Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Dimension: px
Commencer à balayer dès la page:

Download "Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2"

Transcription

1 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v ) les deux suites défiies par : u + 2 (u + v ) et u 0 2, v 0 2 v + u+2v 3. Motrer par récurrece que N, o a: u > 0, v > Motrer esuite que u et v sot adjacetes. Exercice 3 (Utilisatio des suites extraites ) Soiet (u ) N ue suite telle que les suites (u 2 ) N, (u 2+ ) N et (u 3 ) N coverget. Le but est de prouver que (u ) N coverge.. Peut o appliquer le résultat du cours : Si (u 2+ ) N et u 2 coverget vers la même limite l, alors la suite (u ) N coverge, et sa limite est l.? 2. Prouver que u 2 et u 3 ot la même limite. 3. Prouver que u 2+ et u 3 ot la même limite. 4. Coclure. Exercice 4 (Utilisatio du théorème des gedarmes) O pose, pour N, u 2 p 3 + p

2 . E miorat et majorat chaque terme de la somme, ecadrer u. A l aide de cet ecadremet, calculer lim + u. 2. Vérifier que p N, o a : 3 +p + 0. Chaque terme de la somme ted vers 0, et pourtat la somme elle même d après la questio précédete e teds pas vers 0. Y a t-il ue cotradictio? Exercice 5 S O pose, pour N, k v S 2 k et u S. Motrer que N, S + 2. Motrer que N, S 3. Motrer que u et v sot covergetes Exercice 6 Soit (u ) la suite défiie par: { u +2 u + u u 0 > 0, u > 0 Calculer u e foctio de et u 0, u. Exercice 7 U éuphar double sa taille tous les jours. U de ces éuphats met 30 jours à recouvrir la surface d u étag. Combie deux éuphars mettrot ils de temps à recouvrir le même étag? (Tous les éuphars ot la même taille au début de leur croissace) (o fera u raisoemet rigoureux! ) Exercice 8 Soit (u ) la suite défiie par: u 0 > 0 u + u + u O va determier la limite de u par deux méthodes. 2

3 . Méthode : (a) Motrer que N, u > 0, et motrer esuite que u est croissate (b) Motrer que u est pas majorée, e faisat u raisoemet par l absurde. (c) E déduire lim u. 2. Méthode 2: (a) Motrer que N, u > 0, et motrer esuite que N, (b) E déduire lim u. u 3

4 Idicatios pour l exercice Pas de difficultés ici, appliquer simplemet la défiitio d ue suite adjacete. Idicatios pour l exercice 2. Pas de difficulté 2. Exprimer u + v + e foctio de u v. E déduire le sige et le comportemet de u v. Idicatios pour l exercice 3. Bie sur que o Cosiderer la suite (u 6 ) N. N est elle pas extraite à la fois de u 3 et u 2? que peut o e déduire? 3. Faire u raisoemet idetique à celui de la questio précédete: quelle suite va t-o cosiderer? Idicatios pour l exercice 4. O a l iégalité suivate: p [, 2 ], p O peut esuite ajouter ces iégalités et utiliser u théorème célèbre. 3 + Idicatios pour l exercice 5. Faire ue récurrece 2. Faire ue récurrece ecore! 3. O ous a fait calculer des ecadremets: quel théorème va t-o pouvoir utiliser? Idicatios pour l exercice 6 Essayer de trasformer ce problème e u problème de suites récurretes liéaires. Idicatios pour l exercice 7 Pas de difficulté, poser simplemet le pb. O pourra oter: u taille de l étag le jour. Idicatios pour l exercice 8. (a) Pour motrer que u > 0, o fera u raisoemet par récurrece. (b) Si (u ) est majorée, motrer que u + u l est aussi. 2. (a) Procéder par récurrece ici aussi. 4

5 Correctio de l exercice Nous devos prouver 3 choses: ue suite est croissate, l autre décroissate, et u v (u ) est croissate. u + u + k3 k 2 + k3 ( + ) k 2 + d où le résultat. 2. (v ) est décroissate. v + v u + u + + 2( + ) ( + ) 2 + ( + ) + ( + ) ( + ) 2 2( + ) ( + ) ( + ) ( + ) 2 ( + ) ( + ) 2 22 ( + ) 2 + ( 2 2 )(( + ) 2 + ) 2 2 ( + ) 2 (( + ) 2 + ) ( + ) 2 (( + ) 2 + ) Or 3, (les racies sot + 3 et 3). Doc (v ) est décroissate. 3. u v + 0. Ceci est clair, car u v Coclusio: (u ) N et (v ) N sot adjacetes. Correctio de l exercice 2. La propriété est vraie au rag 0. Soit 0 tq u > 0 et v > 0. Motros que u + > 0 et v + > 0 Comme u + 2 (u + v ), par l hypothèse de récurrece, o a clairemet u + > 0 Comme v + u+2v 3, par l hypothèse de récurrece, o a clairemet v + > 0 Coclusio: N, o a u > 0 et v > Calculos u + u pour essayer de determier le ses de variatio de u : u + u 2 (u + v ) u 2 (v u ) Le sige de u + u est doc le même que le sige de (v u ). 5

6 Calculos v + v pour essayer de determier le ses de variatio de v : v + v u + 2v v 3 3 (u v ) Le sige de u + u est doc le même que le sige de (u v ). O est doc coduit à étudier la suite (v u ): calculos u + v + e foctio de u v pour voir ce que cela doe. u + v + 2 u + 2 v 3 u 2 3 v 6 (u v ) Aisi (u v ) est géométrique de raiso 6 : Comme <, elle ted vers 0. De plus, comme u v ( 6) (u0 v 0 ), o e déduit que u v < 0. 6 O a doc prouvé: (a) (u v ) teds vers 0. (b) (u ) croissate (c) (v décroissate Doc u et v sot adjacetes. Correctio de l exercice 3. O e peut appliquer ce résultat, car ce derier exige que u 2 et u 2+ coverget vers la même limite, or l éocé ici e précise pas si les limites de u 2 et u 2+ sot les mêmes. Cepedat, o va prouver que même si l éocé e le précise pas, les limites de u 2 et u 2+ sot bie les mêmes. Aisi o pourra coclure. 2. Suivos les idicatios: la suite u 6 est extraite de u 3, car u multiple de 6 est aussi u multiple de 3. (e d autres termes, u 6 u 3(2) ) Elle a doc la même limite que u 3. Mais elle est aussi extraite de u 2, car u multiple de 6 est aussi u multiple de 2. (e d autres termes, u 6 u 2(3) ) Elle a doc la même limite que u 2. Aisi u 3 et u 2 ot la même limite! (car la suite u 6 e peut avoir qu ue limite) 3. o effectue le même raisoemet avec la suite u 6+3, qui est extraite à la fois de u 2+ (car u 6+3 u 2(3+)+ ) et de u 3 (car u 6+3 u 3(2+) ) Doc les suites u 3 et u 2+ ot la même limite. 4. Des deux questios précédetes, o déduit que u 2 et u 2+ ot la même limite. O peut maiteat appliquer le résultat du cours! Aisi (u ) coverge. 6

7 Correctio de l exercice 4. O a : p [, 2 ], p 3 + O peut doc écrire 2 iégalités ( p variat de à 2 ): E ajoutat ces 2 iégalités, o obtiet doc: E utilisat le théorème des gedarmes, o obtiet: p p lim u + 2. O a doc ( apparemmet ) le paradoxe suivat: Chaque terme de la somme ted vers 0. Or das le cours, o a vu que la limite d ue somme de deux suites était la somme des deux limites. Doc, e suivat ce raisoemet, la limite de u devrait être ; ce qui est pas le cas. Où est l erreur das ce raisoemet? Elle viet du fait que si la limite d ue somme de k suites est e effet la somme des limites des k suites, ce est vrai que si le ombre k e déped pas de Ce qui est pas le cas içi, car quad + le ombre de suites ( ici 2 ) ted aussi vers +. Quad 2 est grad, chaque terme de la somme 3 est petit, mais comme il y a beaucoup de termes das la + p p somme ( 2 ), le résultat total est pas petit. Correctio de l exercice 5. Notos P () la propriété S +. P () est vraie: car S et o a bie + 0 Soit N. O suppose que P () est vraie. Motros que P ( + ) est vraie. S + S + + Or d après l hypothèse de récurrece, S +. Doc S Pour prouver P ( + ), il suffit doc d avoir: Prouvos le: () (car tout est positif) ( ) 2 ( + + )

8 La derière iégalité état vraie, comme o a raisoé par equivalece, l iégalité () est vraie: P ( + ) est doc vraie Doc N, S + 2. Notos Q() la propriété S. Q() est clairemet vraie: car ( S ). Rmq: pas besoi de calculatrice pour voir ceci! : (car tout est positif) (2 2) , ce qui est vrai! Soit N. O suppose que Q() est vraie. Motros que P ( + ) est vraie. S + S + + Or d après l hypothèse de récurrece, S. Doc S + Pour prouver Q( + ), il suffit doc d avoir: Prouvos le: () + + (car tout est positif) ( ( + ) + 4( + 2) ) 2 (2 + 2) 2 La derière iégalité état vraie, comme o a raisoé par equivalece, l iégalité () est vraie: Q( + ) est doc vraie Doc N, S. 3. Prouvos que (u ) est covergete. D après les deux questios précédetes, o a: S + + u }{{} 2 + }{{} + 2 (car > 0) Et aisi, grace au théorème des gedarmes, u + 2 Prouvos que (v ) coverge. L idée aturelle ( puisqu elle a bie marché pour u!) est d utiliser les iégalités précédetes. O obtiet: S ( + ) 2 v (3) Or et + 0 ( cela se prouve e utilisat la quatité cojuguée). O e peut pas appliquer le théorème des gedarmes, car das l ecadremet (3), le terme de gauche ted vers 2, et le terme de droite vers 0. 8

9 Il faut doc adopter ue autre tactique! Le choix des armes est limité maiteat: il e ous reste que le théorème sur les suites mootoes. Essayos de l appliquer. v + v S + S ( + ) + ( + ) Or : doc v + v 0 v décroissate. De plus v est miorée d après (3), car v 2( + ) 2 2. Doc v coverge (mais o e coait pas sa limite) Correctio de l exercice 6 O a pas vu das le cours ue méthode pour étudier ce type de suite. Il va doc falloir faire preuve d imagiatio. Mais otre imagiatio doit être guidée par ce que l o coait: e l occurece, le cours. Les seules suites vues e cours dot o sait toujours calculer le terme u e foctio de sot: les suites géométriques, arithmétiques ou arithmético-géométriques les suites récurretes liéaires d ordre 2 ( celles qui vérifiet u +2 u + + u ) La suite u défiie par l éocé propose ue relatio de récurrece faisat iterveir les termes d ordre, + et + 2: il e peut s agir d ue suite géométrique, arithmétique ou arithmético-géométrique, qui e fot iterveir que les termes d ordre et +. E fait u est pas ue suite récurrete liéaire d ordre 2, mais l(u ) e est ue: l(u ) existe car N, u > 0 ( d après ue récurrece triviale) Si o pose v l(u ), v vérifie doc: v +2 2 v v. l équatio caractéristique est : x 2 2 x 2 0, o trouve comme racies 2 et. O applique le cours: O sait qu il existe A R et B R tq N, v A ( 2) + B. O détermie A et B e faisat 0 et das l égalité précédete: { { { v 0 A + B v A 2 + B B v 0 A v A 2 + v 0 A A 2 3 (v 0 v ) B v v Doc v 2 ( 3 (v 0 v ) ) + v v u e 2 3 (v 0 v )( 2) e v v Correctio de l exercice 7 Notos T la taille iitiale d u éuphar, S la taille de l étag. O otera u la taille du éuphar au jour 9

10 Le premier jour, le éuphar a T comme taille; aisi u T. De plus, o a u + 2u (le éuphar double sa taille e u jour). Aisi (u ) est ue suite géométrique de raiso 2. O peut doc écrire u (u )2 T 2 Le 30 ieme jour, la taille du éuphar est égale à S. O a doc u 30 T 2 29 S. Notos v la taille atteite par deux éuphars le jour. Le premier jour, o a v 2T. O a v + 2v (chaque éuphar double sa surface). La suite (v ) est ue suite géométrique de raiso 2, de premier terme v 2T. O peut doc écrire: v (v )2 2T 2 T 2. O cherche tel que v S. Or T 2 29 S et v T 2. ce qui doe 29. Aisi 2 éuphars mettrot 29 jours à recouvrir l étag. Et o pas 5!! Correctio de l exercice 8. (a) O motre que u > 0 par récurrece: u 0 > 0 d après l éocé. Soit 0 tq u > 0. Motros que u + > 0. ceci est évidet, car u + u }{{} >0 Doc N, u > 0 Efi, u + u u > 0 d après ce qui précède: u est aisi croissate. (b) Supposos que u soit majorée. Il existe M R tq N, 0 < u < M. D ue part, 0 < u + u < u + < M. D autre part, u > M. O aurait doc: + u }{{} >0 N, M > M Cette iégalité est vraie N, ce qui est absurde car M + + (c) La suite u est croissate, mais pas majorée: elle ted doc vers +. Rmq: ceci est vrai que parce que u est croissate; ue suite o majorée e ted pas écéssairemet vers (a) O a déjà prouvé que u > 0. O motre que u par récurrece: u 0 > 0 d après l éocé. Soit 0 tq u. Motros que u + > +. O a u u + u }{{} >0 + u }{{} >0 Doc N, u > 0 O retrouve le résultat précédet (ouf!) 0

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction A ew adaptive operator of fusio par Fraçois DELMOTTE LAMIH, Uiversité de Valeciees et du Haiaut-Cambrésis, Le Mot Houy, BP 3, 5933 Valeciees CEDEX 9 fdelmott@flore.uiv-valeciees.fr résumé et mots clés

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Initiation à l analyse factorielle des correspondances

Initiation à l analyse factorielle des correspondances Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

Tempêtes : Etude des dépendances entre les branches Automobile et Incendie à l aide de la théorie des copulas Topic 1 Risk evaluation

Tempêtes : Etude des dépendances entre les branches Automobile et Incendie à l aide de la théorie des copulas Topic 1 Risk evaluation Tempêtes : Etude des dépedaces etre les braches Automobile et Icedie à l aide de la théorie des copulas Topic Risk evaluatio Belguise Olivier Charles Levi ACM Guy Carpeter 34 rue du Wacke 47/53 rue Raspail

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO

STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO Des résultats du Programme de réductio des risques STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO 1. Cotexte La puaise tere Lygus lieolaris (figure 1) est

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION

RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION RÈGLES ORDIALES : UE GÉÉRALISATIO DES RÈGLES D'ASSOCIATIO SYLVIE GUILLAUME ALI KHECHAF 2 RÉSUMÉ: La plupart des mesures des règles cocere les variables biaires et écessite pour les autres types de variables

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

Régulation analogique industrielle ESTF- G.Thermique

Régulation analogique industrielle ESTF- G.Thermique Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

Contribution à la théorie des entiers friables

Contribution à la théorie des entiers friables UFR STMIA École Doctorale IAE + M Uiversité Heri Poicaré - Nacy I DFD Mathématiques THÈSE présetée pour l obtetio du titre de Docteur de l Uiversité Heri Poicaré, Nacy-I e Mathématiques par Bruo MARTIN

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos

Plus en détail

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de

Plus en détail

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres

Plus en détail

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce

Plus en détail

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus Réseaux d odelettes et réseaux de euroes pour la modélisatio statique et dyamique de processus Yacie Oussar To cite this versio: Yacie Oussar. Réseaux d odelettes et réseaux de euroes pour la modélisatio

Plus en détail

MESURE DE L'INFORMATION

MESURE DE L'INFORMATION MESURE DE L'INFORMATION Marc URO TABLE DES MATIÈRES INTRODUCTION... 3 INCERTITUDE D'UN ÉVÉNEMENT (OU SELF-INFORMATION)... 7 INFORMATION MUTUELLE DE DEUX ÉVÉNEMENTS... 9 ENTROPIE D'UNE VARIABLE ALÉATOIRE

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Intégrales dépendant d un paramètre

Intégrales dépendant d un paramètre [hp://mp.cpgedupuydelome.fr] édié le 3 avril 5 Eocés Iégrales dépeda d u paramère Covergece domiée Exercice [ 9 ] [correcio] Calculer les limies des suies do les ermes gééraux so les suivas : a) u = π/4

Plus en détail

Les algorithmes de tri

Les algorithmes de tri CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....

Plus en détail

Résolution numérique des équations aux dérivées partielles (PDE)

Résolution numérique des équations aux dérivées partielles (PDE) Résolutio umérique des équatios au dérivées partielles (PDE Sébastie Charoz & Adria Daerr iversité Paris 7 Deis Diderot CEA Saclay Référeces : Numerical Recipes i Fortra, Press. Et al. Cambridge iversity

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

Statistique Numérique et Analyse des Données

Statistique Numérique et Analyse des Données Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques

Plus en détail

Mécanismes de protection contre les vers

Mécanismes de protection contre les vers Mécaismes de protectio cotre les vers Itroductio Au cours de so évolutio, l Iteret a grademet progressé. Il est passé du réseau reliat quelques cetres de recherche aux États-Uis au réseau actuel reliat

Plus en détail

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller Les solutios mi-hypothécaires, mi-bacaires de Mauvie Guide du coseiller 1 2 Table des matières Itroductio... 5 La Baque Mauvie...5 Le compte Mauvie U...5 Le compte Sélect Baque Mauvie...5 1. Les solutios

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

?,i- ' ^/mmmmmm. CACU ^..""'V ii\teimmies EîiiEsmmii ''?A y? K 1^ 1 - r Par le Moyede Formules Algébriques ) v-^' ET A 'AIDE DES OGARITHMES.../v:?i.'?Xi:: F, X, BURQUE, Ptr. Professeur de MatJu'matiques,

Plus en détail

INTRODUCTION AUX MATRICES ALÉATOIRES. par. Djalil Chafaï

INTRODUCTION AUX MATRICES ALÉATOIRES. par. Djalil Chafaï INTRODUCTION AUX MATRICES ALÉATOIRES par Djalil Chafaï Résumé. E cocevat les mathématiques comme u graphe, où chaque sommet est u domaie, la théorie des probabilités et l algèbre liéaire figuret parmi

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

Guide des logiciels de l ordinateur HP Media Center

Guide des logiciels de l ordinateur HP Media Center Guide des logiciels de l ordiateur HP Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses de garatie accompagat ces produits et services. Aucu

Plus en détail

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012 Mobile Busiess Commuiquez efficacemet avec vos relatios commerciales 9040412 09/2012 U choix capital pour mes affaires Pour gérer efficacemet ses affaires, il y a pas de secret : il faut savoir predre

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Gérer les applications

Gérer les applications Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail