiques note non retenue) Mercredi 8 octobre 04 documents, calculatrice interdits) Exercice. Calculer les dérivées

Plus en détail

Résumé 22 : Calcul Différentiel

Résumé 22 : Calcul Différentiel Résumé 22 : Calcul Différentiel E sera un R espace vectoriel normé de dimension n, F un R espace vectoriel normé et Ω un ouvert de E Nous noterons aussi B = e 1,, e n ) une base de E Dans la majorité des

Plus en détail

Intégrales curvilignes Intégrales de surface Théorèmes de Stokes. Intégrale d un champ scalaire Intégrale d un champ de vecteurs

Intégrales curvilignes Intégrales de surface Théorèmes de Stokes. Intégrale d un champ scalaire Intégrale d un champ de vecteurs Intégrale d un champ scalaire Intégrale d un champ de vecteurs Définition On a vu que l orientation d une surface S était la donnée d un champ de vecteur normal unitaire, c est-à-dire une application continue

Plus en détail

Changement de variables dans les intégrales sur un ouvert de R N. 1 Propriétés de la mesure de Lebesgue.

Changement de variables dans les intégrales sur un ouvert de R N. 1 Propriétés de la mesure de Lebesgue. Université d Artois Faculté des Sciences ean Perrin Mesure et Intégration Licence 3 Mathématiques-Informatique) Daniel Li Changement de variables dans les intégrales sur un ouvert de R N Daniel Li April

Plus en détail

TRANSFORMATION DE FOURIER (Corrigé des exercices )

TRANSFORMATION DE FOURIER (Corrigé des exercices ) RANSFORMAION DE FOURIER Corrigé des exercices. Déterminer les transformées de Fourier des fonctions : a t I [,] t, bt sin t,ct e t /,dt t π +t 2. [ ] e a FI [,] tν e 2it 2it dt e 2iπ ν e 2iπ ν sin2. 2i

Plus en détail

FX 24 - EQUATIONS DIFFÉRENTIELLES

FX 24 - EQUATIONS DIFFÉRENTIELLES Lycée Thiers FX 24 - EQUATIONS DIFFÉRENTIELLES EDL - 1 Soit n N. Résoudre sur ], + [ l équation différentielle 2t + = t n. Résoudre sur R l équation différentielle ch (t) + sh (t) = 1 1 + t 2. Soit I un

Plus en détail

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50 Fonctions réelles de deux variables () Fonctions réelles de deux variables 1 / 50 1 Fonctions de deux variables réelles à valeurs dans R 2 Calcul différentiel 3 Extrema d une fonction de deux variables

Plus en détail

ESPACES MÉTRIQUES ET CONVERGENCE DE GROMOV-HAUSDORFF

ESPACES MÉTRIQUES ET CONVERGENCE DE GROMOV-HAUSDORFF Ilaria Mondello ilaria.mondello@u-pec.fr ESPACES MÉTRIQUES ET CONVERGENCE DE GROMOV-HAUSDORFF 1. Espaces métriques : définitions et exemples Dénition 1.1. Soit X un ensemble quelconque. Une fonction d

Plus en détail

Application de la formule de la co-aire à deux problèmes d évolution géométrique.

Application de la formule de la co-aire à deux problèmes d évolution géométrique. Application de la formule de la co-aire à deux problèmes d évolution géométrique. François Dayrens Journées MMCS 19 décembre 2014 François Dayrens (Journées MMCS) Co-aire et flots géométriques 19 décembre

Plus en détail

UE MAT234 Notes de cours sur les fonctions de plusieurs variables

UE MAT234 Notes de cours sur les fonctions de plusieurs variables UE MAT234 Notes de cours sur les fonctions de plusieurs variables 1 Fonctions de plusieurs variables réelles 1.1 éfinitions générales 1.1.1 éfinition IR n = IR IR... IR est l ensemble des n-uplets de réels

Plus en détail

Espaces de Hilbert. Ch. Dossal Mars exercice 1 : exercice 2 :

Espaces de Hilbert. Ch. Dossal Mars exercice 1 : exercice 2 : Espaces de Hilbert Ch. Dossal Mars 2012 exercice 1 : Soit H un espace préhilbertien réel. 1. Montrer l'égalité: x, y H, (x, y) = 1 4 ( x + y 2 x y 2 ). 2. Soit f L(H) tel que x H, f(x) = x. Montrer que

Plus en détail

Rappel de calcul différentiel

Rappel de calcul différentiel Calcul différentiel et géométrie Année 008-009 ENS Cachan Vincent Beck Différentiabilité. Rappel de calcul différentiel Exercice 1 Exemples et contre-exemples. a) Étudier suivant les valeurs de α > 0,

Plus en détail

EXERCICES SUR LES DISTRIBUTIONS. 1 x 2 si x < 1. ϕ(x) = 0 si x 1 2

EXERCICES SUR LES DISTRIBUTIONS. 1 x 2 si x < 1. ϕ(x) = 0 si x 1 2 Université Chouaib Doukkali Faculté des Sciences Département de Mathématiques El Jadida A. Lesfari lesfariahmed@yahoo.fr http://lesfari.com EXERCICES SUR LES DISTRIBUTIONS Eercice. Soit ϕ : R R définie

Plus en détail

Exercices d oraux de la banque CCP BANQUE ALGÈBRE

Exercices d oraux de la banque CCP BANQUE ALGÈBRE Exercices d oraux de la banque CCP 2014-2015 20 exercices sur les 37 d algèbre peuvent être traités en Maths Sup. BANQUE ALGÈBRE EXERCICE 59 Soit E l espace vectoriel des polynômes à coefficients dans

Plus en détail

Changement de variables dans une intégrale multiple

Changement de variables dans une intégrale multiple Chapitre 1 Changement de variables dans une intégrale multiple Dans ce chapitre on poursuit l étude des intégrales multiples. Pour calculer une intégrale double, la méthode de base donnée par le théorème

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement Obligatoire

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement Obligatoire Session 2011 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7 Du papier millimétré est mis

Plus en détail

Formules intégrales. Chapitre Intégrales curvilignes Définition. On appelle intégrale curviligne de V le long de γ, l intégrale :

Formules intégrales. Chapitre Intégrales curvilignes Définition. On appelle intégrale curviligne de V le long de γ, l intégrale : Chapitre 6 Formules intégrales 6.1 Intégrales curvilignes Soit : t (t) = (x(t), y(t), z(t)) une courbe paramétrée régulière de l espace R 3 et V = (P(x, y, z), Q(x, y, z), R(x, y, z)) un champ de vecteurs.

Plus en détail

Fonctions de deux variables

Fonctions de deux variables Fonctions de deux variables Le but de ce chapitre est l étude des fonctions définies sur une partie U de R 2 et à valeurs dans R et plus particulièrement la recherche d extremum locaux. I Topologie de

Plus en détail

e x lim f k (x) = (x + 1)e kx.

e x lim f k (x) = (x + 1)e kx. EXERCICE 4 (7 points ) (Commun à tous les candidats) Partie A. Restitution organisée de connaissances On suppose connu le résultat suivant : Démontrer que lim x + xe x =. e x lim x + x = +. Partie B. Restitution

Plus en détail

COMPOSITION DE MATHÉMATIQUES D (U)

COMPOSITION DE MATHÉMATIQUES D (U) ÉCOLE NORMALE SUPÉRIEURE CONCOURS D ADMISSION 2016 FILIÈRE MPI COMPOSITION DE MATHÉMATIQUES D (U) (Durée : 6 heures) L utilisation des calculatrices n est pas autorisée. Préambule Ce problème est consacré

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

Corrigé du baccalauréat S (obligatoire) Polynésie septembre 2011

Corrigé du baccalauréat S (obligatoire) Polynésie septembre 2011 Corrigé du baccalauréat S obligatoire Polynésie septembre EXERCICE. Sur personnes, 5 utilisent l escalier ; p E pe= p E = 4. = 5 = 4. D où 5 points Sur les 5 personnes empruntant l ascenseur la répartition

Plus en détail

Mat307 Feuille d exercices 2 : équations différentielles UGA

Mat307 Feuille d exercices 2 : équations différentielles UGA Mat37 Feuille d exercices 2 : équations différentielles UGA Exercice 1. 1. Résoudre l équation différentielle suivante x x + cos(t ; x( 1. 2. Tracer la solution et étudier son comportement en et en +.

Plus en détail

Résumé d analyse fonctionnelle élémentaire

Résumé d analyse fonctionnelle élémentaire D. Feyel Université d Evry-Val d Essonne, M1, année 2006-07 Résumé d analyse fonctionnelle élémentaire Introduction L analyse fonctionnelle est née au 20ème siècle à partir des travaux de Fredholm sur

Plus en détail

Master MASS 1 Calcul Stochastique et Finance Feuille de T.D. n o 4

Master MASS 1 Calcul Stochastique et Finance Feuille de T.D. n o 4 Master MASS Calcul Stochastique et Finance Feuille de T.D. n o 4 Corrigé Dans ces exercices, W désignera toujours un processus de Wiener brownien standard. Soient s et t deux réels positifs. Montrer que

Plus en détail

Feuille 2 : Orthogonalité, bases Hilbertienne

Feuille 2 : Orthogonalité, bases Hilbertienne MASTER DE MATHÉMATIQUES Universite de Nice Sophia Antipolis ANALYSE HILBERTIENNE 2015-2016 Feuille 2 : Orthogonalité, bases Hilbertienne Exercice 1. Soit E = L 2 (]0, 1[) muni de son produit scalaire usuel.,..

Plus en détail

Intégrales multiples. V. Borrelli. Intégrale simple de Riemann. Vincent Borrelli. Intégrale double. Université de Lyon.

Intégrales multiples. V. Borrelli. Intégrale simple de Riemann. Vincent Borrelli. Intégrale double. Université de Lyon. s triple s Vincent Borrelli Université de Lyon s Le programme triple Partie I : Fonctions (6 semaines) CM 1. Coordonnées, topologie CM 2. Fonction, graphe, composition CM 3. Limite, différentielle CM 4.

Plus en détail

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail

Corrigé des exercices de la feuille n o 5. 0 = Cov(2X + Y, X 3Y ) = 2Var(X) 3Var(Y ) 5Cov(X, Y ),

Corrigé des exercices de la feuille n o 5. 0 = Cov(2X + Y, X 3Y ) = 2Var(X) 3Var(Y ) 5Cov(X, Y ), Université Pierre et Marie Curie L3 - Mathématiques Année 3-4 Probabilités - LM39 Corrigé des exercices de la feuille n o 5 Exercice Puisque X et Y sont centrés, les données de l énoncé entraînent que

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue 1 Nécessité de l intégrale de Lebesgue Une fonction f : [a,b] R est dite intégrable au sens de Riemann si les sommes de Riemann N 1 i=0 f(ξ i )(x i+1 x i ), a = x 0 x 1 x 2 x N =

Plus en détail

Fonction valeur absolue

Fonction valeur absolue Fonction valeur absolue Valeur absolue et distance Introduction Sur un axe gradué, on a placé quatre points A, B, C et D. Les abscisses de ces points sont x A = 3, x B = 6, x C = 2 et x D = 8,5. Comment

Plus en détail

NOM : TRIGONOMETRIE 1ère S

NOM : TRIGONOMETRIE 1ère S Exercice 1 Résoudre sur R les équations suivantes : 1) sin 2 x = 3 4 ; 2) cos 2 x = 1 2 ; 3) sin(2x) = cos(x). D. LE FUR 1/ 50 Exercice 2 1) Simplifier au maximum les expressions suivantes : ( π ) a) A(x)

Plus en détail

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux.

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux. SESSION CONCOURS ESIM FILIERE MP MATHEMATIQUES Préliminaire - Quand t tend vers, ft) t t t =. Par suite, f est prolongeable par continuité en. f étant d autre part continue / sur ], ], f est intégrable

Plus en détail

Distributions. et applications. Belhassen Dehman. Attention!

Distributions. et applications. Belhassen Dehman. Attention! Ministère de l Enseignement Supérieur, de la Recherche Scientifique et de la Technologie Université Virtuelle de Tunis Distributions Convolution des distributions et applications Attention! Ce produit

Plus en détail

1S DS n o 5 Durée :1h. ( 4 points ) Exercice 1

1S DS n o 5 Durée :1h. ( 4 points ) Exercice 1 1S DS n o 5 Durée :1 Exercice 1 ( points ) Voici la courbe représentative C f d une fonction f définie sur [ 6; 9] avec quatre de ses tangentes. Le point A de coordonnées ( 2, ; 0), appartient à la courbe

Plus en détail

Université Denis Diderot Paris 7 ( ) Devoir maison 2

Université Denis Diderot Paris 7 ( ) Devoir maison 2 Université Denis Diderot Paris 7 (03-04) Maths, Agro & Véto Devoir maison Exercice [Sujet Analyse 03] Soit la fonction d une variable réelle f définie sur D = [0,+ [ par f(x) = xe x +x. On appelle Cf la

Plus en détail

Mathématiques II. Polycopié d exercices. Mat 4

Mathématiques II. Polycopié d exercices. Mat 4 POLYTECH MONTPELLIER Département Matériaux Mathématiques II [Pour le traitement du signal] Polycopié d exercices Mat 4 Feuille : Intégration et convolution des fonctions Exercice : / Déterminer si les

Plus en détail

Hervé Hocquard. Université de Bordeaux, France. 18 septembre 2013

Hervé Hocquard. Université de Bordeaux, France. 18 septembre 2013 Intégrales généralisées Hervé Hocquard Université de Bordeaux, France 8 septembre 203 Introduction Notation On pose R=R {,+ }. Introduction Notation On pose R=R {,+ }. Motivation Considérons la fonction

Plus en détail

2 Variétés Abstraites

2 Variétés Abstraites Université de Rennes1 Année 2006-2007 M1-H02 (Analyse sur les variétés) - Exercices 2 2 Variétés Abstraites 2.1 Variétés topologiques Exercice 2.1 Soit X un espace topologique. On dit que X est 1) à base

Plus en détail

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin Athénée Royal d Uccle 1 Cours de Mathématique 6 ème année Révision de juin A.Droesbeke Version : 016 Chapitre 1 Algèbre 1.1 Exercices { (1 + i)x + y = 1 i 1. Résoudre dans C : x iy = i. Démontrer que

Plus en détail

Espaces préhilbertiens : projection orthogonale sur un sous-espace de dimension finie. Applications à l approximation des fonctions

Espaces préhilbertiens : projection orthogonale sur un sous-espace de dimension finie. Applications à l approximation des fonctions 3 Espaces préhilbertiens : projection orthogonale sur un sous-espace de dimension finie. Applications à l approximation des fonctions 3. Espaces préhilbertiens On rappelle qu une forme bilinéaire sur un

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

TRAVAUX DIRIGÉS NUMÉRO 4

TRAVAUX DIRIGÉS NUMÉRO 4 Université Paris 7 - M Modélisation Aléatoire - Calcul Stochastique TRAVAUX DIRIGÉS NUMÉRO 4 INTÉGRALE DE WIENER ET D ITÔ 1. Retour feuille 3 : Martingales du mouvement brownien. Temps d atteinte Exercice

Plus en détail

ANALYSE II, , 2e bachelier ingénieur civil Examen du 07 janvier 2013 Solutions Version : 11 février 2013 (V1 : 05/02/13)

ANALYSE II, , 2e bachelier ingénieur civil Examen du 07 janvier 2013 Solutions Version : 11 février 2013 (V1 : 05/02/13) ANALYSE II, -3, e bachelier ingénieur civil Examen du 7 janvier 3 Solutions Version : février 3 V : 5//3) THEORIE 35 points) Théorie.) Enoncer et démontrer le théorème de Liouville relatif à la caractérisation

Plus en détail

Remarque : toute partie A de E est contenue dans au moins une partie convexe de E (à savoir E!), donc la définition a du sens.

Remarque : toute partie A de E est contenue dans au moins une partie convexe de E (à savoir E!), donc la définition a du sens. Chapitre 3 Convexité 1 On note E un espace vectoriel normé réel de dimension finie. 3.1 Parties convexes de E 3.1.1 Premières propriétés, exemples Définition 1 (Partie convexe) Une partie C de E est dite

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

Calcul différentiel. MP Lycée Clemenceau

Calcul différentiel. MP Lycée Clemenceau Calcul différentiel MP Lycée Clemenceau Table des matières I Etude locale 2 1) Dérivée suivant un vecteur.......................................... 2 2) Différentielle en un point...........................................

Plus en détail

Math IV, analyse (L2) Fiche 9

Math IV, analyse (L2) Fiche 9 UNIVERSITÉ CLAUE BERNAR LYON 1 Cours: O. Kravchenko Institut Camille Jordan Travaux dirigés: T. Altınel, T. Eisenkölbl & S. Richard Math IV, analyse (L Fiche 9 5 mai 8 Exercice 1 (Hélice. L hélice circulaire

Plus en détail

Variables aléatoires réelles

Variables aléatoires réelles Variables aléatoires réelles Table des matières 1 Généralités sur les variables aléatoires réelles. 3 1.1 Rappels sur les σ-algèbres ou tribus d événements................................. 3 1.2 σ-algèbre

Plus en détail

DEVOIR SURVEILLÉ N 9

DEVOIR SURVEILLÉ N 9 DEVOIR SURVEILLÉ N 9 Devoir «type Bac» Le 20 mai 2015 Le plus grand soin doit être apporté aux calculs et à la rédaction Soulignez ou encadrez vos résultats Exercice 1 (5 points) On considère la fonction

Plus en détail

Devoir Surveillé /Evaluation

Devoir Surveillé /Evaluation Lycée Pierre-Gilles de Gennes BCPST Mathématiques 4-5 Devoir Surveillé /Evaluation Le 4 septembre 4 Documents écrits, électroniques, calculatrices et téléphones portables interdits La plus grande attention

Plus en détail

Rappel sur les fonctions intégrables

Rappel sur les fonctions intégrables CHAPTER 2. RAPPEL SUR LES FONCTIONS INTÉGRABLES Chapter 2 Rappel sur les fonctions intégrables Dans ce chapitre sont rappelés les principaux résultats du cours Calcul Intégral qui sont importants pour

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9. Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9. Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Le sujet comporte 8 pages numérotées de à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 Une enquête

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications

Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications 16 Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications E est un espace euclidien voir le chapitre 15 pour des rappels). 16.1 Orientation d un espace euclidien

Plus en détail

Outil d analyse fonctionnelle

Outil d analyse fonctionnelle Outil d analyse fonctionnelle David Renard 24 octobre 2016 ÉCOLE POLYTECHNIQUE David Renard Outil d analyse fonctionnelle 24 octobre 2016 1 / 25 Cours 3 : Espaces de Sobolev (suite) et problèmes elliptiques

Plus en détail

Université Denis Diderot Examen (corrigé) Durée 3 heures Documents, Téléphones et calculatrices non autorisés

Université Denis Diderot Examen (corrigé) Durée 3 heures Documents, Téléphones et calculatrices non autorisés Université Denis Diderot 22-23 L3 Mathématiques appliquées Intégration Examen (corrigé) Durée 3 heures Documents, Téléphones et calculatrices non autorisés Exercice Chacune des questions suivantes compte

Plus en détail

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com Correction Baccalauréat S Amérique du Nord Mai 28 http ://www.maths-express.com Exercice. Voir la figure finale à la fin de l exercice! 2. (a) Le cercle Γ est l ensemble des points M du plan tels que AM

Plus en détail

THÉORIE DE LA MESURE, et INTÉGRATION AU SENS DE LEBESGUE

THÉORIE DE LA MESURE, et INTÉGRATION AU SENS DE LEBESGUE Cédric Milliet Cours de THÉORE DE LA MESURE, et NTÉGRATON AU SENS DE LEBESGUE Version préliminaire Cours de quatrième année de Lisans Université Galatasaray, 2013 2 Cédric Milliet Université Galatasaray

Plus en détail

Chapitre 3: Les séries de Fourier

Chapitre 3: Les séries de Fourier Chapitre 3: Les séries de Fourier 6 février 008 1 La base hilbertienne trigonométrique 1.1 L espace de Hilbert L ([, π]) Soit L ([, π]) l espace des fonctions f : [, π] C mesurables au sens de Lebesgue

Plus en détail

Formulation locale de l électrostatique

Formulation locale de l électrostatique Michel Fioc Électromagnétisme et électrocinétique (P01) UPM, 016/017 hapitre II Théorème de Gauss. Formulation locale de l électrostatique II.a. Angles solides 1. Rappel sur les angles plans L angle solide

Plus en détail

Optimisation libre et sous contrainte (suite)

Optimisation libre et sous contrainte (suite) . Optimisation libre et sous contrainte (suite) 0.1 Extrema locaux de f : R 2 R On suppose f de classe C 2, c est-à-dire que ses dérivées partielles jusqu à l ordre 2 existent et sont continues. Définition

Plus en détail

(n 7) 2 (n 6) 2) n N

(n 7) 2 (n 6) 2) n N TES Suites arithmétiques et géométriques Soit u une suite arithmétique telle que u 5 = 7 et u =, déterminer sa raison r ainsi que son terme initial u 0 Calculer la somme 8 i=0 u i puis la somme 5 i=9 u

Plus en détail

Examen d admission aux études d ingénieur civil Université catholique de Louvain Analyse Série 1, juillet Prénom et nom : Numéro : Question 1

Examen d admission aux études d ingénieur civil Université catholique de Louvain Analyse Série 1, juillet Prénom et nom : Numéro : Question 1 Analyse Série 1, juillet 2013 Question 1 1. Etudiez la dérivabilité à l origine de la fonction f(x) = x x. 2. Calculez le volume du solide obtenu en faisant tourner autour de l axe des y la surface délimitée

Plus en détail

Faculté des Sciences de Luminy Année Licence MASS1 Unité Mat18 Exercices d analyse

Faculté des Sciences de Luminy Année Licence MASS1 Unité Mat18 Exercices d analyse Faculté des Sciences de Luminy Année 20 202 Licence MASS Unité Mat8 Exercices d analyse A.BROGLIO TD : Révisions.. Domaine de définition. Déterminer pour chaque valeur de f ci-dessous le domaine de définition

Plus en détail

Corrigé CCP PC maths Partie I

Corrigé CCP PC maths Partie I Corrigé CCP PC maths 2 27 Partie I. Remarque (f ; f ) est la base introduite dans le cours pour l étude des solutions. Par récurrence : Soit y une solution de (E) sur I, y est de classe C 2 sur I. Supposons

Plus en détail

Progression terminale S

Progression terminale S Progression terminale S Chapitre 1 : Suites (3 semaines) I. Rappels sur les suites A. Mode de génération d une suite B. Représentations graphiques C. Suites arithmétiques et géométriques II. III. IV. Raisonnement

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs Application à l étude d extrema On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables Comme pour une fonction d une

Plus en détail

cours 19, le jeudi 1er avril 2010

cours 19, le jeudi 1er avril 2010 cours 19, le jeudi 1er avril 21 Exemple : calcul de l espérance d une variable aléatoire T de loi exponentielle de paramètre λ >. La loi P T de T est donnée par dp T (x) 1 x λ e λx dx ; d après la formule

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui n ont pas suivi la spécialité Mathématiques

Plus en détail

Rappels de théorie de l intégration et des probabilités

Rappels de théorie de l intégration et des probabilités CHAPITRE 26 Rappels de théorie de l intégration et des probabilités 26.1 Résultats de théorie de l intégration 26.1.1 Théorème de dérivation des intégrales à paramètre On en énonce une version lisible

Plus en détail

Formule de Green Riemann

Formule de Green Riemann [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Formule de Green Riemann Exercice 1 [ 69 ] [correction] Soit Γ la courbe orientée dans le sens trigonométrique, constituée des deux portions

Plus en détail

CALCUL INTEGRAL. A) Calcul direct à partir des formules fondamentales re C, D math II Calcul intégral

CALCUL INTEGRAL. A) Calcul direct à partir des formules fondamentales re C, D math II Calcul intégral CALCUL INTEGRAL Eercice Calculez les primitives suivantes : A Calcul direct à partir des formules fondamentales. (5 3d 3 4 3 5 5 ( 7, 4d 3 9 6 5 8 (7 4 6 3d ( t dt (sur t ( 5 3 8 d (sur 5 4 3 * R * R 6

Plus en détail

Intégration (2) - Intégrales dépendants d'un paramètre

Intégration (2) - Intégrales dépendants d'un paramètre Intégration (2) - Intégrales dépendants d'un paramètre Bachelor 2 C ESME Sudria Année 2012-2013 Dénitions et propriétés Intégrale de Wallis Dénition Vocabulaire et dénitions Continuité - Dérivabilité Exemples

Plus en détail

Correction d examen. UNIVERSITÉ DE GABÈS A.U. : FACULTÉ DES SCIENCES DE GABÈS. Hedi Regeiba. Section: MRMa 1 Épreuve de : Analyse de Fourier

Correction d examen. UNIVERSITÉ DE GABÈS A.U. : FACULTÉ DES SCIENCES DE GABÈS. Hedi Regeiba. Section: MRMa 1 Épreuve de : Analyse de Fourier UNIVERSITÉ DE GABÈS A.U. : 205-206 FACULTÉ DES SCIENCES DE GABÈS Correction d examen. Hedi Regeiba. Section: MRMa Épreuve de : Analyse de Fourier Questions du cours. Il est évident que l application F

Plus en détail

Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques. Feuille d exercices n 4 : Calculus

Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques. Feuille d exercices n 4 : Calculus Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques Feuille d exercices n 4 : Calculus Dans ce qui suit, l espace euclidien de dimension 3 est rapporté à un repère orthonormé direct (O;

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 2006/2007 Outils Mathématiques 4 Continuité et différentiabilité résumé 1 Continuité Soient V 1 = (x 1, y 1 ) R 2 et V 2 = (x 2, y 2 ) R 2. On va toujours utiliser la norme

Plus en détail

Intégrale de Lebesgue.

Intégrale de Lebesgue. Intégrale de Lebesgue. L. Quivy Ens Cachan 23 septembre 2013 1 Changement de variables 2 Le lien entre l intégrale de Lebesgue et l intégrale "usuelle" 3 L espace L 1 4 Intégrales dépendant d un paramètre

Plus en détail

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL Université de Metz Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2010/11 1 Table des matières Chapitre

Plus en détail

Distance à un sous-espace vectoriel

Distance à un sous-espace vectoriel [http://mp.cpgedupuydelome.fr] édité le 1 juillet 214 Enoncés 1 Distance à un sous-espace vectoriel Exercice 1 [ 526 ] [correction] [Déterminant de Gram] Soit E un espace préhilbertien réel. Pour (u 1,...,

Plus en détail

NOM : PRÉNOM : Série S

NOM : PRÉNOM : Série S Ne rien inscrire dans ce cadre NOM : PRÉNOM : Centre d'écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série S Mercredi 11 mai 2016 1 Nous vous conseillons de répartir équitablement

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail