Pricing de CDS forward

Dimension: px
Commencer à balayer dès la page:

Download "Pricing de CDS forward"

Transcription

1 Pricing de CDS forward SOFYAE THABET HASSA HAJISADEGHIA YASSIE HADDAOUI 4 mars 2008 Le but de ce rapport est de présenter une méthode de pricing des CDS forward. Le marché des Credit Default Swap a connu une forte augmentation ces dernières années, avec le développement plus général des marchés de crédit. Le pricing des CDS forward contient de nombreux enjeux. Il contient tout d abord les difficultés inhérentes au pricing du risque de défaut auxquelles s ajoutent les problèmes liés aux pricing d options en général. Ce rapport contient deux parties. ous nous attacherons tout d abord à décrire le cadre théorique qui permet de modéliser le pricing. ous présenterons ensuite la modélisation et les choix que nous avons fait, avant de commenter le pricer que nous avons mis au point. Table des matières Le cadre théorique. Les taux de CDS forward Quelques définitions La jambe payeuse La jambe de protection Taux de CDS et fonctions de pay-off La technique de changement du numéraire Pricer les options sur CDS Modélisation 4 2. Le modèle à intensité de défaut Le modèle de matrices de transition os résultats 7 Le cadre théorique. Les taux de CDS forward.. Quelques définitions Un CDS forward est un CDS qui commence à une date ultérieure, fixée par les parties du contrat. Si l entreprise sur laquelle s échange la protection fait défaut avant cette date, le contrat est considéré comme nul. Comme pour tous les CDS, on décomposera les flux de paiement entre une jambe payeuse qui va de l acheteur de protection vers le vendeur et une jambe de protection, qui va du vendeur de protection et qui se déclenche en cas de défaut de l entité.

2 On pose t 0 l instant où le contrat est conclu. On nomme T 0 t le moment où celui-ci prend effet, c est à dire où la protection est effectivement assurée. T T 0 désigne la date de maturité du CDS forward. Dans tout la document, on nommera A l acheteur de protection, B le vendeur de protection et C l entité sur laquelle la protection est échangée. On formalise également (Ω,(F ) t 0,P) un espace de probabilité, une filtration sur cet espace ainsi qu une probabilité. L absence d opportunité d arbitrage rend le marché viable et entraîne l existence d une probabilité Q P sous laquelle le prix actualisé des actifs est une martingale. On pose b(t) = e R t 0 r(s)ds la valeur en t d un actif sans risque de valeur placé en 0. Enfin, τ désigne le temps de défaut de l entité C...2 La jambe payeuse Aux dates de paiement T n, n, l achteur de protection A paie : s δ n {Tn τ} au vendeur B. s désigne ici le taux du CDS forward, et δ n les intérêts produits entre [T n,t n. {Tn τ} est la fonction indicatrice qui indique si l instant de défaut est survenu. Au moment du défaut, l acheteur de protection effectue un dernier paiement qui représente le temps entre les sommes dues au délai entre le dernier paiement effectué et l instant de défaut. Posons n = max(n T n τ). A paie alors à B sδ n {T0 τ T n } où δ n représente les intérêts dus au titre de l intrvalle de temps [T n,τ. Ainsi,pour un temps t T, le vendeur de protection reçoit par point de base la quantité actualisée V f ee (t) telle que : V f ee (t) = E Q [ n= b(t n ) δ n {Tn τ} + b(τ) δ n {T 0 τ T n } F t. La valeur de la jambe de paiement est alors sv f ee (t). Après le défaut, la jambe de paiement ne vaut plus rien, car les paiements sont interrompus...3 La jambe de protection Si le défaut survient avant T n, alors B paye à A la quantité ( R) où R est le taux de recouvrement de C. Le paiement de B à A s écrit ( R) {T0 τ T n } et la jambe de protection actualisée vaut à t T 0 V prot (t) telle que [ V prot (t) = E Q b(τ) ( R) {T 0 τ T n } F t...4 Taux de CDS et fonctions de pay-off Le taux équitable du CDS est celui qui égalise la valeur des deux jambes du contrat. On doit donc avoir s(t) = V f ee (t) V prot (t). 2

