Les données manquantes en statistique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les données manquantes en statistique"

Transcription

1 Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006

2 Les données manquantes Importance du problème Fréquentes voire inévitables Concernent toutes les bases de données (BDD)... et toutes les variables de ces BDD.

3 Donnée manquante Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin Définition : Soit une variable aléatoire X quelconque. Une donnée manquante (DM) x m est une donnée pour laquelle la valeur X = x est inconnue. On ne dispose pas de la valeur de X pour le sujet i.

4 Classification méthodologique des DM Classification méthodologique des DM Effet des manquants Classification de Little et Rubin Origine matérielle des DM : La valeur de x i n a pas été mesurée (oubli...) la valeur mesurée mais perdue ou pas été notée la valeur mesurée, noté considérée comme non utilisable : données jugées aberrantes et erreurs manifeste la donnée mesurée mais pas disponible : Ne Sait Pas censure (1) la valeur < ou > limites de détection de l outil censure (2) des études de survie : à part

5 Classification méthodologique des DM Effet des manquants Classification de Little et Rubin Classification par rapport à l unité statistique Typologie des DM par rapports aux unités statistiques La donnée est manquante en raison de : non réponse de l unité statistique : aucune mesure n est obtenue pour l unité statistique non réponse pour l item : seule manque la mesure sur la variable X considérée.

6 Un exemple sur une variable Classification méthodologique des DM Effet des manquants Classification de Little et Rubin variable X, n-échantillon dont m valeurs manquantes taille de l échantillon de n à n m = n p, de m/n % on peut estimer m et s 2 sur les n m présents valide que si n p valeurs sous-échantillon aléatoire des n le fait d être manquant ne dépend pas de la valeur (manquante) Pr(x i : ) = p, i. sinon il y a un biais

7 Effet des manquants : Un exemple (1) Classification méthodologique des DM Effet des manquants Classification de Little et Rubin Biais Perte de Puissance on tire 1000 valeurs d une v.a. gaussienne centrée réduite on vérifie sa moyenne et sa variance et on trace l histogramme des valeurs on supprime aléatoirement 250 valeurs sur l ensemble des valeurs du vecteur on vérifie que la moyenne et la variance du sous-échantillon sont proches des valeurs de l échantillon de départ

8 Effet des manquants : Un exemple (2) Classification méthodologique des DM Effet des manquants Classification de Little et Rubin On retire ensuite des valeurs surtout dans les valeurs basses de l échantillon : on retire 225 valeurs parmi les valeurs basses et 25 parmi les valeurs hautes. on calcule la moyenne et la variance de l échantillon et on trace son histogramme. On vérifie que les estimations des paramètres sont biaisés.

9 Classification méthodologique des DM Effet des manquants Classification de Little et Rubin la forme de la distribution obervée sur les données complètes n est pas forcément la forme de la distribution complète. en présence de données manquantes : biais? importance? la distribution observée sur le sous-échantillon complet est-elle représentative de la forme de la distribution dans la population?

10 Autres exemple Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin Voir simulations sur R. modifications des paramètres selon les manquants.

11 Situation bivariée : Les éléments Classification méthodologique des DM Effet des manquants Classification de Little et Rubin Soit deux V.A. X et Y, n réalisations. X est complètement observée Y comporte des valeurs manquantes. les deux V.A. X et Y soit qualitative soit quantitative sans perte de généralité.

12 Situation bivariée Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin sujet X Y 1 x 1 y i i x i y i i + 1 x i+1 * n x n * Tab.: Tableau pour la classification de LR

13 Les trois cas possibles Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin (1) La probabilité d avoir une valeur manquante est indépendante de X et de Y Pr(D : Mqt obs, mqt) = Pr(D : Mqt) (2) La probabilité d avoir une valeur manquante dépend de X mais pas de Y Pr(D : Mqt obs, mqt) = Pr(D : Mqt obs) (3) La probabilité d avoir une valeur manquante dépend de X et de Y Pr(D : Mqt obs, mqt) = Pr(D : Mqt obs, mqt)

14 Premier cas Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin La probabilité d avoir une valeur manquante est indépendante de X et de Y les valeurs manquantes sont Manquantes Aléatoirement Missing at random : MAR les données observées sont Observées Aléatoirement Observed at random : OAR les données sont manquantes complétement aléatoirement Missing Completely at Random : MCAR les valeurs Y observées : sous-échantillon aléatoire de Y

15 Deuxième cas Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin La probabilité d avoir une valeur manquante dépend de X mais pas de Y on dit que le données sont manquantes aléatoirement Missing at Random : MAR les valeurs observées de Y ne sont pas forcément un sous-échantillon aléatoire des valeurs échantillonnées de Y mais elles sont un sous-échantillon aléatoire de Y dans des sous-classes définies par les valeurs de X.

16 Troisième cas Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin La probabilité d avoir une valeur manquante dépend de X et de Y les valeurs ne sont ni manquantes aléatoirement (non MAR) ni obervées aléatoirement (non OAR) les données sont manquants non aléatoire : M Not AR (MNAR)

17 Classification méthodologique des DM Effet des manquants Classification de Little et Rubin voir exemples de manquants selon X et Y dans R.

18 Conséquences Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin cas MCAR et MAR le mécanisme des manquants peut être ignoré pour les méthodes d inférence basées sur la vraisemblance. Dans le cas MCAR, il peut-être ignoré à la fois pour les approches basées sur la vraisemblance et pour les approches basées sur l échantillonage. Dans le cas MCAR le mécanisme ne peut pas être ignoré.

19 Quelques exemples classiques Classification méthodologique des DM Effet des manquants Classification de Little et Rubin le revenu ou le fait de payer des impôt est une information dont la fréquence de réponse varie avec le niveau du revenu ou le fait ou non de payer des impôts. les aidants des personnes âgées dépendantes, pour savoir si la personne aidée représente une charge, la présence d une réponse dépend de la valeur de la réponse consommation d alcool est souvent d autant plus minimisée que cette consommation est forte. dans les dossiers médicaux, la probabilité qu un symptome négatif soit noté est plus faible que la probabilité qu un symptôme positif soit noté.

20 Encore des exemples Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin Soit deux V.A. continues, une est sujette à non-réponse. La variable X complétement observée est l âge et la variable Y incomplétement observée est le revenu. Si la probabilité que le revenu soit manquant est indépendante de l âge et du revenu du sujet, alors les données sont de type MCAR (OAR + MAR).

21 Encore des exemples Introduction Classification méthodologique des DM Effet des manquants Classification de Little et Rubin Si la probabilité que le revenu soit manquant dépend de l âge de la personne interrogée mais pas de son revenu, alors les DM sont manquantes aléatoirement (ne dépendent pas du revenu) mais elles ne sont pas observées aléatoirement (dépendent de l âge) : elles sont donc de type MAR. Si la probabilité que le revenu soit manquant dépend de l âge de la personne et de son revenu, les DM ne sont pas manquantes aléatoirement (dépendent du revenu) et ne sont pas observées aléatoirement (dépendent de l âge) : elles sont donc de type MNAR.

22 Classification méthodologique des DM Effet des manquants Classification de Little et Rubin L intérêt de cette classification Prendre en compte le mécanisme des manquants dans l analyse. Si on s intéresse uniquement à la distribution marginale de X (l âge), les données de Y et le mécanisme des manquants n a aucune importance. Si on souhaite avoir une estimation conditionnelle de la valeur de Y sachant X (par exemple la répartition des revenus en fonction de l âge), alors l analyse sur les n m valeurs complétes est satisfaisante si les données sont MAR ou si elles sont MCAR. Si on s intéresse à la distribution marginale de Y (moyenne des revenus), alors une analyse basée sur les unités complètes est biaisée sauf si les données sont de type MCAR.

23 Classification méthodologique des DM Effet des manquants Classification de Little et Rubin Si données MNAR, les estimations portant sur la distribution marginale de Y et sur la distribution conditionnelle de Y sachant X sont biaisées et nécessitent une modélisation des valeurs manquantes. Dans les autres cas, la modélisation n est pas nécessaire même si des méthodes adaptées à l analyse statistique en présence de DM doivent être utilisées.

24 Classification méthodologique des DM Effet des manquants Classification de Little et Rubin reprendre les exemples sur l impact des manquants dans R.

25 Méthode d analyse Introduction Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple méthode du cas complet X deux V.A. X 1 et X 2, n-échantillon. m 1 et m 2 valeurs mqt. sur X 1 et X 2. Le nombre m de sujets ayant au moins une donnée manquante max(m 1, m 2 ) m m 1 + m 2 Le nombre n c de sujets complets est égale à n m. Donc en général n c < nombre de sujets complets pour X 1 ou pour X 2 et : la plupart du temps on perd plus de valeurs que le nombre réel de valeurs manquantes

26 méthode du cas complet : avantages Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple facilite les comparaisons entre analyses uni- et multivariées si on retire les mêmes sujets d une analyse à l autre pas-à-pas ascendants : différents si logiciel ou fait soi-même

27 Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple Méthode du cas complet : inconvénients biais perte de puissance perte de cas rapidement considérable si 10 variables avec 10% de manquants 0, 9 10 cas complets = 34,8%

28 Méthode du cas disponible Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple on utilise pour chaque sous-analyse l ensemble des cas complets avantage : nb max de sujets à chaque analyse inconvénients : nb variables d une analyse à l autre Y = α 1 + βx 1 et Y = α 1 + βx 2 portent sur des sujets différents ACP : matrice de covariance mal conformée

29 Les méthodes d imputation Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple méthodes très nombreuses consiste à substituer une valeur à la valeur manquante. méthodes séduisantes et dangereuses (Rubin)

30 Les méthodes simples Introduction Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple (... et mauvaises) LOCF : Last Observation Caried Forward ajouter une catégorie pour les DM moyenne non conditionnelle moyenne conditionnelle (Buck) (par bloc ou pas) imputation + aléa simples mais inconvénients +++ / overfitting /ad hoc estimations d IC très difficiles

31 Les méthodes dans les enquêtes Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple cold deck : source exterieur, limites hot deck substitution : tirage au sort d une nouvelle unité difficile si stratification a posteriori

32 Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple Méthodes basées sur une énumération des possibilités Pour des données qualitatives + + : table 1ou2 2 énumerer toute les solutions possibles (liste de p) étude de sensibilité : énumerer toute les possibilités dans un graphique, méthode de Shadish énumerer et combiner : faire une hypothèse sur la répartition des DM on fixe θ = θ m pour chaque combinaison de manquants, queues de distribution (Fisher) on combine les résultats pour avoir une inférence globale

33 Etude de sensibilité : Shadish Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple Angioplasty: % of missing allocated to good outcome (n=30) Extreme favouring A All allocated to good All allocated to poor Extreme favouring S Stent: % of missing allocated to good outcome (n=24) Significant difference (p<0.05) No significant difference (p>0.05)

34 Méthode de Delucchi Introduction Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple Pour des données qualitatives : table 2 2 si on a m valeurs manquantes dans l une des deux variables on peut imputer les valeurs de m + 1 manières ce qui donne m + 1 tests à partir desquels on conclut

35 Méthode de NM : Delucchi pondéré Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple Pour des données qualitatives : table 2 2, test de Fisher si on a m valeurs manquantes dans l une des deux variables on peut imputer les valeurs de m + 1 manières avec proba de chaque configuration sous paramètre θ ce qui donne m + 1 tests de Fisher pondéré on conclut par un test pondéré par la Pr(configuration m )

36 Maximisation de la vraisemblance Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple Marche bien pour MAR, moins pour MCAR et pas pour MNAR Voir exemple dans feuille Excel pour une proportion et une table 2 2

37 Solutions à part Introduction Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple littérature ad hoc algorithme NIPALS voir modèles PLS qui suppose quand même des hypothèses fortes sur les DM! ne pas avoir de DM!!

38 L Imputation Multiple : la star! Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple l imputation simple est unique la donnée imputée est considéré comme une donnée observée ne tient pas compte de l incertitude sup. liée aux manquants d où l idée de faire plusieurs imputations différentes on substitue plusieurs valeurs à chaque DM on analyse en tenant compte de cette multiplicité

39 Les étapes d une imputation multiple Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple on analyse la matrice des données pour en déduire un modèle pour les DM on réalise entre M = 3 et 10 imputations pour obtenir 3 à 10 jeux de données complétés on calcule le paramètre d intérêt pour chaque jeu on combine les M imputations pour avoir une inférence qui tienne compte de l incertitude supplémentaire liée aux DM

40 Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple Formules pour l IM M estimations ponctuelles pour le vecteur de paramètre θ. Si gaussien, moyenne et écart-type : et On calcule ensuite : ˆQ (t) = ˆQ(Y obs, Y (t) miss ), t = 1,..., m Û (t) = Û (t) (Y obs, Y (t) miss ), t = 1,..., m Q = 1 m m t=1 ˆQ (t)

41 Formules pour l IM (suite) Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple La Var. globale a deux composantes : (1) variance intra-imputation Ū = 1 m m t=1 U (t) (2) La variance inter-imputation vaut : La variance totale vaut : B = 1 m 1 m ( ˆQ (t) Q) 2 t=1 T = Ū + (1 + m 1 )B

42 Formules pour l IM (suite) Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple À partir de ces équations, on peut réaliser des tests : Q Q T 2 t ν avec : [ ] 2 Ū ν = (m 1) 1 + (1 + m 1 )B intervalles de confiances. Ces statistiques tiennent compte de l incertitude suppl. liées aux DM.

43 Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple Exemple : voir feuille Excel

44 L IM : avantages Introduction Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple souple + + donne des résultats valides robuste aux écarts de spécification du modèle M peut être faible : 3, 5, pas plus de 10.

45 L IM : inconvénients (limités) Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple le recours à des logiciels repose sur le modèle (mais les autres méthodes aussi) si les effectifs sont faibles variantes particulières Par ailleurs aspects bayesiens utiliser WinBUGS

46 La solution bayesienne Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple Les données manquantes sont issues d une distribution a priori souplesse faire des hypothèses sur les DM mais toute les méthodes en font similitudes avec les données aberrantes voir exemple de prog. Bugs de NM.

47 Les logiciels Introduction Les méthodes sans modélisation Imputation simple Énumération ML par EM Imputation Multiple MINITAB : rien pour les DM SPSS : module mais pas dans la base SAS : différentes fonctions + PROC MI S+ / R : CAT,MIX, NORM A part : SIMCA : cartographie des manquants / R WinBUGS

48 Introduction DM : un problème sans vraie solution il faut toujours faire des hypothèses ou faire une étude de sensibilité qui ne conclut pas le mieux : IM encore mieux : bayesien encore encore mieux : ne pas avoir de DM

Les données manquantes en bio-statistique

Les données manquantes en bio-statistique Les données manquantes en bio-statistique Pr N. MEYER Laboratoire de Biostatistique - Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Master Statistiques et Applications 10 mars 2011 Importance

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Les modèles d équations structurelles à variables latentes Applications et exercices

Les modèles d équations structurelles à variables latentes Applications et exercices Les modèles d équations structurelles à variables latentes Applications et eercices Emmanuel Jakobowicz Addinsoft XLSTAT 30 mars 2011 Cours de Statistique Multivariée Approfondie 1 Le modèle structurel

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

La nouvelle planification de l échantillonnage

La nouvelle planification de l échantillonnage La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage

Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction

Plus en détail

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014

Échantillonnage. Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Démarche Statistique 1 Échantillonnage Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Introduction Objectif statistique descriptive: sur l'échantillon statistique inférentielle:

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Feuille de TP N 3 : Modèle log-linéaire - Travail guidé. 1 Cancers : modèle log-linéaire à deux facteurs croisés

Feuille de TP N 3 : Modèle log-linéaire - Travail guidé. 1 Cancers : modèle log-linéaire à deux facteurs croisés M1 MLG Année 2012 2013 Feuille de TP N 3 : Modèle log-linéaire - Travail guidé 1 Cancers : modèle log-linéaire à deux facteurs croisés Ce premier exercice reprend l exercice 1 de la feuille de TD n 3.

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

La méthode des quotas

La méthode des quotas La méthode des quotas Oliviero Marchese, décembre 2006 1 La méthode des quotas Principe de la méthode Point de départ et but recherché Caractère «intuitif» de la méthode A quoi ressemble une feuille de

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015 Corrigé du baccalauréat ES Antilles Guyane 2 juin 2015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 1. La fonction f définie sur R par f (x)= x 3 + 6x

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Evaluation d un test diagnostique - Concordance

Evaluation d un test diagnostique - Concordance Evaluation d un test diagnostique - Concordance Michaël Genin Université de Lille 2 EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michaelgenin@univ-lille2fr Plan 1 Introduction 2 Evaluation

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

Sélection- validation de modèles

Sélection- validation de modèles Sélection- validation de modèles L. Rouvière laurent.rouviere@univ-rennes2.fr JANVIER 2015 L. Rouvière (Rennes 2) 1 / 77 1 Quelques jeux de données 2 Sélection-choix de modèles Critères de choix de modèles

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 :

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 : Terminale S - ACP Ex1 : Antilles Septembre 2006 Partie A - Restitution organisée des connaissances On suppose connu le résultat suivant : Si est une variable aléatoire qui suit une loi exponentielle de

Plus en détail

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*)

Traitement statistique. des petits échantillons. Application avec JMP - 3 jours (*) Traitement statistique Application avec JMP - 3 jours (*) Référence : STA-N1-SPECHAJMP Durée : 3 jours soit 21 heures (*) : La durée proposée est une durée standard. Elle peut être adaptée selon les besoins,

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages

Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages S. Winandy, R. Palm OCA GxABT/ULg oca.gembloux@ulg.ac.be décembre 2011 1 Introduction La Direction Générale Statistique

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 TABLE DES MATIÈRES Sommaire... 5 Avant- propos... 9 Remerciements... 19 À propos de l auteur... 23 CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 1.1 Qu est- ce que

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

Exercice 2 du cours Management Bancaire : «Calcul de la VaR d une position de marché»

Exercice 2 du cours Management Bancaire : «Calcul de la VaR d une position de marché» Exercice du cours Management Bancaire : «Calcul de la VaR d une position de marché» La réglementation bancaire impose aux banques de maintenir un niveau de capital minimum pour absorber les pertes dues

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Jean Gaudart Laboratoire d Enseignement et de Recherche sur le Traitement de l Information Médicale jean.gaudart@univmed.fr

Plus en détail

RETScreen International. ACÉTATE 3 : Feuille Sommaire financier

RETScreen International. ACÉTATE 3 : Feuille Sommaire financier Module de formation NOTES DU FORMATEUR ANALYSES FINANCIÈRE ET DE RISQUE AVEC LE LOGICIEL RETSCREEN COURS D ANALYSE DE PROJETS D ÉNERGIES PROPRES Ce document donne la transcription de la présentation orale

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Modélisation stochastique et analyse de données

Modélisation stochastique et analyse de données Modélisation stochastique et analyse de données Formation FIL - Année 1 Régression par la méthode des moindres carrés 2011/2012 Tony Bourdier Modélisation stochastique et analyse de données 1 / 25 Plan

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique»

MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» M1_presentation_generale_4juil05.doc 1/11 MASTER «Sciences de la Vie et de la Santé» Mention «Santé Publique» La mention s articule autour de 6 spécialités : Recherche en éthique : Pr Christian HERVE (herve@necker.fr)

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

ECHANTILLONNAGES Fiche de repérage

ECHANTILLONNAGES Fiche de repérage M Objectifs pédagogiques généraux : Fiche de repérage Type : Activité d approche de la notion de fluctuation d échantillonnage et d intervalle de confiance à travers quelques simulations. Niveau : Lycée

Plus en détail

Chapitre 4 : construction de portefeuille (I)

Chapitre 4 : construction de portefeuille (I) Chapitre 4 : construction de portefeuille (I) 25.10.2013 Plan du cours Risque et rentabilité : un premier aperçu Mesures traditionnelles du risque et rentabilité Rentabilité historique des actifs financiers

Plus en détail

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011 Lot Quality Assurance Sampling LQAS Elise Naoufal EVARISQ 15 septembre 2011 1 LQAS Une question d efficacité? LQAS et santé Méthode et Fondements théoriques Détermination du couple (n,d n,d) Conclusion

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Les probabilités de dépassement de seuil pour diagnostiquer l exposition aux contaminants chimiques en milieu de travail

Les probabilités de dépassement de seuil pour diagnostiquer l exposition aux contaminants chimiques en milieu de travail Cette présentation a été effectuée le 26 novembre 2014 au cours de la journée «Les probabilités de dépassement de seuil pour diagnostiquer l exposition aux contaminants chimiques en milieu de travail»

Plus en détail

Le risque Idiosyncrasique

Le risque Idiosyncrasique Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes

Plus en détail

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête Fiche qualité relative à Santé et Itinéraire Professionnel 2010 (SIP) Nom Années de Périodicité Panel (suivi d échantillon) Services concepteurs Service réalisant Sujets principaux traités dans Carte d

Plus en détail

Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle :

Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle : Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle : a. Une opération de «production» b. Visant l ensemble des variables d une enquête c. Recherchant

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Préparation des données. Auteur : Dan Noël Date : 24.04.2009

Préparation des données. Auteur : Dan Noël Date : 24.04.2009 Préparation des données Auteur : Dan Noël Date : 24.04.2009 Objectifs du module Comprendre les données et passer en revue les étapes principales de la préparation des données afin de maximiser la performance

Plus en détail

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse

Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Traitement des données influentes dans le cas d un sondage à deux phases avec une application au traitement de la non-réponse Jean-François Beaumont, Statistics Canada Cyril Favre Martinoz, Crest-Ensai

Plus en détail

Méthodes de prévision des ventes

Méthodes de prévision des ventes Méthodes de prévision des ventes Il est important pour toute organisation qui souhaite survivre dans un environnement concurrentiel d adopter des démarches de prévision des ventes pour anticiper et agir

Plus en détail

Analyse de survie : comment gérer les données censurées?

Analyse de survie : comment gérer les données censurées? Mémento biostatistique Analyse de survie : comment gérer les données censurées? Méthode de Kaplan-Meier C. Alberti 1, J.-F. Timsit 2, S. Chevret 3 1 Centre d Epidémiologie Clinique, Hôpital Robert Debré,

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

La couverture du délai de carence des arrêts maladie en France : Déterminants et impact sur l absentéisme

La couverture du délai de carence des arrêts maladie en France : Déterminants et impact sur l absentéisme La couverture du délai de carence des arrêts maladie en France : Déterminants et impact sur l absentéisme Catherine Pollak DREES, Centre d Economie de la Sorbonne Discussion : Roméo Fontaine, LEG (Université

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Méthode en trois étapes destinée à une évaluation globale des résultats obtenus pour différents échantillons.

Méthode en trois étapes destinée à une évaluation globale des résultats obtenus pour différents échantillons. ISP Rue J. Wytsman, 14 B-1050 BRUXELLES SERVICE PUBLIC FEDERAL (SPF) SANTE PUBLIQUE, PROTECTION DE LA CHAINE ALIMENTAIRE ET ENVIRONNEMENT COMMISSION DE BIOLOGIE CLINIQUE SERVICE DES LABORATOIRES DE BIOLOGIE

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

Package TestsFaciles

Package TestsFaciles Package TestsFaciles March 26, 2007 Type Package Title Facilite le calcul d intervalles de confiance et de tests de comparaison avec prise en compte du plan d échantillonnage. Version 1.0 Date 2007-03-26

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée.

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée. Université René Descartes- Paris V Licence de Psychologie Année L1, Semestre S1-2005 /2006 Page 1/5 UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

La régression logistique

La régression logistique La régression logistique Présentation pour le cours SOL6210, Analyse quantitative avancée Claire Durand, 2015 1 Utilisation PQuand la variable dépendante est nominale ou ordinale < Deux types selon la

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

ENQUETE SUR LES BESOINS INFORMATIQUES DES STRUCTURES DE L'ECONOMIE SOCIALE ET SOLIDAIRE

ENQUETE SUR LES BESOINS INFORMATIQUES DES STRUCTURES DE L'ECONOMIE SOCIALE ET SOLIDAIRE ENQUETE SUR LES BESOINS INFORMATIQUES DES STRUCTURES DE L'ECONOMIE SOCIALE ET SOLIDAIRE URL d origine du document : http://talcod.net/?q=node/59 Juillet 2011 - version 1.0 Licence Creative Commons BY-SA

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail