L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques.

Dimension: px
Commencer à balayer dès la page:

Download "L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques."

Transcription

1 L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques 1 BUTS DU COURS : se familiariser avec le vocabulaire statistique o variable dépendante, variable indépendante o statistique descriptive, inférentielle o hypothèse nulle, alternative etc connaître l'existence des principaux outils statistiques: o leurs rôles, leurs utilités o les conditions de leur utilisation o leur interprétation o leurs limites maîtriser leur mise en oeuvre pratique aide au travail de mémoire être moins "naïf" devant les données statistiques 2 LES DONNEES COLLECTEES : 21 Le tableau de données: Démarche en 3 points: délimiter le domaine d'étude choix des individus caractérisant un ensemble plus vaste (population échantillon) définition des variables d'étude pour chacun des individus EN ACCORD ET EN COHERENCE PAR RAPPORT AUX OBJECTIFS DE L'ETUDE Introduction à l'analyse des données 1

2 Tous les choix préalables à l'analyse des données conditionnent sa validité : de mauvais choix méthodologiques ne sont pas rattrapables par l'analyse des données (analyse statistique) Une fois l'expérimentation réalisée, un tableau de données sera construit: matériau de base de toute analyse Composition: les individus en ligne (notés indice i) les variables en colonne (notées indice j) Cette organisation est souvent la même dans tous les logiciels statistiques Exemple: VARIABLES INDIVIDU 1 INDIVIDU 2 INDIVIDU 3 INDIVIDU 4 X 1,1 X 2,1 X 3,1 X 4,1 X 1,2 X 1,3 X 2,2 X 2,3 X 3,2 X 3,3 X 4,2 X 4,3 D'une manière générale: X i,j = valeur numérique de la j ème variable du i ème sujet Introduction à l'analyse des données 2

3 22 Les échelles de mesure : Si les tableaux de données contiennent souvent des chiffres, ils n ont pas toujours le même statut En effet, les variables peuvent être issues essentiellement de 4 échelles différentes IMPORTANCE +++ car impact sur la méthode d analyse des données 221 Les échelles nominales : Variable = étiquette permettant d identifier les items Exemples : variable sexe : homme=1, femme=2 Réponse OUI / NON à un questionnaire : OUI=1 ; NON=0 Les opérations mathématiques ne sont pas licites (aucun sens) Opérations autorisées : o Distribution des effectifs par item o Expression du mode o % de réponse à chaque item 222 Les échelles ordinales : Les valeurs classent les items entre eux selon une certaine logique MAIS: il est impossible de connaître l'écart entre 2 sujets On sait seulement dans quel ordre ils sont classés Cette échelle introduit une notion très utilisée en statistique: la notion de RANG Exemple: classement à un concours Opérations possibles: Introduction à l'analyse des données 3

4 o idem échelles nominales o médiane o corrélation d'ordre 223 Les échelles d'intervalle : L'unité de mesure est constante, mais le zéro est fixé arbitrairement Exemple: mesure du quotient intellectuel, température, calendrier Opérations possibles: o idem échelles précédentes o comparaison de entre des éléments mesurés MAIS SANS POUVOIR RAISONNER EN TERME DE MULTIPLES (implication dans certains tests) o moyenne arithmétique o écart-type o variance o coefficient de corrélation 224 Les échelles proportionnelles : Idem que pour échelles d'intervalle, mais le point "zéro" est unique quelle que soit l'unité La notion de multiple devient utilisable Exemples: poids, taille, surface d'un local etc toutes les opérations mathématiques sont possibles Introduction à l'analyse des données 4

5 23 La nature des variables : Autre paramètre fondamental à prendre en compte car il détermine le choix des outils statistiques à utiliser Exemple: si une variable est non métrique elle implique obligatoirement des tests non paramétriques si une variable est métrique, elle peut permettre sous certaines conditions l'usage de tests paramétriques 231 Les variables métriques : Elles prennent des valeurs numériques : âge, taille, salaire etc Elles sont issues des échelles d'intervalle ou proportionnelle Elles supportent toutes les opérations autorisées sur les échelles d'origine Elles sont aussi appelées VARIABLES QUANTITATIVES 232 Les variables non métriques : Elles prennent des modalités non numériques : sexe, secteur d'activité, statut socio-économique etc Elles sont issues d'échelles nominale ou ordinale Même règles concernant les opérations licites Elles sont aussi appelées VARIABLES QUALITATIVES Introduction à l'analyse des données 5

6 Synthèse des variables et de leurs déterminants 233 Les transformations de variables : Elément à aborder avec beaucoup de prudence car il existe des risques d'erreurs méthodologiques graves relatif aux transformations de variables Un principe général à connaître: Passage de var métrique à var non métrique pas de problème majeur Introduction à l'analyse des données 6

7 Passage de var non métrique à var métrique risque d'erreurs important Transformation métrique non métrique: il y a une perte d'information (échelles moins structurées), mais on ne peut pas fausser une information La technique classique consiste à constituer des classes: d'amplitudes égales: 1 - chiffre d'affaire (CA) de 10 M et moins 2 - CA de 11 à 20 M 3 - CA de 21 à 30 M etc d'effectifs égaux (l'amplitude peut varier selon les classes): entreprises au CA < 10 M entreprises au CA compris entre 11 et 25M entreprises au CA > 26 M Si des bornes naturelles n'existent pas, il vaut mieux raisonner sur des effectifs égaux; la part jouée par la subjectivité du chercheur est moins grande Mais cela dépend aussi des objectifs du travail Transformation non métrique métrique: Cette transformation est théoriquement interdite Cependant, cette règle est souvent contournée car les analyses non paramétriques (imposées par des variables non métriques) sont moins nombreuses et moins "puissantes" Introduction à l'analyse des données 7

8 Si on a recours à cette technique, 2 conditions doivent être respectées: 1 - la hiérarchisation doit être porteuse de sens Correct: Fort=3, moyen=2, faible=1 Incorrect: rouge=1, vert=2 2 - Les distances entre les items doivent être égales (en pratique, c'est invérifiable): Ex: dans un questionnaire coté selon une échelle de Lickert (Fort - moyen - faible) écart fort - moyen = écart moyen - faible Les risques encourus suite à ce type de transformation implique leur évitement - si possible 3 Les objectifs de l'analyse de données : Selon les objectifs assignés à un travail, il est possible de distinguer 3 grands types d'analyses 31 Les analyses élémentaires: BUTS: résumer de façon globale les données recueillies déterminer les tendances générales des variables il s'agit souvent du point de départ d'une analyse Introduction à l'analyse des données 8

9 Ces analyses peuvent être : unidimensionnelles ou bidimensionnelles Nbre d'observations variables étudiées isolément Fréquence Médiane (EMG) mise en évidence de "lien" entre deux variables POSITION ELECTRODE Fréquence Médiane (EMG) 32 Les analyses descriptives : Prise en compte de tout ou partie des variables mesurées en les considérant sur un même plan Il n'y a pas d'idée à priori, pas d'hypothèse particulière, pas de distinction entre variables explicatives et variables à expliquer BUTS: décrire de façon synthétique la structure des données organiser un phénomène pour mieux le comprendre LIMITE: il est impossible d'en donner le principe de fonctionnement (pas de loi, de généralisation possible) Les analyses factorielles rentrent dans cette catégorie 33 Les analyses explicatives : Elles introduisent une notion fondamentale: l'inference STATISTIQUE: Introduction à l'analyse des données 9

10 distinction entre variable à expliquer ou variable dépendante (variable mesurée) et variable explicative ou indépendante (variable manipulée par l'expérimentateur dont il veut savoir si elle influe la VD ou pas) implique la notion d'hypothèse nulle permet par les outils statistiques appropriés de généraliser à un ensemble plus vaste les résultats obtenus sur un petit nombre de sujets c'est le principe de l'inférence statistique L'approche expérimentale ou dite "hypothético-déductive" repose principalement sur ce principe BUT: étudier les liaisons entre différents phénomènes (caractérisés par des variables) dans le but d'en déduire les principes de fonctionnement ou d'organisation (lois, principes fondamentaux etc) Ces différentes méthodes ne sont pas forcément exclusives les unes des autres Ex: Décrire analyse descriptive, mise en relief du comportement de certaines variables etc puis formulation d'une hypothèse à vérifier Expliquer validation (ou infirmation) de l'hypothèse préalablement formulée 4 Le choix d'une méthode d'analyse : une idée à oublier définitivement: il existe toujours un test statistique qui permet de valider l'hypothèse qui arrange l'expérimentateur C'est une idée fausse qui ne peut convaincre que les ignorants Introduction à l'analyse des données 10

11 En fait, il existe un certain nombre de questions préalables au choix d'un test, et selon la décision finale, les interprétations n'auront pas la même portée (cf méthodes descriptives ou explicatives) Les questions (principalement) : le but est-il descriptif ou explicatif? analyse des individus, des variables, ou des 2? l'aspect explicatif est appréhendé avec une ou plusieurs variables? les variables = métriques ou non métriques? leur distribution est-elle normale ou non? Le choix n'est donc pas libre, mais dépend: de la nature du problème posé des variables retenues et de leurs caractéristiques Tout n'est pas possible, même si dans certains cas, une certaine souplesse est possible (transformation de variables, imbrication des méthodes) Quand on a obtenu une certaine connaissance en statistique, au moment même de l'écriture du protocole, il est possible de prévoir quel(s) type(s) d'analyses sont possibles Introduction à l'analyse des données 11

12 5 Place de l'analyse des données dans un processus expérimental : ADD L'analyse des données ne permet pas de s'affranchir de la qualité des autres phases Introduction à l'analyse des données 12

COURS DE STATISTIQUES (24h)

COURS DE STATISTIQUES (24h) COURS DE STATISTIQUES (24h) Introduction Statistiques descriptives (4 h) Rappels de Probabilités (4 h) Echantillonnage(4 h) Estimation ponctuelle (6 h) Introduction aux tests (6 h) Qu est-ce que la statistique?

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Chacune des valeurs d une variable en est une modalité particulière.

Chacune des valeurs d une variable en est une modalité particulière. Psychologie générale Jean Paschoud STATISTIQUE Sommaire Rôle de la statistique Variables Échelles de mesure Résumer, décrire Comparer Rôle de la statistique La statistique est avant tout un outil permettant

Plus en détail

Introduction à l'analyse statistique des données

Introduction à l'analyse statistique des données INTRODUCTION À L'ANALYSE STATISTIQUE DES DONNÉES CONCEPTS DE BASE Un certain nombre de concepts, préalables indispensables à la compréhension des analyses présentées, sont définis ici. De même pour quelques

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée.

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée. Université René Descartes- Paris V Licence de Psychologie Année L1, Semestre S1-2005 /2006 Page 1/5 UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Département Universitaire de Recherche et d Enseignement en Médecine Générale GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Enseignants : Esther GUERY, Julien LE BRETON, Emilie FERRAT, Jacques

Plus en détail

Cours de statistique descriptive

Cours de statistique descriptive Cours de statistique descriptive Séance 1 : Les caractères et la mise en forme des données Lætitia Perrier Bruslé Cours de statistique descriptive Les statistiques et la géographie La géographie est une

Plus en détail

Christophe Fournier. Clinique de Thuys. Aunége - Christophe Fournier

Christophe Fournier. Clinique de Thuys. Aunége - Christophe Fournier Christophe Fournier Clinique de Thuys Aunége - Christophe Fournier 2 Table des matières Information sur l'échantillon 3 Structure de l'échantillon...4 Point méthodologique 6 Point méthodologique...7 Représentativité

Plus en détail

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2 Test du Khi 2 Le test du Khi 2 (khi deux ou khi carré) fournit une méthode pour déterminer la nature d'une répartition, qui peut être continue ou discrète. Domaine d application du test : Données qualitatives

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités

Plus en détail

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire?

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Cyril Ferdynus, USM, CHU RECUEIL DE DONNEES Recueil hors ligne Epidata (http://www.epiconcept.fr/html/epidata.html)

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Introduction à l analyse quantitative

Introduction à l analyse quantitative Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

ADAPTER LA METHODE AUX OBJECTIFS DE L ENQUETE

ADAPTER LA METHODE AUX OBJECTIFS DE L ENQUETE Déchets : outils et exemples pour agir Fiche méthode n 1 www.optigede.ademe.fr ADAPTER LA METHODE AUX OBJECTIFS DE L ENQUETE Origine et objectif de la fiche : Les retours d expérience des collectivités

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

LES DIFFERENTS TYPES DE MESURE

LES DIFFERENTS TYPES DE MESURE LES DIFFERENTS TYPES DE MESURE Licence - Statistiques 2004/2005 REALITE ET DONNEES CHIFFREES Recherche = - mesure. - traduction d une réalité en chiffre - abouti à des tableaux, des calculs 1) Qu est-ce

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE Forum HH 05.02.2013 Ghislaine Gagnon Unité HPCI Qualitatif ou quantitatif? Les 2 méthodes peuvent être utilisées séparément ou en conjonction - le qualitatif

Plus en détail

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31 1/31 Mémoire de n d'étude: Etudes statistiques Nicolas Sutton-Charani Université Montpellier 1 Plan Rappels de cours La base La Statistique Types des variables Outils mathématiques Statistiques descriptives

Plus en détail

Traitement des données avec Microsoft EXCEL 2010

Traitement des données avec Microsoft EXCEL 2010 Traitement des données avec Microsoft EXCEL 2010 Vincent Jalby Septembre 2012 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation

Plus en détail

IUT STID, 1 ère année Découverte de logiciels statistiques Prise en main du logiciel SPAD

IUT STID, 1 ère année Découverte de logiciels statistiques Prise en main du logiciel SPAD Université de Perpignan - IUT de Carcassonne Vivien ROSSI Année 2006/2007 IUT STID, 1 ère année Découverte de logiciels statistiques Prise en main du logiciel SPAD Ce document est tiré du site : http ://www.stat.ucl.ac.be/ispersonnel/lecoutre/stats/spad/

Plus en détail

I n t r o d u c t i o n Les étapes de la recherche à l a r e c h e r c h e

I n t r o d u c t i o n Les étapes de la recherche à l a r e c h e r c h e I n t r o d u c t i o n Les étapes de la recherche à l a r e c h e r c h e Les objectifs pédagogiques Savoir délimiter les trois phases distinctes de la recherche Savoir identifier, pour chacune des trois

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

Principes et outils de gestion des données

Principes et outils de gestion des données 1-B.1 ANNEXE 1-B Principes et outils de gestion des données 1. Types de données de gestion de données 5. Aspects géographiques/spatiaux 2 1. Types de données Données primaires ex. : Enquête dans le cadre

Plus en détail

Heidi WECHTLER. Octobre 2005

Heidi WECHTLER. Octobre 2005 Heidi WECHTLER Le support aux analyses de données Séminaire GREGOR Octobre 2005 Support aux analyse de données du GREGOR Le poste Chargée d étude statistiques au GREGOR, bureau B126 (wechtler.iae@univ-paris1.fr)

Plus en détail

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie Université de Bretagne Occidentale Année Universitaire 2013-2014 U.F.R. de Lettres et Sciences Humaines CS 93837-29238 BREST CEDEX 3 Section : Psychologie - Licence 3è année Enseignant responsable : F.-G.

Plus en détail

BANQUE DE QUESTIONS D'EXAMEN ÉTUDE DE MARCHÉ MRK-14811

BANQUE DE QUESTIONS D'EXAMEN ÉTUDE DE MARCHÉ MRK-14811 NQUE DE QUESTIONS D'EXMEN ÉTUDE DE MRCHÉ MRK-. Nommer et expliquer brièvement chacune des étapes du processus de recherche en marketing.. Qu'est-ce que l'échelle de ratio?. Nommer deux plans d'expérimentation

Plus en détail

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Quebec PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Direction de la formation générale

Plus en détail

Analyse de la variance (ANOVA)

Analyse de la variance (ANOVA) Chapitre 7 Analyse de la variance (ANOVA) Introduction L analyse de la variance (ANOVA) a pour objectif d étudier l influence d un ou plusieurs facteurs sur une variable quantitative. Nous nous intéresserons

Plus en détail

Etude empirique de la valeur d utilité de l immobilier des entreprises : un actif associé à la gestion du risque des sociétés

Etude empirique de la valeur d utilité de l immobilier des entreprises : un actif associé à la gestion du risque des sociétés Les nouveaux enjeux et défis du marché immobilier : comment y contribuer? Chaire Ivanhoé Cambridge ESG UQÀM Etude empirique de la valeur d utilité de l immobilier des entreprises : un actif associé à la

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Traitement des données avec EXCEL 2007

Traitement des données avec EXCEL 2007 Traitement des données avec EXCEL 2007 Vincent Jalby Octobre 2010 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation (questionnaire),

Plus en détail

Classe de 5 ème Domaine d application : Habitat et ouvrages. Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1

Classe de 5 ème Domaine d application : Habitat et ouvrages. Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1 Classe de 5 ème Domaine d application : Habitat et ouvrages Auteurs : JR.GARBAY & B.LAMOUR Académie de Versailles 1 Nous proposons deux séquences ayant pour problématiques: 1) Quel est le secteur économique

Plus en détail

I - Introduction à La psychologie Expérimentale

I - Introduction à La psychologie Expérimentale LA METHODE EXPERIMENTALE I - Introduction à La psychologie Expérimentale I.1. Introduction I.2. Critiques concernant l utilisation de la méthode expérimentale en psychologie I.2.A. Critiques morales I.2.A.

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Tableau 1 : Structure du tableau des données individuelles. INDIV B i1 1 i2 2 i3 2 i4 1 i5 2 i6 2 i7 1 i8 1

Tableau 1 : Structure du tableau des données individuelles. INDIV B i1 1 i2 2 i3 2 i4 1 i5 2 i6 2 i7 1 i8 1 UN GROUPE D INDIVIDUS Un groupe d individus décrit par une variable qualitative binaire DÉCRIT PAR UNE VARIABLE QUALITATIVE BINAIRE ANALYSER UN SOUS-GROUPE COMPARER UN SOUS-GROUPE À UNE RÉFÉRENCE Mots-clés

Plus en détail

Utilisation du logiciel Excel pour des analyses simples de bases données

Utilisation du logiciel Excel pour des analyses simples de bases données Utilisation du logiciel Excel pour des analyses simples de bases données Catherine Raux (interne Santé Publique) et Benoît Lepage (AHU), Service d Epidémiologie du CHU de Toulouse Version 1.1 Avril 2012

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) -

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) - Dominique Ferrieux - Université Paul Valéry - Montpellier III Master de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( /) - Deuxième partie : Plans :

Plus en détail

Les variables indépendantes catégorielles

Les variables indépendantes catégorielles Les variables indépendantes catégorielles Jean-François Bickel Statistique II SP08 Jusqu à maintenant, nous avons considéré comme variables indépendantes uniquement des variables intervalles (âge) ou traitées

Plus en détail

TECHNIQUES D ENQUETE

TECHNIQUES D ENQUETE TECHNIQUES D ENQUETE Le Système d Information Marketing L étude de marché Les différentes sources d informations Méthodologie d enquête BENSGHIR AFAF ESTO 1 Plan d'apprentissage du cours " Méthodologie

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Le programme de mathématiques Classes de première STI2D STL

Le programme de mathématiques Classes de première STI2D STL Journée de l inspection 15 avril 2011 - Lycée F. BUISSON 18 avril 2011 - Lycée J. ALGOUD 21 avril 2011 - Lycée L. ARMAND Le programme de mathématiques Classes de première STI2D STL Déroulement de la journée

Plus en détail

TD de Statistiques - Séance N 2

TD de Statistiques - Séance N 2 TD de Statistiques - Séance N 2 1 Travail sur des variables catégorisées avec Excel 1.1 Quelques commandes d'excel utiles pour la saisie de données Saisie "assistée" ou non : utilisez le menu :Fichier

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

(Statistical Package for the Social Sciences)

(Statistical Package for the Social Sciences) Initiation à l utilisation de SPSS (Statistical Package for the Social Sciences) 1 SPSS 2 3 Plan de l exposé Faire une recherche (bibliographique) sur le test; Définir le test à mesurer; Expliquer les

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 4 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

Fondements et étapes du processus de recherche, 3 e édition

Fondements et étapes du processus de recherche, 3 e édition Fondements et étapes du processus de recherche, 3 e édition Nouveauté Méthodes quantitatives et qualitatives Prix : 81,95 $ Auteurs : Marie-Fabienne Fortin, Johanne Gagnon ISBN13 : 9782765050063 Nombre

Plus en détail

La définition La méthode. Les échelles de mesure L ENQUETE PAR SONDAGE : LA METHODE

La définition La méthode. Les échelles de mesure L ENQUETE PAR SONDAGE : LA METHODE L ENQUETE PAR SONDAGE : LA METHODE La définition La méthode Le questionnaire Les biais La passation du questionnaire La validité des réponses Les échelles de mesure Les échelles d évaluation Les échelles

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h I.U.T de Caen STID 2ème année Département STID Année Universitaire 2002-2003 Responsable de cours : Alain LUCAS Seule la calculatrice type collège est autorisée. Seul le cours est autorisé. On rappelera

Plus en détail

3. COMPARAISON DE PLUS DE DEUX GROUPES

3. COMPARAISON DE PLUS DE DEUX GROUPES 3. COMPARAISON DE PLUS DE DEUX GROUPES La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

CHAPITRE 1: LES ETUDES MARKETING

CHAPITRE 1: LES ETUDES MARKETING CHAPITRE 1: LES ETUDES MARKETING Introdution L' étude mkg: «c'est le fonction qui relie le consommateur, client, public aux spécialistes en mkg via l'information» (AMA) L'information: Identifier et définir

Plus en détail

TD de Statistiques - Séance N 2

TD de Statistiques - Séance N 2 TD de Statistiques - Séance N 2 1 Travail sur des variables catégorisées avec Excel 1.1 Quelques commandes d'excel utiles pour la saisie de données Saisie "assistée" ou non : utilisez le menu :Fichier

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

Organisation et gestion de données cycle 3

Organisation et gestion de données cycle 3 Organisation et gestion de données cycle 3 Clarifier les enjeux de cet enseignement Formation d enseignants de cycle 3 Circonscription de Grenoble 2 Positionnement de la pratique. En classe, comment travaillez-

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Culture Générale version corporate

Culture Générale version corporate Culture Générale version corporate Fiche technique CENTRAL TEST www.centraltest.fr www.centraltest.ca www.centraltest.es www.centraltest.de www.centraltest.com Siège social : 18-20, rue Claude Tillier

Plus en détail

Enquête mensuelle de conjoncture auprès des ménages

Enquête mensuelle de conjoncture auprès des ménages Note Méthodologique Dernière mise à jour : 27-1-214 Enquête mensuelle de conjoncture auprès des ménages Présentation de l enquête L Insee réalise depuis janvier 1987 l enquête mensuelle de conjoncture

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html

Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html MDEM22E - Cours et TD de statistiques descriptives à partir de données d enquête Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html Objectif du

Plus en détail

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand

UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand Service méthodes statistiques Institut National d Etudes Démographiques (Ined)

Plus en détail

Analyse factorielle des correspondances de Benzécri

Analyse factorielle des correspondances de Benzécri Analyse factorielle des correspondances de Benzécri One Pager Décembre 2013 Vol. 8 Num. 011 Copyright Laréq 2013 http://www.lareq.com Analyse Factorielle des Correspondances de Benzécri Une illustration

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

Questions pratiques 4: Transformer la variable dépendante

Questions pratiques 4: Transformer la variable dépendante Questions pratiques 4: Transformer la variable dépendante Jean-François Bickel Statistique II SPO8 Transformer une variable consiste en une opération arithmétique qui vise à construire une nouvelle variable

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Sommaire. ARIA Languedoc-Roussillon. Atelier Fidélisation clients. développement commercial

Sommaire. ARIA Languedoc-Roussillon. Atelier Fidélisation clients. développement commercial ARIA Languedoc-Roussillon Atelier Fidélisation clients «Savoir conduire Les une nouvelles enquête de satisfaction technologies» UP2, au Patricia service PINGLOT de votre développement commercial - Le 15