3 On notera que cette quantité n est pas définie après le temps de défaut car V f ee (t) est nulle. Si le forward n est en fait qu une option pour rentrer dans le CDS à la date t de taux s, celle ci vaut ( s(t) s ) + V f ee (t) où s(t) désigne le taux de marché du CDS à l instant t..2 La technique de changement du numéraire On reprend ici la définition du numéraire, c est à dire un actif dont la valeur est toujours positive que l on nomme ici A(t). Il nous servira à exprimer las autres actifs en unités de l actif A. Ainsi, pour un actif X(t), on pose : ˆX(t) := X(t)/A(t), prix de l actif X en unités de A. Par ailleurs, pour une martingale sous Q et un numéraire A(t), on peut trouver une probabilité équivalente à Q, Q A en utilisant la méthode de Randon-ikodym, de la façon suivante : dq A dq t = L A := A(t) b(0) b(t) A(0). La probabilité Q A est telle que les prix des actifs exprimés en numéraires A sont des Q A - martingales. À la lumière de cet apport, il devient tentant d utiliser la valeur de la jambe de paiement V f ee (t) comme numéraire pour exprimer d une par le taux du CDS et d autre part le prix d une option sur le CDS. éanmoins, V f ee peut valoir 0, ce qui ne permet pas de l utiliser comme numéraire. La formule de Random-nikodym reste néanmoins valide si A(0) > 0 et on peut définir une nouvelle probabilité P. Ainsi, si l actif considéré a comme prix X(t) V f ee (t), alors X(t) est une P-martingale. Soit Ā(t) le prix d un actif pouvant faire défaut avec un taux de recouvrement nul. Pour T > t, on définit le "payoff" éventuel A (t) par A (t) {T <τ} = Ā(T ), et on peut définir un actif sans risque dont le prix quit le processus A(t) := E Q [ b(t)a (t) b(t ). C est un acitf sans rique qui offre A (T ) à coup sûr. On peut utiliser ces deux actifs pour définir respectivement deux nouvelles probabilités grâce à la méthode précédemment citée : Q A pour A(t) et QĀ pour Ā(t). On peut choisir un payoff tel que A (t) > 0. Ainsi, QĀ est en fait la mesure qui est atteinte lorsque Q A est conditionnée à une survie jusqu à l instant T. On appelle donc les probabilités obtenues à partir de numéraires pouvant entrer en défaut des mesures de survie. On peut à présent écrire : Valeur de XA (T ) à T en survie : [ b(t) E Q b(t ) {τ>t }XA (T ) F t = Ā(t)E QĀ[ X F t Valeur deya (T ) à T si τ T : (on rappelle que {τ T } = {τ>t }.) [ b(t) E Q b(t ) {τ T }XA (T ) F [ t = A(T )E QA Y F t Ā(t)E QĀ[ Y F t. 3

4 .3 Pricer les options sur CDS Après cette digression théorique, nous pouvons commencer à pricer les options sur CDS. Comme sous-entendu précédemment, on va utiliser V f ee pour élaborer une mesure de survie. En utilisant la formule donnant le prix d une option et celle donnant le prix d un actif XA (t) à T, le prix de l option se réécrit : [ b(t) V CDSO (t) = {τ>t} E Q b(t 0 ) ( s(t 0) s ) + V f ee (T 0 ) {τ>t0 } = {τ>t} V f ee (t)e PV f ee [ ( s(t 0 ) s ) + F t F t. Cette équation nous permet d identifier les éléments nécessaires à l estimation du prix d une option sur un CDS. Par ailleurs, on sait que s(t) est un prix relatif par rapport au numéraire V f ee, c est donc une martingale pour P V f ee. On peut utiliser plusieurs méthodes pour l estimer :. Grâce à un mouvement Brownien d s(t) = s(t)σdw f ee (t) où σ est constant et W f ee (t) un P V f ee -mouvement brownien. Grâce à la formule de Black- Scholes, V C DSO(t) = {τ>t} V f ee (t)[ s(t)(d ) s (d 2 ), où d,2 = ln( s(t)/s ) ± 2 σ2 (T t) σ. T t 2. Grâce aux matrices de transition de rating On pose λ i, j, i, j K l intensité de P V f ee -transition d un rating de classe i à un rating de classe j. Soit p i (T ) la P V f ee probabilité d atteindre la classe i à l instant T. Cette probabillité doit pouvoir être calculée à partir de λ i, j,maisenobservantqueestunep V f ee -martingale, s(0) = K i= p i(t ) (s) i. Par ailleurs, la probabilité d aller vers un rating de défaut est nulle. Le prix de l option sur le CDS est alors :. V CDSO (t) = {τ>t } V f ee (t)sum K i=p i (T )( (s) i s ) + 2 Modélisation Afin de calculer V f ee, il nous faut utiliser un modèle de defaut approprié. Ce type de modele permet d estimer la probabilité de defaut d une compagnie en fonction de son rating ou du spread associé 2. Le modèle à intensité de défaut Le modèle à intensité de défaut commence par définir une fonction de survie pour une compagnie donnée : S(T ) est la probabilité de survie jusqu à la date T Donc la probabilité qu une compagnie fasse défaut à la l année T sachant qu elle n a pas fait défaut avant est (selon la règle de Bayes) : S(T ) S(T + ) S(T ) 4

5 Pour un intervalle de temps t, si l on recherche la probabilité moyenne de défaut (taux de défaut) : Puis on obtient : S(T ) S(T + ) ts(t ) S(T ) S(T + t) lim = S (T ) = f (T ) t 0 ts(t ) S(T ) f (T ) est appelée intensité défaut et on trouve alors que : On peut supposer ici que : Z T S(T ) = exp( f (x)dx) 0 f (T ) = S R T où S correspond au spread du CDS et R la recovery du bon. Cette expression vient du fait qu on égalise jambe fixe et jambe variable dans un CDS donné. On utilise ce modèle afin d estimer V f ee : b(t n ) δ n {Tn τ} + b(τ) δ n {T 0 τ T n } F t. Puis : on obtient alors : V f ee (t) = V f ee (t) = E Q [ n= V f ee (t) = n= n= b(t n ) δ ne Q[ {Tn τ} F t + E Q [ b(τ) δ n {T 0 τ T n } F t [ b(t n ) δ np Q (T n τ F t ) + n= ( E Q[. b(τ) (τ T n ) {Tn τ T n } F t ). Enfin : V f ee (t) = n= ( b(t n ) δ n ) S(T n ) S(t) ( Z τn + n= τ n ) b(τ) (τ T n ) S (τ) S(t) dτ. 2.2 Le modèle de matrices de transition Ce modèle se base sur les fréquences historiques de transition des différentes compagnies vers différents ratings. En regroupant ces données sur une durée de temps importante, on peut assimiler la proportion de migrations annuelles d un rating vers l autre à la probabilité de transition associée. On utilise ici des données collectées entre 98 et 2000 par Standards Poor s sous forme de matrice annuelle de transition : Ainsi, une compagnie de rating B a une probabilité de de faire défaut au bout d un an. Pour connaitre cette probabilité sur des durées plus importantes, par exemple 5 ans, il suffit d elever la matrice a la puissance 5 et de regarder les mêmes coordonnées. Afin de pouvoir utiliser cette matrice, on modifie légèrement Vfee en effectuant une approximation sur les termes intermédiaires car on ne peut calculer la probabilité de faire défaut d un mois à l autre mais seulement d une année à l autre. On utilise alors l expression : V f ee (t) = n= [ b(t n ) δ np Q (T n τ) F t. 5

6 avec T n subdivisions annuelles et P Q (T n τ F t ) = P(T n τ) P(t τ) P(t τ) = Mn Rating initial,de f aut Mt Rating initial,de f aut M t Rating initial, De f aut Afin de calculer V CDSO par la méthode développée en I, on utilise les matrices de transitions d un rating à l autre. Pour un contrat de maturité T ans, on regarde, sur la matrice M T, la ligne correspondant au rating de la compagnie considérée (ce sont les P i (T )). Cette opération nécessite aussi de connaitre le spreads associé aux ratings d arrivée. Ce tableau regroupe les spreads sur 0 ans pour différents ratings : Bond rating Average Spreads AAA 0.20 % AA 0.50% A+ 0.80% A % A.25% BBB.50% BB 2% B+ 2.50% B 3.25% B- 4.25% CCC 5% 6

7 3 os résultats Voici présentés les résultats obtenus par notre pricer. On voit que le prix diminue avec le temps qui passe du fait des paiements qui parviennent et de la moindre probabilité pour l entreprise de faire défaut. On présente maintenant les résultats obtenus pour V CDSO pour différents ratings. 7

8 On s intéresse désormais au hedging et à la réplication d un option sur un CDS. Il faut constituer un portefeuille fait de α CDS forward et α 2 V f ee. Voici les résultas obtenus pour α et α 2. 8

Introduction aux produits de taux d intérêts

Introduction aux produits de taux d intérêts Introduction aux produits de taux d intérêts R&D Banque CPR 8 avril 2002 Plan 1. Notations et préliminaires 2. Euribor, caplets, caps 3. Swaps, swaptions 4. Constant Maturity Swap (CMS) 5. Quelques produits

Plus en détail

Projet de modélisation en présence de risque de défaut : Article sur la valorisation des CDS - Dominik O Kane Stuart Turnbull -

Projet de modélisation en présence de risque de défaut : Article sur la valorisation des CDS - Dominik O Kane Stuart Turnbull - T. Moudiki, X. Milhaud - M2R SAF Projet de modélisation en présence de risque de défaut : Article sur la valorisation des CDS - Dominik O Kane Stuart Turnbull - Sous la direction de M. Tchapda ISFA - Mai

Plus en détail

EVALUATION DES CDS ET CDO

EVALUATION DES CDS ET CDO EVALUATION DES CDS ET CDO ARMAND NGOUPEYOU 15 novembre 2007 Credit Default Swap Le Credit Default Swap de maturité T est un contrat de protection qui porte sur le défaut d un emprunteur("single Name").L

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Le risque de crédit. DeriveXperts. 23 juillet 2010

Le risque de crédit. DeriveXperts. 23 juillet 2010 23 juillet 2010 Définitions Exemples - Interactions Obligations Credit Default Swap (CDS) First To Default Collateralized Debt Obligation (CDO) Probabilité de défaut Le modèle exponentiel dynamique - Introduction

Plus en détail

Couverture dynamique des produits dérivés de crédit dans les modèles à copules

Couverture dynamique des produits dérivés de crédit dans les modèles à copules Couverture dynamique des produits dérivés de crédit dans les modèles à copules David Kurtz, Groupe de Recherche Opérationnelle Workshop Copula in Finance, 14 mai 2004, ENS Cachan Sommaire 1 Le marché des

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Utilisation des arbres binomiaux pour le pricing des options américaines

Utilisation des arbres binomiaux pour le pricing des options américaines Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Swap et Swap vanille 2 / 9

Swap et Swap vanille 2 / 9 Les SWAPs 1 / 9 Swap et Swap vanille Définition Un swap est un accord entre deux entreprises pour échanger des flux de trésorerie dans le futur. Cet accord définit les dates auxquelles ces flux (ou cash-flows)

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 0 et l échéance N. Définition 5.1. Une option américaine est définie par une suite (h n ) n=0..n,

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO - Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 11 juin 2012 Table des matières 1 Avant-propos 3 2 Présentation de l architecture du logiciel 3 2.1 Core..........................................

Plus en détail

Le Modèle de taux de Ho-Lee - Pricing d obligation

Le Modèle de taux de Ho-Lee - Pricing d obligation Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Master 2 IMOI - Mathématiques Financières

Master 2 IMOI - Mathématiques Financières Master 2 IMOI - Mathématiques Financières Exercices - Liste 1 1 Comportement d un investisseur face au risque Exercice 1 Soit K la matrice définie par 1 2 [ 3 1 1 3 1.1 Montrer que K est la matrice de

Plus en détail

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2 Sommaire Sommaire... 1 Introduction... 2 1 Trois différentes techniques de pricing... 3 1.1 Le modèle de Cox Ross Rubinstein... 3 1.2 Le modèle de Black & Scholes... 8 1.3 Méthode de Monte Carlo.... 1

Plus en détail

L évaluation des obligations

L évaluation des obligations Chapitre 8 L évaluation des obligations Plan du chapitre 8 8.1. Flux monétaires, prix et rentabilité des obligations Caractéristiques générales des obligations Obligations zéro-coupon Obligations couponnées

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Formation ESSEC Gestion de patrimoine

Formation ESSEC Gestion de patrimoine Formation ESSEC Gestion de patrimoine Séminaire «Savoir vendre les nouvelles classes d actifs financiers» Les options Plan Les options standards (options de 1 ère génération) Les produits de base: calls

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton Les hypothèses du modèle Dérivation du modèle Les extensions du modèle Le modèle de Merton Les hypothèses du modèle Marché

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 12. Théorie des options I Daniel Andrei Semestre de printemps 211 Principes de Finance 12. Théorie des options I Printemps 211 1 / 43 Plan I Introduction II Comprendre les options

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Modèles en temps continu pour la Finance

Modèles en temps continu pour la Finance Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition

Plus en détail

Ecole Nationale des Ponts et Chaussées Option Adjusted Spread

Ecole Nationale des Ponts et Chaussées Option Adjusted Spread Ecole Nationale des Ponts et Chaussées Option Adjusted Spread Dimitri Kassatkine, Sofiane Maayoufi IMI Finance Mars 2006 1 INTRODUCTION 1.1 Présentation des produits obligataires Une obligation est un

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

Mathématiques Financières Exercices

Mathématiques Financières Exercices Mathématiques Financières Exercices Licence 2, 2015-16 - Université Paris 8 J.CORIS & C.FISCHLER & S.GOUTTE 1 TD 6 : Emprunts et Tableaux damortissements Une société a un besoin de financement de 10000

Plus en détail

Chapitre 2 : l évaluation des obligations

Chapitre 2 : l évaluation des obligations Chapitre 2 : l évaluation des obligations 11.10.2013 Plan du cours Flux monétaires, prix et rentabilité Bibliographie: caractéristiques générales Berk, DeMarzo: ch. 8 obligations zéro-coupon obligations

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

1 Diverses actualisation

1 Diverses actualisation durée : 2 heures Nom de l enseignant : M. Chassagnon NB : documents et calculatrices autorisées Les exercices, sont à faire sur le sujet d examen. Il est demandé de répondre aux questions oui/non type

Plus en détail

Examen Mesures de Risque de Marché

Examen Mesures de Risque de Marché ESILV 2012 D. Herlemont Mesures de Risque de Marché I Examen Mesures de Risque de Marché Durée: 2 heures. Documents non autorisés et calculatrices simples autorisées. 2 pt 1. On se propose d effectuer

Plus en détail

Portefeuille - Probabilité risque neutre

Portefeuille - Probabilité risque neutre Portefeuille - Probabilité risque neutre Marché complet sans opportunité d arbitrage ½/ Actifs risqué et non risqué Constitution du portefeuille On notera F n l information dont on dispose à l instant

Plus en détail

EXAMEN 14 janvier 2009 Finance 1

EXAMEN 14 janvier 2009 Finance 1 EXAMEN 14 janvier 2009 Durée 2h30 heures Exercice 1 On considère un modèle de marché de type arbre binomial à trois étapes avec un actif risqué S et un actif non risqué. On suppose S 0 = 1000$ et à chaque

Plus en détail

Dérivés de crédit : Situation et évolution du marché

Dérivés de crédit : Situation et évolution du marché Dérivés de crédit : Situation et évolution du marché Parallèle entre dérivés de crédit et produits d assurance Déjeuner débat FFA Jean-Paul LAURENT Professeur à l'isfa, Université de Lyon, Conseiller scientifique

Plus en détail

Modélisation du risque de crédit et asymétrie d information

Modélisation du risque de crédit et asymétrie d information Modélisation du risque de crédit et asymétrie d information David Kurtz, Groupe de Recherche Opérationnelle 10 juin 2004, Université de Poitiers Introduction [1] (1) Le risque de crédit (2) Modèles structurels

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 2. Instruments et produits financiers

Master Modélisation Statistique M2 Finance - chapitre 2. Instruments et produits financiers Master Modélisation Statistique M2 Finance - chapitre 2 Instruments et produits financiers Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de

Plus en détail

Évaluation des options américaines par méthodes de Monte-Carlo. Jacky Mochel

Évaluation des options américaines par méthodes de Monte-Carlo. Jacky Mochel Évaluation des options américaines par méthodes de Monte-Carlo Jacky Mochel 3 décembre 2002 1 2 TABLE DES MATIÈRES Table des matières 1 Introduction 3 1.1 Définitions et notations..............................

Plus en détail

Baccalauréat ES Amérique du Sud 16 novembre 2011

Baccalauréat ES Amérique du Sud 16 novembre 2011 Baccalauréat ES Amérique du Sud 16 novembre 2011 L utilisation d une calculatrice est autorisée. EXERCICE 1 Commun à tous les candidats 4 points Soit u une fonction définie et dérivable sur l intervalle

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Cours Produits dérivés M1 IM Université Nice Sophia-Antipolis. François Delarue

Cours Produits dérivés M1 IM Université Nice Sophia-Antipolis. François Delarue Cours Produits dérivés M1 IM Université Nice Sophia-Antipolis François Delarue CHAPITRE 1 Actifs et exemples de dérivés Dans ce chapitre, nous discutons de la notion d actif financier et d actif dérivé

Plus en détail

1 Concevoir et réaliser un projet de formation

1 Concevoir et réaliser un projet de formation 1 Concevoir et réaliser un projet de formation Nous présentons, dans ce chapitre, la méthodologie générale de conception et de réalisation d un projet de formation. La caisse à outils du formateur 2 1.1

Plus en détail

Méthodes numériques pour le pricing d options

Méthodes numériques pour le pricing d options Méthodes numériques pour le pricing d options Mohamed Ben Alaya 6 février 013 Nous allons tester les différentes méthodes de différence finies vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

Chapitre 9 Le modèle Cox-Ross-Rubinstein

Chapitre 9 Le modèle Cox-Ross-Rubinstein Chapitre 9 Le modèle Cox-Ross-Rubinstein Considérons un actif valant S 0 à la période initiale et qui, à chaque période, peut être haussier (et avoir un rendement u) avec une probabilité p ou baissier

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Mathématiques Financières

Mathématiques Financières Mathématiques Financières 2 ème partie Marchés financiers en temps discret & instruments financiers classiques Université de de Picardie Jules Verne Amiens Par Par Jean-Paul Jean-Paul FELIX FELIX Cours

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

ANALYSE DU RISQUE DE CRÉDIT

ANALYSE DU RISQUE DE CRÉDIT ANALYSE DU RISQUE DE CRÉDIT Banque & Marchés Cécile Kharoubi Professeur de Finance ESCP Europe Philippe Thomas Professeur de Finance ESCP Europe TABLE DES MATIÈRES Introduction... 15 Chapitre 1 Le risque

Plus en détail

Wacc et risque de défaut. Jean-Michel Moinade Oddo Corporate Finance

Wacc et risque de défaut. Jean-Michel Moinade Oddo Corporate Finance Wacc et risque de défaut Jean-Michel Moinade Oddo Corporate Finance Stocks, Flux et Actualisation (MM1) Approche de Modigliani-Miller (première version) Approche Théorique Approche Théorique Agrégat Flux

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Examen de Gestion des Risques Financiers

Examen de Gestion des Risques Financiers Examen de Gestion des Risques Financiers Thierry Roncalli 4 janvier 2012 Merci de rédiger entièrement vos réponses. 1 Les réglementations Bâle II et Bâle III 1. Quelles sont les principales différences

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES Objet de la séance 5: les séances précédentes

Plus en détail

Analyse du Risque et Couverture des Tranches de CDO Synthétique

Analyse du Risque et Couverture des Tranches de CDO Synthétique Analyse du Risque et Couverture des Tranches de CDO Synthétique Areski Cousin Laboratoire de Sciences Actuarielle et Financière ISFA, Université Lyon 1 Soutenance de Thèse, Lyon, 17 Octobre 2008 Directeur

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Mathématiques Financières

Mathématiques Financières Mathématiques Financières 3 ème partie Marchés financiers en temps discret & instruments financiers dérivés Université de Picardie Jules Verne Amiens Par Jean-Paul FELIX Cours du vendredi 19 février 2010-1

Plus en détail

TD 1 : Taux d intérêt en univers déterministe

TD 1 : Taux d intérêt en univers déterministe Université Paris VI Master 1 : Introduction au calcul stochastique pour la finance 4M065) TD 1 : Taux d intérêt en univers déterministe 1 Interêts simples / Intérêts composés Définition : a) L intérêt

Plus en détail

Supplément théorique Inférence dans les réseaux bayésiens. Rappel théorique. Les processus aléatoires. Les réseaux bayésiens

Supplément théorique Inférence dans les réseaux bayésiens. Rappel théorique. Les processus aléatoires. Les réseaux bayésiens DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2011 Supplément théorique Inférence dans les réseaux bayésiens Rappel théorique Les processus aléatoires La plupart des processus

Plus en détail

Calcul Stochastique et Applications Financières

Calcul Stochastique et Applications Financières 0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION

Plus en détail

Spécialistes de pricing des dérivées actions et crédit complexes et de l obligation convertible.

Spécialistes de pricing des dérivées actions et crédit complexes et de l obligation convertible. Spécialistes de pricing des dérivées actions et crédit complexes et de l obligation convertible. Pedro Ferreira : Présentation de ITO33 27 novembre 2007 1 La société 2 Equity to Credit 3 Le problème de

Plus en détail

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Plan Actualisation et capitalisation Calculs sur le taux d intérêt et la période Modalités de calcul des taux d intérêts

Plus en détail

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Chapitre 1 Exercice 1. * Calculer le prix à terme d échéance T d une obligation de nominal N, qui verse un coupon C à la date

Plus en détail

LISTE D EXERCICES 2 (à la maison)

LISTE D EXERCICES 2 (à la maison) Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros

Plus en détail

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines Ensimag - 2éme année Mai 2010 TRAVAIL D ETUDE ET DE RECHERCHE Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire AURIAULT 1/48 2/48 Cadre de l Étude Cette étude a été

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

TD 15-16-17 : Martingales et portefeuilles, modèles de Ho et Lee

TD 15-16-17 : Martingales et portefeuilles, modèles de Ho et Lee Université Paris VI Master 1 : Modèles stochastiques pour la finance (4M065) 2013/2014 TD 15-16-17 : Martingales et portefeuilles, modèles de Ho et Lee Dans toute cette feuille (sauf dans l exercice sur

Plus en détail

Question 1: Analyse et évaluation des obligations

Question 1: Analyse et évaluation des obligations Question 1: Analyse et évaluation des obligations (56 points) Vous travaillez pour le département de trésorerie d une banque internationale. L établissement bénéficie d une très bonne réputation et peut

Plus en détail

Chapitre 20. Les options

Chapitre 20. Les options Chapitre 20 Les options Introduction Les options financières sont des contrats qui lient deux parties. Les options existent dans leur principe depuis plusieurs millénaires, mais elles connaissent depuis

Plus en détail

VALORISATION DES PRODUITS DE CHANGE :

VALORISATION DES PRODUITS DE CHANGE : VALORISATION DES PRODUITS DE CHANGE : TERMES, SWAPS & OPTIONS LIVRE BLANC I 2 Table des Matières Introduction... 3 Les produits non optionnels... 3 La méthode des flux projetés... 3 Les options de change

Plus en détail

Formules et Approches Utilisées dans le Calcul du Coût Réel

Formules et Approches Utilisées dans le Calcul du Coût Réel Formules et Approches Utilisées dans le Calcul du Coût Réel Objectifs du Taux Annuel Effectif Global (TAEG) et du Taux d Intérêt Effectif (TIE) Le coût réel d un crédit inclut non seulement l intérêt,

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Mathématiques appliquées à la finance J. Printems Année 2008 09

Mathématiques appliquées à la finance J. Printems Année 2008 09 IAE Gustave Eiffel Master 2 Gestion de Portefeuille Université Paris xii Val de Marne Mathématiques appliquées à la finance J. Printems Année 2008 09 Épreuve du 15 juillet 2009 Durée : 1 heure 30 Calculatrices

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

La Volatilité Locale

La Volatilité Locale La Volatilité Locale Bertrand TAVIN Université Paris 1 - Panthéon Sorbonne 26 mai 2010 Résumé Dans cette courte note nous introduisons le concept de volatilité locale et les modèles de pricing basés sur

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Annexe 2 : Informations statistiques

Annexe 2 : Informations statistiques Annexe 2 : Informations statistiques Pour une analyse détaillée et des données récentes sur les tendances en matière d emploi en Europe, voir Commission européenne (23), Emploi en Europe 23 (http://europa.eu.int/comm/employment_social/employment_analysis/employ_23_fr.htm)

Plus en détail

Chapitre 1 L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1 L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes

Plus en détail

Déclassement d'actifs et stock brut de capital

Déclassement d'actifs et stock brut de capital Extrait de : La mesure du capital - Manuel de l'ocde 2009 Deuxième édition Accéder à cette publication : http://dx.doi.org/10.1787/9789264067752-fr Déclassement d'actifs et stock brut de capital Merci

Plus en détail