PROJET DE MONTE CARLO SUJET 1: LE PRICING

Dimension: px
Commencer à balayer dès la page:

Download "PROJET DE MONTE CARLO SUJET 1: LE PRICING"

Transcription

1 LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI

2 QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite, o fixe s>0 et o ote Hs l espace vectoriel egedré par (,0 r s), H ~ s l espace vectoriel egedré par ( W W, u 0) Alors W r Hs et H ~ sot orthogoaux puisque pour r [ 0, s], u 0 s E[ W ( W W )] E[ G([0, r]) G(] s, s u])] 0 r su s s u s d après les propriétés des mesures gaussiees omme Hs et H ~ s sot aussi coteus das u même espace gaussie, o e déduit grâce au théorème suivat: Soit H u espace gaussie et soit ( H i, i I) ue famille de sous espaces vectoriels de H Alors les sous espaces seulemet si les tribus ( H i H i ), i I sot idépedates, i I sot orthogoaux das L si et que H ) et H ~ ) sot idépedates E particulier Wt Ws est idépedate ( s ( s de ( H ) ( W, r s) De plus o a, W W G(] s, t]) suit la loi N( 0, t s) s r t s

3 QUESION : Ue optio d achat (ou call) doe à l operateur qui l achète le droit et o l obligatio d acheter u actif fiacier, à u prix d exercice spécifié K au momet de l achat et à ue date détermiée appelée date de maturité de l optio Expliquos maiteat pourquoi le payoff de l optio d achat s écrit: (,K,) (S K) max( S K,0) où K est le prix d exercice, l optio S le cours de l actio, et la date de maturité de Le risque de l acheteur est limité au motat de la prime qu il verse au vedeur au momet du cotrat lui doat le droit de se déclarer acheteur So gai est e revache, illimité Deux cas serot alors possibles: Soit S K: Das ce cas là, l acheteur a aucu itérêt à exercer so optio, car elle egedrerait ue perte So gai est alors ul Soit S K: Das ce cas là, l acheteur exerce so optio E effet, il achète l actif fiacier au prix K, esuite la reved au prix S pour bééficier de la hausse du cours Aisi so gai sera S K O voit bie que le bééfice potetiel d u acheteur d optio d achat de coaît pas de limite objective

4 O retrouve bie: (,K,) (S K) max( S K,0) e résultat est illustré par le graphique suivat:

5 QUESION 4 : Variables atithétiques : L objectif de cette méthode est de réduire la variace E effet, les variables atithétiques sot ue des techiques employées das la méthode Mote-arlo où l o utilise les propriétés de symétrie d ue distributio et de corrélatios égatives etre deux variables aléatoires Das le cadre de otre projet, c est-à-dire das le cadre des applicatios liées à la fiace, o doit souvet calculer M= E[ ( G)] où G est ue gaussiee cetrée gaussiees Or o sait que G loi G ela viet de la propriété de symétrie des Doc u estimateur de M= E[ ( G)] est : M ( ( G ) ( G ) ( G ) ( G )) Où G,,G sot réalisatios de la loi de G Si o ote M ( ( G ) ( G )) l estimateur Mote arlo classique, o obtiet G i d ep i Var ( M ) Var ( ( )) G i Var( ( Gi )) 4 i i G i a la même loi que Var( ( G )) Pour pouvoir comparer l efficacité des deux méthodes, o compare bie évidemmet la variace des deux estimateurs

6 La variace de l estimateur M est Var ( M ) Var( ( ( G ) ( G( i))) i 4 i Gidepi Var((G 4 i ) (G i )) G meme loi i G G i ( Var ( ( G )) Var ( ( G )) ov( ( G ), ( G ))) 4 ( Var( ( G )) cov( ( G ), ( G ))) O coclut que Var( M ) Var( M ) si et seulemet si cov( ( G ), ( G )) 0 Or, ous pouvos coclure grâce au théorème suivat : Soit G ue variable aléatoire, ue trasformatio décroissate de R telle que loi ) ( G G et ue foctio mootoe Aisi : ov( ( G), ( ( G))) 0 ette méthode accélère doc, pour u ombre de simulatios doé, la covergece vers le vrai prix de l optio O voit bie ce résultat sur otre fichier Excel Les fluctuatios du prix de l optio sot beaucoup mois importates das le cas des variables atithétiques Aisi, o voit bie, par le calcul, puis par l applicatio sur Excel, que la performace de la simulatio Mote-arlo peut être améliorée e ayat recours à cette techique

7 Exemple: et exemple a été trouvé sur wwwwikipediafr, ous avos choisi de l itégrer das otre répose car il explique bie, surtout grâce au tableau iséré par la suite, l amélioratio de la méthode de Mote-arlo par celle des variables atithétiques pour u simple calcul d itégrale O souhaite estimer : I dx 0 x La valeur exacte est I =l O peut voir cette itégrale comme l espérace de f (U ), où f ( x) x Et U est distribuée selo ue loi uiforme sur [0,] O compare esuite l estimateur Mote arlo classique (par exemple ue échatillo de taille, 500, tiré selo la loi uiforme stadard) à l estimateur avec variable atithétique (échatillo de taille, complété par l échatillo trasformé -u j ) La variace se réduit comme suit : Estimatio Variace Méthode classique 0, ,0005 Variable atithétique 0, ,00063 O costate ue très ette réductio de la variace das le cas de l utilisatio d ue variable atithétique

8 QUESION 5 : Motros que le prix de cette optio admet ue formule fermée qui s écrit (0,K,) S 0 N(d ) Kexp(r)N(d ) avec: l S 0 r K d d d O ote la probabilité risque-eutre P, le spot S 0, le strike K, le taux d itérêt sas risque r, la volatilité la maturité et la barrière B O pose par la suite: r k K S 0 b B S 0 es variables ous serot utiles pour la démostratio Le cours de l actio sous P est modélisé par: t [0,] S t S 0 e r t W t où (W t ) est u mouvemet Browie sous P

9 Aisi le prix (S 0,K,r,,,B) vérifie: e r E P ((S K) (sup0t S ) t )B} S 0 e r (e w k) {m () l b (w,m)dwdm } S 0 e r S 0 e r S 0e r (e w k){m l b } {w m l b l b [ w l k l b w l k e (mw) (e (w w) (m w) } ] (e w k) e w dw m w e l b ( l b w) ) (ew k) (mw) e w e dwdm e w dw O remarque que, pour tout réel x, x x x S 0e r l b (e w w l k O pose v w ( l b w) e ) (ew k) e w dw S 0e r l b v l k (e v e ( l b v) )(e v k)e v dv () O itroduit alors la foctio f défiie par f (a,b,,) e (N( a) N( b)) () O a alors : f (a,b,,) e (N( a) N( b)) (3)

10 E utilisat (), (), et (3), o obtiet: S 0 e r l k kf l k f l k kf f, lb, lb, lb l k, l b,0,( ),0, l b,,( ) l b,, Après simplificatio, e remarquat que obtiet: r et que r, o l S 0 (S 0,K,r,,,B) S 0 N K (r ) l S 0 N B (r ) Ke r B B S 0 l S 0 N K (r ) l S 0 N B (r ) r S 0Ke r B N B S 0 S 0 K (r ) l B (r S N 0 ) l B r l B S N 0 K r l B r S N 0

11 Or o sait bie que : x 0 N(x) x N(x) N(x) et aussi que: N(x) ~ x e x x O vérifie bie que si l o fait tedre B vers l ifii, o a l (S 0,K,r,,,B) S N 0 B S 0 K r l S 0 K r Ke r N qui est bie la formule das call europée simple das le cadre du modèle de Black-Scholes

12 QUESION 8 : F Das le cas où K=0, cherchos à trouver ue formule pour ( 0,,,0) Nous cherchos à calculer E (( S S ) ) out d abord, écrivos S e foctio de S S S exp( ( ) ( W W )) avec r Doc : E(( S S ) ) E(( S (exp( ( ) ( W W )) ) ) car S 0 Nous pouvos dire maiteat, que S est ue foctio de W, et comme W et ( W W ) sot idépedats (propriété d u Mouvemet Browie), S va être idépedat de ce qui reste das l espérace ie (exp( ( ) ( W W )) ) Aisi, l espérace du produit va simplemet être le produit des espéraces : E(( S S ) ) E( S ) E(exp(( ( ) ( W W )) ) ) O a : E( S ) S0 et E((exp( ( ) ( W W )) ) ) est le prix d u call émis e et de maturité, pour u actif qui vérifie S 0 O a alors la formule : E (( S S ) ) = (0,, ) S ( N( d ) Kexp( r ) N( )) S à 0 d

13 E effet, das la fomule du ( 0,, ) o a, K S 0 Aisi, o se retrouve avec la formule suivate : E(( S S ) ) = r ry r S0 N e N

14 QUESION 0 : Rappelos tout d abord la défiitio de la discrépace : Soiet : x ( x ) ue suite de poits de 0,, la mesure de Lebesgue sur 0,, A u sous pavé quelcoque de 0,, P l esemble des sous pavés de 0, La discrépace d ordre k de la suite x est la quatité : D k ( x) Sup D ( A, x) tqa P k La suite x est à discrépace faible si : D k (l k) ( x) O k k Les géérateurs les plus cous sot les géérateurs pseudo-aléatoires (géérateur où la suite des ombres qui sera simulée est prévisible sous certaies coditios) Les algorithmes utilisat les suites à discrépace faible sot asymptotiquemet meilleurs que les algorithmes pseudo-aléatoires E effet, ces deriers sot utilisés das les méthodes de Mote-arlo, d où l applicatio à ce projet Les géérateurs quasi-aléatoires se baset sur la costructio de suites à discrépace faible Les suites de Va Der orput sot u exemple de suite quasi-aléatoire E effet, elles géèret des suites de ombres distribués selo ue loi uiforme «Elles sot basées sur la coversio d etiers das la base d u ombre premier, puis iversio par rapport à la virgule décimale»

15 Explicitos la méthode de costructio de cette suite E effet, o est e dimesio Soit p u ombre premier Pour tout etier, o s itéresse à l écriture de ce ombre etier e base p : r i0 a i p i Esuite o pose où 0,, p a i x r i0 a p i i La suite ( x ) que ous veos de défiir, est la suite de Va Der orput E effet, c est ue suite équirépartie sur 0, à discrépace faible Voici les quelques premiers termes de la suite : 0, 0, 03, 04, 05, 06, 07, 08, 09, 00, 0, 0, 03, 04, 05, 06, 07, 08, 09, 00, 0, 0, 03, Le résultat que ous trouvos sur otre page Excel viet cofirmer ce que ous avios précisé das les paragraphes précédets E effet, la méthode utilisat la suite de Va Der orput améliore celle de Mote-arlo e augmetat la rapidité de covergece vers le vrai prix de l optio

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques CHAPITRE 2 : Estimatio o-paramétrique 1. Estimateurs empiriques Soit u échatillo i.i.d. de durées T i i1,..., de foctio de survie S Défiitio: L estimateur empirique de la foctio de survie est S x 1 i1

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Chapitre 1. Arithmétique. Partie 5 : PGCD

Chapitre 1. Arithmétique. Partie 5 : PGCD Chapitre 1 Arithmétique Partie 5 : PGCD Propriété/Défiitio : (PGCD) O se doe deux etiers relatifs a et b o uls. L esemble des diviseurs positifs commus à a et b admet u plus grad élémet que l o PGCD a

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

La Méthode de Monte Carlo

La Méthode de Monte Carlo La Méthode de Mote Carlo Etiee Pardoux UMR 6632 Laboratoire d Aalyse, Topologie, Probabilités et EA 3781 Evolutio Biologique Uiversité de Provece Etiee Pardoux (LATP) Marseille, 13/09/2006 1 / 33 Cotets

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Feuille de travaux pratiques # 3

Feuille de travaux pratiques # 3 Uiversité de Rees 1 Préparatio à l agrégatio Modélisatio - Proba/stat aée 015-016 Feuille de travaux pratiques # 3 1 La méthode de Mote-Carlo La méthode de Mote-Carlo est ue méthode de calcul approché

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Équirépartition presque sûre pour f (x) = 2x modulo 1 Jean-Baptiste Bardet 26 mai 2005

Équirépartition presque sûre pour f (x) = 2x modulo 1 Jean-Baptiste Bardet 26 mai 2005 Équirépartitio presque sûre pour f (x) = x modulo 1 Jea-Baptiste Bardet 6 mai 005 O étudie le comportemet des suites défiies par récurrece x = f (x 1 ) = f (x), où x 0 = x [0;1) et f (x) = x mod 1, et

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Convergence en loi. Théorème de la limite centrale.

Convergence en loi. Théorème de la limite centrale. Uiversité Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 10 (semaie du 2 au 6 décembre 2013 Covergece e loi. Théorème de la limite cetrale. Covergece e loi 1. Soiet (X N ue

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau.

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau. AVANT PROPOS Cet ouvrage propose aux élèves de classes termiales (fraçais) S (spécialité math) des rappels et des complémets de cours assez complet, aisi que des problèmes et des exercices corrigés. Les

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Lois normales et autres lois dérivées

Lois normales et autres lois dérivées Lois ormales et autres lois dérivées - Lois ormales a) - Défiitio O dit qu'ue variable aléatoire réelle X suit la loi ormale (ou gaussiee) de paramètres et, otée N ( ; ), si elle admet pour desité la foctio

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

POLYNESIE Série S Juin 2001 Exercice

POLYNESIE Série S Juin 2001 Exercice OLYNESIE Série S Jui 00 Exercice gros rouges et 3 petits rouges Ue boîte cotiet 8 cubes : gros verts et petit vert petit jaue U efat choisit au hasard et simultaémet 3 cubes de la boîte (o admettra que

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

CORRIGÉ : MATH 2 ; MP ; Mines-ponts_2015

CORRIGÉ : MATH 2 ; MP ; Mines-ponts_2015 CORRIGÉ : MATH ; MP ; Mies-pots_05 A Norme d opérateur d ue matrice ) est u espace vectoriel ormé de dimesio fiie et S est u fermé boré de, c est doc u compact de L applicatio x Mx est u edomorphisme de

Plus en détail

Série Mathématiques. Annales scientifiques de l Université de Clermont-Ferrand 2, tome 71, série Mathématiques, n o 20 (1982), p.

Série Mathématiques. Annales scientifiques de l Université de Clermont-Ferrand 2, tome 71, série Mathématiques, n o 20 (1982), p. ANNALES SCIENTIFIQUES DE L UNIVERSITÉ DE CLERMONT-FERRAND Série Mathématiques B. MAISONNEUVE Sur les chaos de Wieer Aales scietifiques de l Uiversité de Clermot-Ferrad, tome 71, série Mathématiques, o

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Éléments de correction de la feuille d exercices # 3

Éléments de correction de la feuille d exercices # 3 Uiversité de Rees L SVE Probabilités et statistiques aée 25-26 Élémets de correctio de la feuille d exercices # 3 Exercice Exemple de loi discrète Soit X ue variable aléatoire discrète preat les valeurs

Plus en détail

Méthodes de Monte-Carlo

Méthodes de Monte-Carlo Méthodes de Mote-Carlo Aie MILLET Uiversités Paris 7 et Paris 1 Master ème aée : Spécialité Modélisatio Aléatoire Recherche et Professioel Parcours : Statistique et Modèles Aléatoires e Fiace Parcours

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

Cours de méthodes de simulation

Cours de méthodes de simulation ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION ( ESSAIT) Cours de méthodes de simulatio Préparé par Hasse MATHLOUTHI Aée uiversitaire 2014-2015 AVANT PROPOS Ce documet propose u cours sur

Plus en détail

Université Paris VII - Agrégation de Mathématiques (François Delarue) MÉTHODE DE MONTE-CARLO

Université Paris VII - Agrégation de Mathématiques (François Delarue) MÉTHODE DE MONTE-CARLO Uiversité Paris VII - Agrégatio de Mathématiques Fraçois Delarue) MÉTHODE DE MONTE-CARLO Ce texte vise à préseter l utilisatio de la méthode de Mote-Carlo das le calcul du prix d ue optio. 1. Positio du

Plus en détail

Reconnaissance des formes: Fenêtre de Parzen

Reconnaissance des formes: Fenêtre de Parzen Préom Nom Recoaissace des formes: Feêtre de Parze Pricipes de l'appretissage o paramétrique Estimatio o paramétrique de la desité Feêtres de Parze vs. k plus proches voisis Feêtres de Parze Réseau de euroes

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Méthodes de Monte-Carlo et réduction de la variance

Méthodes de Monte-Carlo et réduction de la variance Méthodes de Mote-Carlo et réductio de la variace Itroductio et otatios : Ce TP aborde présete diverses méthodes d'estimatio des itégrales. Ces méthodes ot comme outil pricipal la méthode de Mote-Carlo.

Plus en détail

LES PROBABILITÉS POUR LES OPTIONS B, C ET D

LES PROBABILITÉS POUR LES OPTIONS B, C ET D LES PROBABILITÉS POUR LES OPTIONS B, C ET D PRÉPARATION À L AGRÉGATION EXTERNE DE MATHÉMATIQUES DE L UNIVERSITÉ RENNES 1 1 ANNÉE 2009/2010 1. ESPACE PROBABILISÉ - VARIABLE ALÉATOIRE 1.1 ESPACE PROBABILISÉ

Plus en détail

BACCALAUREAT GENERAL. Bac blanc n 4 Mercredi 7 Mai 2014 MATHEMATIQUES. Série : S Enseignement Obligatoire ou de Spécialité

BACCALAUREAT GENERAL. Bac blanc n 4 Mercredi 7 Mai 2014 MATHEMATIQUES. Série : S Enseignement Obligatoire ou de Spécialité BACCALAUREAT GENERAL Bac blac 4 Mercredi 7 Mai 4 MATHEMATIQUES Série : S Eseigemet Obligatoire ou de Spécialité Durée de l épreuve : 4 heures Coefficiet : 7 ou 9 L utilisatio de la calculatrice est autorisée

Plus en détail

Gestion du Risque de Change

Gestion du Risque de Change A / Pratiques de cotatio Gestio du Risque de Chage - Moaies «i» : FRF, DEM «pré i» : GBP «out» : USD EONIA : Europea over ight idex average TEC : taux à échage costat Toute cotatio compred deux prix :

Plus en détail