Plus en détail

Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle :

Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle : Intérêt et limites des estimations sur petits domaines HID «Petits domaines», une opération inhabituelle : a. Une opération de «production» b. Visant l ensemble des variables d une enquête c. Recherchant

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

LE BUDGET DES VENTES

LE BUDGET DES VENTES LE BUDGET DES VENTES Objectif(s) : o Pré requis : o Modalités : o o o Elaboration du budget des ventes. Connaissances du processus "ventes". Principes, Synthèse, Application. TABLE DES MATIERES Chapitre

Plus en détail

INFORMATIQUE : LOGICIELS TABLEUR ET GESTIONNAIRE DE BASES DE DONNEES

INFORMATIQUE : LOGICIELS TABLEUR ET GESTIONNAIRE DE BASES DE DONNEES MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENRALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION INFORMATIQUE

Plus en détail

Cours de Gastronomie moléculaire

Cours de Gastronomie moléculaire Cours de Gastronomie moléculaire (de l expérience au calcul) 1. Un besoin : Des cours de Gastronomie moléculaire sont aujourd hui dispensés dans des cadres variés : universités, grandes écoles, industrie

Plus en détail

Réalisation d une étude épidémiologique

Réalisation d une étude épidémiologique Réalisation d une étude épidémiologique Dr A.TIBICHE, Médecin Epidémiologiste, Service d Epidémiologie et de Médecine Préventive, CHU de Tizi-Ouzou. Introduction La réalisation d une étude épidémiologique

Plus en détail

Note de cours de Méthodes Quantitatives 360-300-RE. Éric Brunelle et Josée Riverin

Note de cours de Méthodes Quantitatives 360-300-RE. Éric Brunelle et Josée Riverin Note de cours de Méthodes Quantitatives 360-300-RE Éric Brunelle et Josée Riverin Table des matières Chapitre 1. Méthodes scientifiques en sciences humaines 1 1. Introduction 1 2. La méthode scientifique

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

Statistique II Inférence pour une et deux variables Introduction

Statistique II Inférence pour une et deux variables Introduction Faculté de psychologie Statistique II Inférence pour une et deux variables Introduction Support à l exposé oral Titulaire Bernadette Govaerts ISBA, LSBA et SMCS UCLouvain 28/08/15 P 1 28/08/15 P 2 Statistique

Plus en détail

Résumé du cours [POLS1221] Analyse de données quantitatives

Résumé du cours [POLS1221] Analyse de données quantitatives Résumé du cours [POLS1221] Analyse de données quantitatives Year 2006-2007 1/58 PLAN DU COURS Les parties sont indépendantes, l ordre est indifférent! 1 Rappel variables et autre 2 Analyses uni -variées

Plus en détail

Analyse Statistique pour Le Traitement d Enquêtes

Analyse Statistique pour Le Traitement d Enquêtes DAT 104, année 2004-2005 p. 1/90 Analyse Statistique pour Le Traitement d Enquêtes Mastère Développement Agricole Tropical Stéphanie Laffont & Vivien ROSSI UMR ENSAM-INRA Analyse des systèmes et Biométrie

Plus en détail

«Il utilise les statistiques comme l ivrogne, les lampadaires pour s appuyer plutôt que pour s éclairer.» Andrew Lang PLAN DE COURS

«Il utilise les statistiques comme l ivrogne, les lampadaires pour s appuyer plutôt que pour s éclairer.» Andrew Lang PLAN DE COURS ÉCOLE DE POLITIQUE APPLIQUÉE Faculté des lettres et sciences humaines GEP 111 (GR1) LES STATISTIQUES EN SCIENCES POLITIQUES HIVER 2015 Professeur : Khalid Adnane Disponibilité : jeudi avant-midi Bureau

Plus en détail

I. LA VARIABILITE AU SEIN DES POPULATIONS

I. LA VARIABILITE AU SEIN DES POPULATIONS I. LA VARIABILITE AU SEIN DES POPULATIONS La notion de population recouvre un concept difficilement réductible à une définition unique. Au sens de la génétique, une population représente une entité de

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail