Apprentissage automatique à partir d exemples

Dimension: px
Commencer à balayer dès la page:

Download "Apprentissage automatique à partir d exemples"

Transcription

1 Apprentissage automatique à partir d exemples DEA Génomique et Informatique année Francois.Coste@irisa.fr Apprentissage? Machine Learning is the study of computer algorithms that automatically improve performance through experience 1

2 Apprentissage par induction «Apprendre à partir d exemples» À partir d exemples disponibles, trouver le concept (1) correspondant But : prendre des décisions face à des situations inconnues... Généralisation (1) Concept: An abstract or generic idea generalized from particular instances [Merriam Webster] Généraliser est difficile... Nombre fini d exemples nombre «infini» de concepts cohérents Lequel choisir comme solution? Principe du Rasoir d Occam choisir les solutions les plus «simples» Utiliser et introduire des connaissances à priori (biais d apprentissage) Biais de représentation Biais de préférence 2

3 Apprentissage par induction Apprentissage d'un concept C à partir d'exemples (instances) appartenant au concept x 1,,x n échantillon d apprentissage X Apprentissage H C hypothèse Choix de la description des exemples? Choix de l espace d hypothèses? Apprentissage réussi? 3

4 Apprentissage de classifications CHIENS CHATS Apprentissage de classifications Concept = fonction de classification c Objets à classer O = {o 1,o 2, }, Langage de description D = {d 1,d 2, } Ensemble de classes [1,C] Classification c : O [1,C] ( O [1,C]) d h c Exemples = <description, classe> x 1,, x n <d 1,c 1 > <d n,c n > Apprentissage h c 4

5 Remarques Apprentissage «supervisé» : on connaît le nombre de classes et la classe des exemples ( clustering, cf. cours I.C. Lerman) Cas C = 2 (classes = [1,2]) : discrimination d objets appartenant à la classe 1 / ceux qui n y appartiennent pas (i.e. dans classe 2). Apprentissage d un concept à partir d exemples et de contre-exemples. On notera Γ = {+,-} «exemples positifs, exemples négatifs» Cas C = 1, apprentissage à partir d exemples positifs seulement : problème de caractérisation Plan Définir un problème d apprentissage Exemples : Apprentissage de modèles Apprentissage de modèles probabilistes 5

6 Définir un problème d apprentissage Choix de la description des exemples? Choix de l espace d hypothèses? Algorithme d apprentissage? Évaluation de l apprentissage? Exemple 1 Apprentissage de l arbre de décision «sortie en mer» Apprentissage Échantillon d apprentissage météo Skipper Décision calme amateur mer tempête amateur terre agitée expérimenté mer tempête expérimenté terre agitée amateur terre Arbre de décision météo = tempête Non Oui skipper = amateur terre Non Oui mer météo = agitée Non Oui mer terre 6

7 Exemple 2 : Apprentissage pour la reconnaissance de caractères manuscrits Exemples : a a a a... Description : vos propositions? Espace d hypothèses : vos propositions? Remarque : apprentissage par coeur est impossible Description des objets Ensemble d'attributs d = (a 1,, a n ) dans R (apprentissage numérique) discrets (apprentissage symbolique) booléens, littéraux... Mixtes Devrait permettre discrimination des exemples c(o 1 ) c(o 2 ) d(o 1 ) d(o 2 ) mais aussi un apprentissage "efficace" 7

8 Espace d hypothèses Choix du type de fonctions considéré Espace d'hypothèse Biais de représentation restriction de la recherche provient d une connaissance à priori Espace d'hypothèse grand Favorise existence de h=c Plus difficile à explorer pour trouver la (meilleure) solution Apprentissage D c c h H Espace des descriptions Espace d hypothèses (d objets) Programme d'apprentissage cherche la "meilleure" solution dans l'espace d'hypothèses par rapport à l'échantillon d'apprentissage 8

9 Erreurs de classification Erreur de classification de h pour d : E(d) = P(c(o) h(d) / d(o) = d) Erreur de classification de h (à minimiser) E(h) = d D E(d) P(d(o) = d) Taux d erreur apparent E app (h) = err / n (sur l échantillon) n : nombre d exemples err : nombre d erreurs de classification par h sur les exemples E(h) = lim n E app (h) Bien classer et bien prédire Minimisation E app Sur-spécialisation / X Exple : Apprentissage par cœur, E app = 0 Apprentissage ou mémorisation? Pouvoir prédictif?!? But : au moins une meilleure prédiction que la Règle de la classification majoritaire 9

10 Critère de simplicité Rasoir d Occam : Favoriser les hypothèses les plus simples Minimum Description Length (MDL) h MDL = argmin h H L 1 (h)+l 2 (X/h) (Minimiser longueur du codage de h et de ses exceptions) Autres critères possibles : intelligibilité du résultat, taux de couverture (pour C=1), Evaluation par ensemble de test Ne pas utiliser les mêmes exemples pour apprendre et pour évaluer la qualité du résultat! Échantillon fourni divisé en échantillon d apprentissage et échantillon de test (Rapports usuels : 1/2,1/2 ou 2/3,1/3) Validation croisée partition de X en p sous-ensembles p apprentissages sur p-1 sous-ensembles, test sur le sous-ensemble restant Bootstrap Tirage avec remise de n exemples : ensemble d apprentissage Test sur X 10

11 Apprentissage inductif supervisé Training Test errors correct Evaluation d une hypothèse Concept cible Hypothèse FN VP VN FP VP : vrais positifs FN : faux négatifs FP : faux positifs VN : vrais négatifs 11

12 Rappel et Précision Utilisation d une matrice de confusion pour compter : Concept P N Total Hypothè se P N VP : 70 FN : 30 FP : 50 VN : 150 P H : 120 N H : 180 Total P c : 100 N c : Précision (P) = VP / P H = VP / (VP + FP) = 70 / (70+50) = 0.58 Rappel (R) = VP / P C = VP / (VP + FN) = 70 / (70+30) = 0.70 Accuracy (A) = (VP+VN) / Total = 220 / 300 = 0.73 F-measure (F) = (β 2 +1) P R / (β 2 P + R) Sans préférence : β 2 = 1 F = 2*VP/(VP+FP+VP+FN) = 2 70/( ) = 0.63 Algorithmes d apprentissage Exploration de l espace d hypothèses 12

13 Algorithme par énumération Application directe du rasoir d Occam : Enumérer tous les concepts en commençant par les plus «simples» S arrêter au premier concept cohérent avec les exemples Espace des versions (1) [Mitchell 78] Si on peut ordonner partiellement les hypothèses / généralité : Espace des versions : ensemble des hypothèses cohérentes avec les exemples déjà vus G représentable par G : ensemble maximalement général S : ensemble maximalement spécifique S 13

14 Espace des versions (2) Arrivée d un exemple e+ éliminer les descriptions de G qui ne couvrent pas e+ généraliser les éléments de S qui ne couvrent pas e+ jusqu à ce qu ils le fassent, tout en restant plus spécifiques qu un des éléments de G enlever tout élément plus général qu un autre dans S G S Espace des versions (3) Arrivée d un contre-exemple e- éliminer les descriptions de S qui couvrent e- spécialiser les éléments de G qui couvrent e- jusqu à ce qu ils ne le fassent plus, tout en restant plus généraux qu un des éléments de S enlever tout élément plus spécifique qu un autre dans G S G 14

15 Espace des versions (4) Arrêt lorsque G et S coïncident (ou quand il n y a plus d exemples) S = G Apprentissage incrémental Ne résiste pas au bruit S et G peuvent être très grands des variantes existent... Approches heuristiques Espace de recherche trop grand pour une exploration exhaustive Fonction f associe un score à chaque hypothèse h On peut alors considérer l apprentissage comme un problème d optimisation dans l espace d hypothèses Hill-climbing Algorithmes Génétiques... Méthodes spécifiques à des représentations : Induction d arbres de décision... 15

16 1. Initialiser candidat Hill-climbing 2. Evaluer les voisins du candidat 3. Si un voisin a un meilleur score que le candidat Alors ce voisin devient le candidat courant et recommencer en 2. Sinon le candidat courant est la solution Heuristique : ne garantit pas optimalité... Optimisation par AG [Holland 75] Idée = imiter sélection naturelle codage des hypothèses sous forme de chaînes (chromosomes) génération aléatoire d une population initiale d hypothèses sélection pondérée par les scores croisements/mutations sur la population Utilisable même quand l espace d hypothèse est «mal connu» (quand on n a pas d autres idées ;-) ) 16

17 Chromosome Phénotype Score Apprentissage d arbres de décision 17

18 Nœud : test Feuille : classification Arbre de décision Pour chaque position i : météo = tempête skipper = amateur Non mer Non Non mer météo = agitée terre terre n(i) nombre d exples en i n(k/i) nombre d exples de classe k en i p(k/i) = n(k/i) / n(i) proportion d exples de classe k en i Oui Oui Oui Exemple 1 n(1) = 5 n(mer/1) = 2; n(terre/1) = 3 p(mer/1) = 2/5; p(terre/1)= 3/5 n(2) = 3 n(mer/2) = 2; n(terre/2) = 1 p(mer/2) = 2/3; p(terre/2)= 1/3 météo Skipper Décision calme amateur mer tempête amateur terre agitée expérimenté mer tempête expérimenté terre agitée amateur terre météo = tempête Non skipper = amateur Non mer 4 Non mer Oui terre Oui météo = agitée Oui terre

19 Algorithme générique d apprentissage d un arbre de décision («top down») Fonction AD(X : exemples) : nœud si X d une seule classe alors renvoie créer_feuille(classe(x)) sinon Sélectionner «meilleur» attribut a G test(x,a) D X - G renvoie créer_nœud (a, AD (G), AD (D)) Choix du meilleur attribut? Séparer rapidement les exemples de classes différentes Entropie(i) = - k p(k/i) log p(k/i) nombre de bits nécessaires pour coder la classification des exemples en i (théorie de l information, [Shannon]) Gain d information à un nœud i pour attribut a Gain(i,a) = Entropie(i) - ( n(g) Entropie(g) + n(d) Entropie(d)) où on note resp. g et d les fils gauche et droit de i pour a Critère ID3 : choix de a pour maximiser le gain minimiser n(g) Entropie(g) + n(d) Entropie(d) 19

20 Exercice Construire l arbre de décision obtenu par cette procédure pour l échantillon d apprentissage : météo Skipper Décision calme amateur mer tempête amateur terre agitée expérimenté mer tempête expérimenté terre agitée amateur terre Principaux algorithmes CART [Friedman 1977, Breiman et al. 1984] ID3 [Quinlan 1986] C4.5 [Quinlan 1993] Variations : élagage (post-traitement) MDL scores utilisés attributs continus arbres n-aires arbres à motifs régulier... 20

21 BONSAI Pour la prédiction de domaines transmembranaire «A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns», S. Arikawa, S. Kuhara, Y Mukouchi, T. Shinohara New Generation Computing, pp , 1993 BONSAI («soon») html Vue générale de BONSAI Exemples et contre exemples (tirés des Bases de Données) Séparation en échantillon d apprentissage et de validation Simplification de la description Apprentissage et évaluation 21

22 Obtention d arbres de décision «à motifs régulier» Algorithme 22

23 Choix de l attribut Trouver un motif séparant les exemples minimisant : cf. critère ID3 Bonsai Garden Prédiction de promoteurs CCAAT, GC et TATA box 23

24 BONSAI Garden Prédiction hélices α 24

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Intégration de la dimension sémantique dans les réseaux sociaux

Intégration de la dimension sémantique dans les réseaux sociaux Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI maria.malek@eisti.fr 1 Contexte : Recommandation dans les réseaux sociaux

Plus en détail

MABioVis. Bio-informatique et la

MABioVis. Bio-informatique et la MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Spécifications, Développement et Promotion Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Ricco? Enseignant chercheur (CNU.27) En poste à l Université Lyon 2 Faculté de Sciences Eco. Recherche

Plus en détail

Apprentissage. Intelligence Artificielle NFP106 Année 2012-2013. Plan. Apprentissage. Apprentissage

Apprentissage. Intelligence Artificielle NFP106 Année 2012-2013. Plan. Apprentissage. Apprentissage Intelligence Artificielle NFP106 Année 2012-2013 Apprentissage! F.-Y. Villemin! Plan! Apprentissage! Induction! Règles d'inférence inductive! Apprentissage de concepts!! Arbres de décision! ID3! Analogie

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Etude comparative de différents motifs utilisés pour le lancé de rayon

Etude comparative de différents motifs utilisés pour le lancé de rayon Etude comparative de différents motifs utilisés pour le lancé de rayon Alexandre Bonhomme Université de Montréal 1 Introduction Au cours des dernières années les processeurs ont vu leurs capacités de calcul

Plus en détail

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Intelligence Artificielle Planification

Intelligence Artificielle Planification Intelligence Artificielle Planification Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes

Plus en détail

Introduction aux outils BI de SQL Server 2014. Fouille de données avec SQL Server Analysis Services (SSAS)

Introduction aux outils BI de SQL Server 2014. Fouille de données avec SQL Server Analysis Services (SSAS) MIT820: Entrepôts de données et intelligence artificielle Introduction aux outils BI de SQL Server 2014 Fouille de données avec SQL Server Analysis Services (SSAS) Description générale Ce tutoriel a pour

Plus en détail

Contrainte de flot pour RCPSP avec temps de transfert

Contrainte de flot pour RCPSP avec temps de transfert Contrainte de flot et x-rcpsc T 1 Contrainte de flot pour RCPSP avec temps de transfert PS temp, s ij Cmax BENOIST Thierry BOUYGUES/e-Lab DIAMANTINI Maurice ENSTA/LMA Contrainte de flot et x-rcpsc T Présentation

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS

Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS Sauvegarde collaborative entre pairs 1 Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS Sauvegarde collaborative entre pairs 2 Introduction Pourquoi pair à pair? Utilisation de ressources

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

TANAGRA : un logiciel gratuit pour l enseignement et la recherche

TANAGRA : un logiciel gratuit pour l enseignement et la recherche TANAGRA : un logiciel gratuit pour l enseignement et la recherche Ricco Rakotomalala ERIC Université Lumière Lyon 2 5, av Mendès France 69676 Bron rakotoma@univ-lyon2.fr http://eric.univ-lyon2.fr/~ricco

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

Vers l'ordinateur quantique

Vers l'ordinateur quantique Cours A&G Vers l'ordinateur quantique Données innies On a vu dans les chapîtres précédents qu'un automate permet de représenter de manière nie (et même compacte) une innité de données. En eet, un automate

Plus en détail

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du

Plus en détail

Une application des algorithmes génétiques à l ordonnancement d atelier

Une application des algorithmes génétiques à l ordonnancement d atelier Une application des algorithmes génétiques à l ordonnancement d atelier VACHER Jean-Philippe - GALINHO Thierry - MAMMERI Zoubir Laboratoire d Informatique du Havre Université du Havre 25, Rue Philippe

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

Vous êtes bien à la bonne présentation, c est juste que je trouvais que le titre de cette présentation étais un peu long,

Vous êtes bien à la bonne présentation, c est juste que je trouvais que le titre de cette présentation étais un peu long, Vous êtes bien à la bonne présentation, c est juste que je trouvais que le titre de cette présentation étais un peu long, en fait ça me faisait penser au nom d un certain projet gouvernemental je me suis

Plus en détail

Algorithmique des Systèmes Répartis Protocoles de Communications

Algorithmique des Systèmes Répartis Protocoles de Communications Algorithmique des Systèmes Répartis Protocoles de Communications Master Informatique Dominique Méry Université de Lorraine 1 er avril 2014 1 / 70 Plan Communications entre processus Observation et modélisation

Plus en détail

Méthodes d apprentissage statistique «Machine Learning»

Méthodes d apprentissage statistique «Machine Learning» Méthodes d apprentissage statistique «Machine Learning» Fabrice TAILLIEU, Sébastien DELUCINGE, Rémi BELLINA Le marché de l assurance a rarement été marqué par un environnement aussi difficile qu au cours

Plus en détail

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services 69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard

Plus en détail

DECLARATION DES PERFORMANCES N 1

DECLARATION DES PERFORMANCES N 1 DECLARATION DES PERFORMANCES N 1 Résistance mécanique C18 EN 1912 : 2012 + EN 338 :2009 DECLARATION DES PERFORMANCES N 2 Résistance mécanique C24 EN 1912 : 2012 + EN 338 :2009 DECLARATION DES PERFORMANCES

Plus en détail

Travaux pratiques avec RapidMiner

Travaux pratiques avec RapidMiner Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel

Plus en détail

6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses

6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses 6. Hachage Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses PLAN Définition Fonctions de Hachage Méthodes de résolution de collisions Estimation

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Recherche Web B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques basés sur les documents

Plus en détail

L exclusion mutuelle distribuée

L exclusion mutuelle distribuée L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

La nouvelle planification de l échantillonnage

La nouvelle planification de l échantillonnage La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage

Plus en détail

Cours d algorithmique pour la classe de 2nde

Cours d algorithmique pour la classe de 2nde Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage

Plus en détail

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Y. Houbad, M. Souier, A. Hassam, Z.Sari Laboratoire d automatique Tlemcen Faculté de technologie, Université Abou

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

1 Modélisation d être mauvais payeur

1 Modélisation d être mauvais payeur 1 Modélisation d être mauvais payeur 1.1 Description Cet exercice est très largement inspiré d un document que M. Grégoire de Lassence de la société SAS m a transmis. Il est intitulé Guide de démarrage

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Data Mining. Bibliographie (1) Sites (1) Bibliographie (2) Plan du cours. Sites (2) Master 2 Informatique UAG

Data Mining. Bibliographie (1) Sites (1) Bibliographie (2) Plan du cours. Sites (2) Master 2 Informatique UAG Data Mining Master 2 Informatique UAG Bibliographie (1) U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, 1996 Gilbert

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Modélisation multi-agents - Agents réactifs

Modélisation multi-agents - Agents réactifs Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - julien.saunier@ifsttar.fr Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

Apprentissage symbolique et statistique à l ère du mariage pour tous

Apprentissage symbolique et statistique à l ère du mariage pour tous Apprentissage symbolique et statistique à l ère du mariage pour tous Stéphane Canu asi.insa-rouen.fr/enseignants/~scanu RFIA 2014, INSA Rouen 2 juillet 2014 Apprentissage : humain vs. machine Les apprentissages

Plus en détail

Classification non supervisée

Classification non supervisée AgroParisTech Classification non supervisée E. Lebarbier, T. Mary-Huard Table des matières 1 Introduction 4 2 Méthodes de partitionnement 5 2.1 Mesures de similarité et de dissimilarité, distances.................

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

I- Définitions des signaux.

I- Définitions des signaux. 101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

Sécurité logicielle. École de technologie supérieure (ÉTS) MGR850 Automne 2012 Automne 2012. Yosr Jarraya. Chamseddine Talhi.

Sécurité logicielle. École de technologie supérieure (ÉTS) MGR850 Automne 2012 Automne 2012. Yosr Jarraya. Chamseddine Talhi. MGR850 Automne 2012 Automne 2012 Sécurité logicielle Yosr Jarraya Chargé de cours Chamseddine Talhi Responsable du cours École de technologie supérieure (ÉTS) 1 Plan Motivations & contexte Développement

Plus en détail

Rapport de Stage. Titre : Clustering à l aide d une représentation supervisée

Rapport de Stage. Titre : Clustering à l aide d une représentation supervisée Nicolas Creff Du 1er février au 31 juillet 2011 Promotion 2011 Majeure SCIA Rapport de Stage Titre : Clustering à l aide d une représentation supervisée Sujet : Personnalisation de scores à l aide de la

Plus en détail

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Raja Chiky, Bruno Defude, Georges Hébrail GET-ENST Paris Laboratoire LTCI - UMR 5141 CNRS Département Informatique et Réseaux

Plus en détail

Identification de nouveaux membres dans des familles d'interleukines

Identification de nouveaux membres dans des familles d'interleukines Identification de nouveaux membres dans des familles d'interleukines Nicolas Beaume Jérôme Mickolajczak Gérard Ramstein Yannick Jacques 1ère partie : Définition de la problématique Les familles de gènes

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR

Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains

Plus en détail

Évaluation d une architecture de stockage RDF distribuée

Évaluation d une architecture de stockage RDF distribuée Évaluation d une architecture de stockage RDF distribuée Maeva Antoine 1, Françoise Baude 1, Fabrice Huet 1 1 INRIA MÉDITERRANÉE (ÉQUIPE OASIS), UNIVERSITÉ NICE SOPHIA-ANTIPOLIS, I3S CNRS prénom.nom@inria.fr

Plus en détail

Techniques d interaction dans la visualisation de l information Séminaire DIVA

Techniques d interaction dans la visualisation de l information Séminaire DIVA Techniques d interaction dans la visualisation de l information Séminaire DIVA Zingg Luca, luca.zingg@unifr.ch 13 février 2007 Résumé Le but de cet article est d avoir une vision globale des techniques

Plus en détail

LOGO. Module «Big Data» Extraction de Connaissances à partir de Données. Claudia MARINICA MCF, ETIS UCP/ENSEA/CNRS Claudia.Marinica@u-cergy.

LOGO. Module «Big Data» Extraction de Connaissances à partir de Données. Claudia MARINICA MCF, ETIS UCP/ENSEA/CNRS Claudia.Marinica@u-cergy. Module «Big Data» Extraction de Connaissances à partir de Données Claudia MARINICA MCF, ETIS UCP/ENSEA/CNRS Claudia.Marinica@u-cergy.fr 14 Janvier 2015 Pourquoi l extraction de connaissances à partir de

Plus en détail

High Performance by Exploiting Information Locality through Reverse Computing. Mouad Bahi

High Performance by Exploiting Information Locality through Reverse Computing. Mouad Bahi Thèse High Performance by Exploiting Information Locality through Reverse Computing Présentée et soutenue publiquement le 21 décembre 2011 par Mouad Bahi pour l obtention du Doctorat de l université Paris-Sud

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Les algorithmes de fouille de données

Les algorithmes de fouille de données Février 2005 Les algorithmes de fouille de données DATAMINING Techniques appliquées à la vente, aux services client, interdictions. Cycle C Informatique Remerciements Je remercie les personnes, les universités

Plus en détail

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion marc.boulle@orange-ftgroup.com,

Plus en détail

IPHONE BANNIÈRE CLASSIQUE DIMENSIONS. Standard : 320 x 53 (portrait) 20Ko Jpeg/Gif/Png. HD : 640 x 106 (portrait) 20Ko Jpeg/Gif/Png DESCRIPTION

IPHONE BANNIÈRE CLASSIQUE DIMENSIONS. Standard : 320 x 53 (portrait) 20Ko Jpeg/Gif/Png. HD : 640 x 106 (portrait) 20Ko Jpeg/Gif/Png DESCRIPTION IPHONE BANNIÈRE CLASSIQUE DIMENSIONS Standard : 320 x 53 (portrait) 20Ko Jpeg/Gif/Png HD : 640 x 106 (portrait) 20Ko Jpeg/Gif/Png DESCRIPTION Format publicitaire très répandu et simple Permet une présence

Plus en détail

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE ANALYSIS OF THE EFFICIENCY OF GEOGRIDS TO PREVENT A LOCAL COLLAPSE OF A ROAD Céline BOURDEAU et Daniel BILLAUX Itasca

Plus en détail

Système immunitaire artificiel

Système immunitaire artificiel République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieure Université des Sciences et de la Technologie D Oran Mohammed Boudiaf (USTO) Faculté des Sciences Département d Informatique

Plus en détail

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178 Thèse no. 7178 PROBLEMES D'OPTIMISATION DANS LES SYSTEMES DE CHAUFFAGE A DISTANCE présentée à l'ecole POLYTECHNIQUE FEDERALE DE ZURICH pour l'obtention du titre de Docteur es sciences naturelles par Alain

Plus en détail

Éléments d informatique Cours 3 La programmation structurée en langage C L instruction de contrôle if

Éléments d informatique Cours 3 La programmation structurée en langage C L instruction de contrôle if Éléments d informatique Cours 3 La programmation structurée en langage C L instruction de contrôle if Pierre Boudes 28 septembre 2011 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

XtremWeb-CH : Une plateforme Global Computing pour les applications de haute performance

XtremWeb-CH : Une plateforme Global Computing pour les applications de haute performance -1- XtremWeb-CH : Une plateforme Global Computing pour les applications de haute performance http://www.xtremwebch.net Nabil Abdennadher, Régis Boesch Laboratoire d Informatique Industrielle Ecole d'ingénieurs

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

e-biogenouest CNRS UMR 6074 IRISA-INRIA / Plateforme de Bioinformatique GenOuest yvan.le_bras@irisa.fr Programme fédérateur Biogenouest co-financé

e-biogenouest CNRS UMR 6074 IRISA-INRIA / Plateforme de Bioinformatique GenOuest yvan.le_bras@irisa.fr Programme fédérateur Biogenouest co-financé e-biogenouest Coordinateur : Olivier Collin Animateur : Yvan Le Bras CNRS UMR 6074 IRISA-INRIA / Plateforme de Bioinformatique GenOuest yvan.le_bras@irisa.fr Programme fédérateur Biogenouest co-financé

Plus en détail

Interception des signaux issus de communications MIMO

Interception des signaux issus de communications MIMO Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus

Plus en détail

Fig. 1 Le détecteur de LHCb. En bas à gauche : schématiquement ; En bas à droite: «Event Display» développé au LAL.

Fig. 1 Le détecteur de LHCb. En bas à gauche : schématiquement ; En bas à droite: «Event Display» développé au LAL. LHCb est l'une des expériences installées sur le LHC. Elle recherche la physique au-delà du Modèle standard en étudiant les mésons Beaux et Charmés. L accent est mis entre autres sur l étude de la violation

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Spécificités, Applications et Outils

Spécificités, Applications et Outils Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala ricco.rakotomalala@univ-lyon2.fr http://chirouble.univ-lyon2.fr/~ricco/data-mining

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

COMPUTING. Jeudi 23 juin 2011 1 CLOUD COMPUTING I PRESENTATION

COMPUTING. Jeudi 23 juin 2011 1 CLOUD COMPUTING I PRESENTATION C L O U D COMPUTING Jeudi 23 juin 2011 1 2 Une nouvelle révolution de l IT 2010+ Cloud Computing 2000s Service Oriented Archi. 1990s Network Computing 1980s Personal Computing 1970s Mainframe Computing

Plus en détail