Analyse 5 SUITES REELLES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Analyse 5 SUITES REELLES"

Transcription

1 Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag. La suite elle-même est otée ( ) D ou ( ). Deux modes de défiitio d ue suite : Forme explicite : e suite est défiie explicitemet lorsque so terme gééral est exprimé e foctio de. + Exemple : = N + Applicatio e physique : A partir d u sigal «aalogique» s (foctio dépedat du temps t) o défiit u sigal «échatilloé» e cosidérat la suite (s k ) telle que : s k = s(kt e ), où T e est la période d échatilloage. Forme récurrete : e suite est défiie par récurrece lorsque l o doe so (ses) premier(s) terme(s) et que l o exprime u terme gééral à l aide de termes de rags iférieurs à l aide d ue relatio appelée relatio de récurrece. Exemples : 0 = 0 = ; = ; ; + = + pour 0 + = 3 + pour 0 0 = ;... = pour Défiitio : O dit qu ue suite ( ) D est majorée (resp. miorée), s il existe u réel M supérieur (resp. iférieur) à tous les termes de la suite, c est-à-dire D : M (resp. M ). e suite qui est à la fois majorée et miorée est dite borée. Exemple : La suite ( ) défiie par = cos() est borée : elle est majorée par et miorée par -. Remarque : e suite ( ) est borée si et seulemet si la suite ( ) est majorée. Défiitio 3 : Soit ( ) ue suite réelle. O dit que (V ) est ue suite extraite de ( ) (ou sous-suite de ( ) ) s il existe ue applicatio strictemet croissate de N das N telle V =. que ϕ() Aalyse 5 SITES REELLES Exemple : lorsque V =, la suite (V ) est la sous-suite des termes de rag pair.

2 Aalyse chap 5 /6. Exemples de suites récurretes Défiitio 4 : Soiet f : A A où A R et u 0 A. O appelle suite récurrete d ordre toute suite ( ) défiie par 0 et N, + = f( ). Trois exemples remarquables : a) Les suites arithmétiques Défiitio 5 : e suite ( ) est dite arithmétique lorsqu il existe u ombre réel r, appelé raiso, tel que :, + = + r (ou + = r). Propositio : ( ) est ue suite arithmétique de terme iitial 0 et de raiso r si et seulemet si IN, = 0 + r. Propriété : Soit ( ) ue suite arithmétique, alors Exemple : = ( + ) b) Les suites géométriques. + 0 k = ( + ). k= 0 Défiitio 6 : e suite ( ) est dite géométrique lorsqu il existe u ombre réel q, o ul, appelé raiso, tel que :, + = q. Remarque : Lorsque les termes de la suite ( ) sot tous o uls, pour motrer que ( ) est + géométrique il suffit de vérifier que le quotiet est costat. Propositio : ( ) est ue suite géométrique de terme iitial 0 et de raiso q si et seulemet si, = 0 q. Propriété : Soit ( ) ue suite géométrique de raiso q, alors c) Les suites arithmético-géométriques q + k = 0. k= 0 q Défiitio 7 : e suite ( ) est dite arithmético-géométrique lorsqu il existe (a, b) R tel que N : + = a + b. Techique : Pour détermier la forme explicite d ue suite arithmético-géométrique défiie par 0 et N, + = a + b (avec a ), o cherche α R tel que α = aα + b, et o motre que la suite de terme gééral α est ue suite géométrique de raiso a, o e déduit : N, - α = a ( 0 α).

3 Aalyse chap 5 3/6.3 Représetatio graphique d ue suite Pour représeter graphiquemet la suite ( ), o place das u repère les poits de coordoées ( ; ). Pour costruire graphiquemet ue suite défiie par récurrece par so terme iitial et la relatio de récurrece + = f( ) : o o trace das u repère la courbe C f représetative de la foctio f, et la droite D d équatio x = y ; o o place le poit M 0 ( 0 ; 0), puis o place sur C f le poit A 0 d abscisse 0 (o a A 0 ( 0 ; ) car f( 0 ) = ) ; o o place le poit B 0 de D ayat la même ordoée que A 0 (o a doc B 0 ( ; )) ; o o projette B 0 sur l axe des abscisses, o obtiet le poit M ( ; 0) ; o o réitère le procédé e partat de M, pour obteir M ( ; 0), et aisi de suite Remarque : Das le premier cas (représetatio graphique d ue suite coue), o obtiet u uage de poits dot les ordoées sot les termes de la suite. Das le secod cas (costructio graphique d ue suite défiie par récurrece), o obtiet des poits sur l axe des abscisses, dot les abscisses sot les termes de la suite..4 Variatios.4. Défiitios Défiitio 8 : O dit qu ue suite (u ) est : croissate (resp. décroissate) si N, u + u (resp. u + u ) ; strictemet croissate (resp. strictemet décroissate) si N, (resp u + < u ) ; costate si N, u = u 0 ; statioaire si 0 N / 0, u = u 0 ; mootoe si elle est croissate ou décroissate. u + > u.4. Techiques pour étudier les variatios d ue suite a) Si la suite est défiie explicitemet à l aide d ue foctio f (i.e., = f() ), o étudie les variatios de la foctio f ; Exemple : = + +, 0. La foctio f : x x + x + est croissate sur IR + doc ( ) est doc ue suite croissate. b) O étudie le sige de + ; Exemple : cas particulier des suites arithmétiques : Propositio 3 : e suite arithmétique est croissate si sa raiso est positive, décroissate si sa raiso est égative.

4 Aalyse chap 5 4/6 + c) Si la suite est à termes o uls et de sige costat, o compare et ; Exemple : cas particulier des suites géométriques : Propositio 4 : La suite ( q ) N est strictemet croissate si q >, strictemet décroissate si 0 < q <, costate si q {0 ; }, et 'est pas mootoe si q < 0. d) O motre par récurrece que + (ou + ). Exemple : Cas gééral d ue suite récurrete d ordre : Propositio 5 : Soiet f : A A où A est u itervalle de R, ue foctio croissate, et ( ) défiie par 0 A et N : += f( ). si 0 alors ( ) est croissate si 0 alors ( ) est décroissate Remarque : Si f est décroissate sur A alors ( ) est pas mootoe (si elle est pas costate) mais o a alors f f croissate, doc ( ) et ( + ) sot mootoes.. LIMITE D NE SITE. Défiitios Défiitio 9 : O dit qu ue suite réelle ( ) a pour limite le réel l, ou que ( ) coverge * vers le réel l si : ε R +, 0 N / N, ( 0 ) ( - l ε). Toute suite qui admet ue limite réelle est dite covergete. Toute suite o covergete est dite divergete. Propositio 6 : Si ( ) coverge vers l alors ( ) coverge vers l. Remarque : Attetio! la réciproque est fausse. Défiitio 0 : O dit qu ue suite ( ) a pour limite + si : A R, 0 N / N, ( 0 ) ( A). * + O ote lim + = +, ou plus simplemet lim = +. O dit qu ue suite ( ) a pour limite - si (- ) a pour limite +. O ote lim + = -, ou plus simplemet lim = -. Remarques : (i) e suite qui a pour limite + ou - est divergete. (ii) Si ( ) a pour limite + (respectivemet : - ) alors la suite ( ) est pas majorée (respectivemet : est pas miorée). (iii) Si ( ) a pour limite - ou + alors a pour limite + ; Attetio! la réciproque est fausse.

5 Aalyse chap 5 5/6. Propriétés des suites covergetes Propositio 7 : Si ue suite coverge, alors sa limite est uique. O la ote lim +, ou plus simplemet lim. Propositio 8 : Toute suite covergete est borée. Propositio 9 : Toute suite covergeat vers u réel strictemet positif est miorée à partir d u certai rag par u réel strictemet positif. Propositio 0 : Si ( ) a pour limite l ( l R ) alors toute suite extraite a pour limite l. Remarque : La cotraposée de cette propriété sera parfois utilisée pour démotrer qu ue suite diverge : Il suffira, par exemple, de détermier deux suites extraites qui ot des limites différetes..3 Opératios sur les limites Les résultats sur les limites faisat iterveir somme, produit ou quotiet sot «ituitifs» sauf das ciq cas (appelés «formes idétermiées» otées FI), où l o e peut pas coclure directemet et où l o doit au cas par cas «lever l idétermiée». L esemble des cas est rappelé das le tableau suivat, où ( ) et (V ) désiget des suites réelles. lim + - L 0 0 lim 0 0 L FI (*) lim V + - L > 0 L< L > 0 L< 0 0 L L lim ( + V ) + FI L + L L Lim ( V ) FI FI LL 0 Techique : Das le cas (*), o étudie le sige de pour suffisammet grad. Si est de sige costat, la limite existe et vaut + si ce sige est positif, - sio..4 Théorèmes de comparaiso Propositio : Soiet ( ) et (V ) des suites covergeat respectivemet vers l et l. S il existe u etier 0 tel que 0, V, alors l l. Cas particulier : Soit ( ) ue suite covergeat vers l. S il existe u etier 0 tel que 0 0, alors l 0. Attetio : O e peut pas améliorer le résultat e utilisat ue iégalité stricte (le passage à la limite élargit l iégalité). Exemple : u =.

6 Aalyse chap 5 6/6 Théorème : Soiet ( ), (V ) deux suites réelles telles que : 0 N, N, ( ) ( V) si lim = + alors lim V = +. si lim V = - alors lim = -. 0 Propositio : e suite géométrique de raiso q coverge si et seulemet si q ] -; ]. Si q =, elle est costate ; si q ] -; [ elle coverge vers 0. Théorème : (théorème des «gedarmes») Soiet ( ), ( V ) et ( W ) trois suites réelles telles que : 0 N, N 0 V W ( ) et ( W ) coverget vers le même réel l Alors ( V ) coverge aussi vers l..5 Théorèmes de covergece.5. Suites mootoes Théorème 3 : Soit ( ) ue suite croissate. Si elle est majorée, elle coverge vers l = sup { / N } Si elle est pas majorée, elle ted vers + Remarque : Lorsque l o majore ue suite croissate par u réel M, alors la limite de cette suite est iférieure à M. Corollaire : Soit ( ) ue suite décroissate. Si elle est miorée, elle coverge vers l = if { / N } Si elle est pas miorée, elle ted vers Suites récurretes Théorème 4 : Soiet f X et ( ) défiie par 0 X et N, + = f( ). Si ( ) coverge vers l et f cotiue e l alors l est solutio de l équatio l = f( l ).5.3 Suites adjacetes Défiitio : O dit que deux suites ( ) et (V ) sot adjacetes si ( ) est croissate, (V ) est décroissate et lim( V ) = 0. Théorème 5 : (Théorème des suites adjacetes ) Soiet ( ) et (V ) deux suites adjacetes, alors elles coverget vers le même réel l et N : + l V + V.

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

Comportement asymptotique des suites

Comportement asymptotique des suites Comportemet asymptotique des suites Table des matières 1 Itroductio 2 2 Limite d ue suite 2 2.1 Limite fiie d ue suite........................................... 2 2.2 Limite ifiie d ue suite..........................................

Plus en détail

Feuille d Exercices : Suites, suite!

Feuille d Exercices : Suites, suite! ECS 1 Dupuy de Lôme Semaie du 6 décembre 004 Feuille d Exercices : Suites, suite! Exercice 1 : Pour tout etier, o défiit u = 1. Motrez que u est mootoe.. Motrez que v est géométrique. k= 3. E déduire l

Plus en détail

Cours I : SUITES NUMERIQUES. I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels Agrocampus Ouest ENIHP ère aée p. Cours I : SUITES NUMERIQUES / Défiitio I Quelques rappels Défiitio : Ue suite u est ue applicatio de l esemble N ou ue partie de N das R qui à chaque élémet de N associe

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

Convergence et limite de suites numériques

Convergence et limite de suites numériques Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe

Plus en détail

TS Limites de suites (3)

TS Limites de suites (3) TS Limites de suites (3) I. Rappels sur les suites majorées, miorées, borées ) Défiitio (suite majorée, miorée, borée) 5 ) Propriété Si u réel M est u majorat d ue suite u, alors tous les réels supérieurs

Plus en détail

TD1 - Suites numériques

TD1 - Suites numériques IUFM du Limousi 2008-09 PLC1 Mathématiques S. Viatier Exercices TD1 - Suites umériques Exercice 1 Soit α > 0, étudier la covergece des suites déies par u = ( ) 1 + si α, v = 3 + cos α ( ) 1 + α. 3 + Idicatio

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n).

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n). SUITES ET SERIES SUITES 1.Défiitio O appelle site esemble de ombres 1, 2,... défiis das l ordre croissat et vérifiat certaies règles de défiitio. Chaqe ombre de la site s appelle terme, est par exemple

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Synthèse de cours PanaMaths (TS) Suites numériques

Synthèse de cours PanaMaths (TS) Suites numériques Sythèse de cours PaaMaths (TS) Suites umériques Das ce chapitre, le terme «suite» désige ue suite umérique (c'est-à-dire, das le cadre du programme de Termiale S, ue suite de réels). Ue telle suite sera

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite.

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite. Première S / mathématiques Préparatio Termiale S Mme MAINGUY Défiir ue suite umérique Sythèse Ê SUITES NUMÉRIQUES u s'exprime e foctio de Cette suite est défiie par u = f ( ) Ê par ue formule explicite

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1 SOLUTIONS AUX EXERCICES DE LA FEUILLE. Exercice. Ue suite de réels positifs qui coverge vers 0 est décroissate à partir d u certai rag. C est faux. Pour costruire u cotre-exemple, o pourrait cosidérer

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Suites numériques. 1 Questions de cours. 3 Exercices. 2 Applications. 1. Montrer que toute suite a au plus une limite.

Suites numériques. 1 Questions de cours. 3 Exercices. 2 Applications. 1. Montrer que toute suite a au plus une limite. Suites umériques 1 Questios de cours 1. Motrer que toute suite a au plus ue limite.. Motrer que toute suite covergete est borée. 3. Motrer que toute suite extraire d ue suite tedat vers l R ted aussi vers

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

L2 - Math4 Exercices corrigés sur les suites numériques

L2 - Math4 Exercices corrigés sur les suites numériques L2 - Math4 Exercices corrigés sur les suites umériques Eocés Exercice Les assertios suivates sot-elles vraies ou fausses? Doer ue démostratio de chaque assertio vraie, et doer u cotre-exemple de chaque

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES ) PUISSANCES D'EXPOSANTS REELS A ) La otatio a Si est u etier aturel, la otatio a a u ses pour tout réel a Das le cas où est u

Plus en détail

Feuille d exercices 4

Feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 2009/200 MIME 22 LM5-Suites et Itégrales Groupe 22 Feuille d exercices Suites Covergece de suites Exercice Ecrire l éocé qui traduit : (u ) N est pas croissate Cet

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

Cours de Mathématiques : Polynômes et Suites

Cours de Mathématiques : Polynômes et Suites Uiversité de Cergy-Potoise Départemet de Mathématiques L MIPI - S2 205/206 Cours de Mathématiques : Polyômes et Suites - Polycopié d Exercices Chapitre : Nombres complexes Exercice a) Détermier la partie

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Suites de réels. Contents. 1 Retenez au moins ça 3

Suites de réels. Contents. 1 Retenez au moins ça 3 Suites de réels Cotets 1 Reteez au mois ça 3 Bore supérieure 3.1 Déitios.......................................... 3.1.1 Relatio d'ordre sur u esemble E....................... 3.1. Ordre total.....................................

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

Suites réelles. 1. Quelques rappels sur le corps des réels

Suites réelles. 1. Quelques rappels sur le corps des réels Agrégatio itere UFR MATHÉMATIQUES Suites réelles O ote N l esemble des etiers aturels et Z l esemble des etiers relatifs. Avat de parler de l esemble R des ombres réels, rappelos la défiitio de deux autres

Plus en détail

Analyse mathématique II

Analyse mathématique II UNIVERSITÉ IBN ZOHR Faculté des Scieces Juridiques Écoomiques et Sociales Corrigés des QCM Aalyse mathématique II FILIÈRE SCIENCES ÉCONOMIQUES ET GESTION PREMIERE ANNÉE Sessio ormale 03/04 40 questios

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mp.cpgedupuydelome.fr] édité le 9 mai 07 Eocés Calcul de ites Exercice [ 054 ] [Correctio] Détermier la ite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = + + d u =

Plus en détail

Limites de suites, cours, terminale S

Limites de suites, cours, terminale S Limites de suites, cours, termiale S Covergece de suites Déitio : Soit (u ) ue suite. O dit que (u ) coverge vers u réel l ou a pour limite l lorsque tout itervalle ouvert A coteat l, cotiet tous les termes

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Corrigé feuille d exercices 4

Corrigé feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 008/009 MIME LM5-Suites et Itégrales Groupes Corrigé feuille d exercices Suites Covergece de suites Exercice Ue suite u N est pas croissate, si o N, u + u est vérifiée

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

S n = u u n. S = u k. k=0

S n = u u n. S = u k. k=0 Chapitre 3 Séries umériques 3. Défiitios et exemples 3.. Défiitios Défiitio 3.. Soit (u ) ue suite réelle. O lui associe (S ) ue ouvelle suite défiie par S = u 0 + + u. O appelle série de terme gééral

Plus en détail

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances Frace métropolitaie Jui 200 Série S Exercice Restitutio orgaisée de coaissaces Démotrer, à l aide de la défiitio et des deux propriétés cidessous que si ( u ) et ( v ) sot deux suites adjacetes, alors

Plus en détail

Fiche sur suites et calculatrices pour les calculatrices TI

Fiche sur suites et calculatrices pour les calculatrices TI Fiche sur suites et calculatrices pour les calculatrices TI Objectifs : O doe ue suite. O veut obteir : - u tableau de valeurs des termes de la suite ; - ue représetatio graphique des termes de la suite.

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique EXERCICE : EXERCICES SR LES SITES NMÉRIQES Site MathsTICE de Adama Traoré Lycée Techique I) r désigat respectivemet le premier terme, le ième terme, la raiso et la somme des premier termes d ue suite arithmétique,

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib Les sites réelles Copyright Dhaoadi Nejib 009 00 http://wwwsigmathscocc Dhaoadi Nejib http://wwwsigmathscocc Page : Sites Réelles Das ce chapitre I désige l esemble des etiers 0 ( 0 N ) I Rappels et complémets

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

Suites et séries réelles

Suites et séries réelles Suites et séries réelles Ue suite umérique est ue famille de ombres réels ou complexes idicées par les etiers aturels. O ote ue suite u idifféremmet (u ) N, ou (u ) 0, ou simplemet (u ). L esemble des

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

x k, 2 : x k 1 n x x 1

x k, 2 : x k 1 n x x 1 SMIA/S3 ANALYSE 3 AALAMI IDRISSI et EZEROUALI Chapitre 5 FONCTIONS DE IR DANS IR p I) NOTIONS DE TOPOLOGIE SUR IR 1) Normes sur IR : a) Défiitio: O appelle orme sur toute applicatio x x de das telle que

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 64

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 64 Sylvai ETIENNE 3/4 IMAGE D UN INTERVALLE PAR UNE FONCTION CONTINUE, IMAGE D UN SEGMENT. CONTINUITE DE LA FONCTION RECIPROQUE D UNE FONCTION CONTINUE STRICTEMENT MONOTONE SUR UN INTERVALLE. Niveau : Complémetaire.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

D E V O I R S U R V E I L L E

D E V O I R S U R V E I L L E D E V O I R S U R V E I L L E MATIERE : MATHEMATIQUES CLASSE de : SALLE : PROFESSEUR : DATE : HEURE Début : HEURE fi : MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON Rappel : Tous les prêts, échages

Plus en détail

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ).

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ). Chapitre Suites et ites Exercices Calcul des ites I (a) Calculer (b) Calculer (c) Calculer (d) Calculer (e) Calculer (f) Calculer (g) Calculer (h) Calculer (i) Calculer (j) Calculer (k) Calculer + + 4

Plus en détail