CIRCUIT RLC. U=6V ; L=0,4 H ; C= 220 µf R 1 =33Ω ; r =10 Ω On a R 2 réglable. Pour R 2 =10 Ω : Le régime est. Pour R 2 =100 Ω

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CIRCUIT RLC. U=6V ; L=0,4 H ; C= 220 µf R 1 =33Ω ; r =10 Ω On a R 2 réglable. Pour R 2 =10 Ω : Le régime est. Pour R 2 =100 Ω"

Transcription

1 CIRCUI R U=6V ; L=,4 H ; C= µf R =33Ω ; r = Ω On a R réglable Por R = Ω : Le régime es. Por R = Ω

2 Le régime es. Osillaions libres ans n iri R I. Exemple appliaion n iri. ppliaion es osillaions éleriqes Dans ee parie, on éie ne appliaion es osillaions éleriqes ans le omaine e la mééorologie. Por mesrer le ax 'hmiié relaive e l'air (noé % 'HR), on pe employer n aper appelé "hmiisane" on le prinipe simplifié ilise n onensaer e apaié varian ave l'hmiié. Por mesrer la valer e la apaié onensaer, on pe le plaer ans le iri i-essos ans leqel la bobine 'inane L a ne résisane négligeable. L'inerrper es 'abor plaé en posiion por harger le onensaer, pis baslé en posiion por le éharger. Un sysème informaisé 'aqisiion e onnées perme e relever la ension ax bornes onensaer a ors e la éharge. Qesion isssion réponse :. Qelle es la nare e l énergie emmagasinée par n onensaer?. Qelle es la nare e l énergie emmagasinée par ne bobine? 3. Sos qelle(s) forme(s) l énergie libérée par le onensaer lors e sa éharge ans le iri (posiion ) va -elle se ransformer? Réponse :. L énergie emmagasinée par n onensaer es éleriqe.. L énergie emmagasinée par ne bobine es magnéiqe. 3. L énergie éleriqe es ransformer en énergie magnéiqe ans la bobine e en énergie hermiqe ans la résisane. Nos allons éier ans e hapire, l évolion emporelle e la ension ax bornes onensaer qan il se éharge ans ne bobine. II. Déharge osillane n onensaer ans ne bobine.. Disposiif expérimenal.. Visalisaion sr n simlaer e la ension ax bornes onensaer. Le simlaer ilisé es sr le sie :

3 Qesion isssion réponse : Réponses :. Qe se passe--il qan l inerrper es en posiion?. Qe se passe--il qan l inerrper es en posiion? 3. Qelle es la nare e la ension ax bornes onensaer? 4. Commen appelle--on e phénomène? 5. Qelle hypohèse povez-vos faire sr les évolions es énergies ans le onensaer e ans la bobine? 6. Qelle es l inflene e la valer e la apaié sr les orbes? 7. Qelle es l inflene e la valer e l inane sr les orbes? 8. Qelle es l inflene es résisanes sr la ension ax bornes onensaer e sr les orbes énergie? Porqoi?. Qan l inerrper es en posiion, le onensaer se harge.. Qan l inerrper es en posiion, le onensaer se éharge ans la bobine. 3. La ension ax bornes onensaer es e nare sinsoïale. 4. Il s agi osillaions libres. (libres ar il n y a pas appor énergie après le éb e la éharge). 5. On pe proposer omme hypohèse q il y a éhange énergie enre le onensaer e la bobine. 6. Qan on agmene la valer e la apaié, l énergie iniiale onensaer es pls élevée. L énergie reçe par la bobine l es alors égalemen. La périoe es osillaions agmenen égalemen. 7. Qan on agmene la valer e l inane, la périoe es osillaions agmenen mais n a pas inflene sr l énergie e la bobine ar es le onensaer qi appore l énergie iniiale. Qan on agmene la valer es résisanes, les osillaions son amories. Une parie e ee énergie es ransférée sos forme énergie hermiqe (effe Jole). 3

4 3. Les rois régimes libres n iri R ; Inflene e l amorissemen. Cee parie es égalemen ve en P. Régime périoiqe. (libre non amori). Dans le as n iri, où il n y a on pas e résisane, le régime es appelé : périoiqe sinsoïale o harmoniqe. Il n y a pas amorissemen. La périoe propre es. Régime pseo-périoiqe. (libre amori). 4

5 Le régime pseo-périoiqe es observé por es valers faible e la résisane oale R + r. La ension osille ojors aor e zéro, mais son amplie éroî a ors emps. On appelle pseo-périoe la rée qi sépare ex maxima posiifs onséifs. Por e faibles amorissemens = Por es amorissemens n pe pls élevés Régime riiqe (libre amori) Limie exerne programme Le régime riiqe orrespon à n amorissemen pls imporan. Ce régime es la limie enre le régime pseo-périoiqe e le régime apérioiqe. Régime apérioiqe. (libre amori). III. La valer e R + r es rès imporane. L amorissemen es rès élevé. On n observe pls osillaion. Résolion analyiqe por la ension ax bornes onensaer ans le as n amorissemen négligeable.. Eablissemen e l éqaion ifférenielle. près avoir hargé le onensaer, on le plae ans n iri omporan ne bobine. 5

6 6 La résisane e la bobine es onsiérée négligeable. On appliqe la loi aiivié es ensions : q L i L L ave q i e q = C L éqaion ifférenielle por la ension s éri alors : Remarqe : L éqaion ifférenielle por la harge q s éri q q. Solion e l éqaion ifférenielle por la ension. Vérifions qe l éqaion os es ne solion e l éqaion ifférenielle ve, e éan es graners à éerminer. es la périoe propre iri. Elle s exprime en seone (s) es la phase à l origine. Elle s exprime en raian (ra) Dans n premier emps, on érive ex fois l expression os Rappel : C es ne fonion omposée (os C ) = - sin C C (sin C ) = os C C os sin Dans n exième emps, on repore e ans l éqaion ifférenielle os os os Dans n roisième emps, on ienifie.

7 Por e faire, il fa s affranhir emps, es à ire éliminer la parie e l expression qi épen emps. Il sffi qe es à ire qe = L : inane (H) C : apaié (F) Dans n qarième emps, on ienifie e. On pren en ompe les oniions iniiales à =. à = = E e i = alors os en remplaçan = e = E E = os ( + ) E = os Don = E e os = Soi = E e = La ension ax bornes onensaer s éri : E os E es l amplie (V) es la périoe propre (s) es la phase à l origine (ra) es la ension ax bornes onensaer 3. Expression e l'inensié. Rappel : on pe visaliser l inensié ax bornes e la résisane e la mesrer à l aie e la loi Ohm. On a ve q = C q CE os q i i CE sin On pe égalemen exprimer l inensié ainsi : Sahan qe sin x = os x, on a : i CE os Ce qi perme e mere en éviene e éphasage e l inensié e e la ension. (Limie exerne programme) 4. Vérifiaion e l nié e par analyse imensionnelle. 7

8 IV. On a = n a pas e imension La imension e s'éri C L Qesion isssion réponse : Monrer qe a la imension 'n emps. Réponse : i q parir e L L, i = e q =C U On a [L] = I e C lors : [] = Don C L Q I U U I = [] I U U La périoe propre on l expression es = a bien la imension 'n emps e s exprime en seone. Ee énergéiqe. Cee parie es égalemen ve en P. Cas n iri. Dans n iri, l énergie oale iri es onsane a ors emps. ve EC C e E L Li E oale = E C + E L = onsane Il y a éhange énergéiqe enre le onensaer e la bobine. Expression e l énergie oale : - en fonion e la ension maximale ax bornes onensaer = E, on a Eoale CE - en fonion e l inensié maximale paroran le iri i = I max, on a Eoale LI max. Cas n iri R. Dans n iri R, il y a ojors éhange énergéiqe enre le onensaer e la bobine mais il y a éperiion énergie par effe Jole (ransfer hermiqe) ans les résisanes. Il y a on amorissemens es osillaions. Qesion isssion réponse : Ienifier les ifférenes orbes graphe i-essos : Réponse : 8

9 =, la orbe roge e à son maximm. Il s agi on e l énergie emmagasinée par le onensaer on la ension es maximale à ee ae. =, la orbe ble es à son premier minimm. La bobine n a pas enore reçe l énergie onensaer. La orbe violee orrespon à la somme es ex ares orbes, on à l énergie oale. 3. Enreien es osillaions. 3.. Néessié ne sore énergie por ompenser l énergie évaée par ransfer hermiqe. Dans le as iri R, la pissane pere par effe Jole P = Ri oi êre ompenser par n isposiif enreien exerne. 3.. Commen obenir ne ension sinsoïale e périoe hoisie? Qesion isssion réponse : On sohaie réaliser n iri permean obenir ne ension sinsoïale e fréqene f = Hz ax bornes onensaer. On ispose ne bobine inane L = mh e e résisane r = e 'n vase hoix e onensaers. Proposer n shéma isposiif permean aboir a résla esompé. Réponse : Dans n premier emps, il fa hoisir n onensaer permean obenir es osillaions e fréqene Hz soi ne périoe propre =, s. Por ela, on ilise la relaion =, On obien C,53 3 F =,53 mf 4 L 4, Dans n exième emps, il fa inroire ans le iri n isposiif enreien es osillaions. On obien le iri sivan : 9

CIRCUIT RLC. U=6V ; L=0,4 H ; C= 220 µf R 1 =33Ω ; r =10 Ω On a R 2 réglable. Pour R 2 =10 Ω : Le régime est. Pour R 2 =100 Ω

CIRCUIT RLC. U=6V ; L=0,4 H ; C= 220 µf R 1 =33Ω ; r =10 Ω On a R 2 réglable. Pour R 2 =10 Ω : Le régime est. Pour R 2 =100 Ω 4 EDUCAION EN LIGNE PARAGE DU SAVOIR CIRCUI R BAC ECHNIQUE WWW.NESCHOOL.NE Brain Power Shool CIRCUI R U=6V ; L=,4 H ; C= µf R =33Ω ; r = Ω On a R réglable Por R = Ω : Le régime est. Por R = Ω Le régime

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

MODULE 8. Performances-seuils. Le condensateur (accumulateur). L élève sera capable

MODULE 8. Performances-seuils. Le condensateur (accumulateur). L élève sera capable ondensaers MODULE 8. Le condensaer (accmlaer). Performances-seils. L élève sera capable 1. de différencier ne pile d n condensaer (accmlaer) dans sa mise en œvre. ondensaers 1. Le condensaer. 1.1. Descripion.

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

q : charge en coulombs ( C) t : durée de passage du courant en secondes (s) I : intensité en ampères (A).

q : charge en coulombs ( C) t : durée de passage du courant en secondes (s) I : intensité en ampères (A). harg déharg d n ondnsar. I ) L ondnsar : ) Définiion : Un ondnsar (symbol ) s onsié d x armars méalliqs, séparés par n isolan. isolan s applé diélriq ( air, mia, éramiq, Téflon, polysr ).Fig. 7,8,9 p 30

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

Résolution analytique d équations hyperboliques non linéaires en 1D

Résolution analytique d équations hyperboliques non linéaires en 1D Calcl Scienifiqe Résolion analyiqe d éqaions hyperboliqes non linéaires en D Corrigé de la séance 4 Février 006 Eercice. Solion classiqe La condiion iniiale 0 () = es croissane e C sr R. La méhode des

Plus en détail

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan.

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan. Cas du circui I. Un exemple d applicaion d un circui : un composan du sysème d alimenaion en gazole d une ogan. xrai du suje IBAN 2006 a Dacia ogan, conçue par le consruceur français enaul es produie au

Plus en détail

Oscillations libres dans un circuit RLC. Extrait de l introduction du sujet LIBAN 2003 : Application des oscillations électriques

Oscillations libres dans un circuit RLC. Extrait de l introduction du sujet LIBAN 2003 : Application des oscillations électriques I. Exemple d application d un circuit LC. Oscillations libres dans un circuit RLC Extrait de l introdtion du sujet LIBAN 003 : Application des oscillations électriques Dans cette partie, on étudie une

Plus en détail

Chapitre 10 : Oscillateurs

Chapitre 10 : Oscillateurs Chpire : Oscillers Inrocion Dns ce ernier chpire, nos llons éier les oscillers coplés près ne réision es oscillers siples hroniqes. Chpire : Oscillers I Osciller hroniqe libre. II Osciller ori III Osciller

Plus en détail

MISE EN EQUATION D'UN SYSTEME HYDRAULIQUE

MISE EN EQUATION D'UN SYSTEME HYDRAULIQUE MISE EN EQATION D'N SYSTEME HYDALIQE On considère les de sysèmes hydraliqes sivans : Sysème Sysème : débi volmiqe d'alimenaion en liqide,, : nivea dans les réservoirs,, : secions des réservoirs,, : vannes

Plus en détail

Corrigés des exercices sur le dipôle RC

Corrigés des exercices sur le dipôle RC ORRIG XRIS TS /0 DIPOL R orrigés es exercices sur le ipôle R orrigé e l exercice Uiliser la loi aiivié es ensions e. Pour les ensions u AB e u BM e les connexions à l inerface acquisiion voir figure ci-conre.

Plus en détail

GRANDEURS PERIODIQUES

GRANDEURS PERIODIQUES GRANDEURS PERIODIQUES I. GRANDEURS VARIABLES 1. NOAIONS Nous représenons par une lere minuscule la valeur insananée d'une grandeur élecrique variable (inensié de couran i, ension u). La valeur maximale

Plus en détail

Filtrage, lissage et stabilisation

Filtrage, lissage et stabilisation PATIE 11 FONCTIONS 49 Filrage, lissage e sabilisaion Nos savons obenir ne ension nidirecionnelle Mais por ceraines applicaions, ne ension conine parfaie es nécessaire AVANT E ÉMAE Nécessié d ne ension

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

CIRCUITS LOGIQUES EN COMMUTATION

CIRCUITS LOGIQUES EN COMMUTATION IUITS LOIQUES EN OMMUTTION ee éude es limiée à des iruis logiques présenan à l'éa hau omme à l'éa bas une impédane d'enrée rès éleée, que l'on onsidérera infinie. 1. onsiuion d'un inerseur à MOSET : gae

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

CCP PSI 1 un corrigé.

CCP PSI 1 un corrigé. CCP PSI n corrigé. I. Qelqes eemples de calcls de longers I.. Si f : [, ], le graphe de f es le segmen d origine (, ) e d eremié (, ) e sa longer es. C es cohéren avec I.. On a ici + sh () d = d = ch()

Plus en détail

Les composants électroniques de commutation

Les composants électroniques de commutation es omposans éleroniques de ommuaion Chapire V es Ciruis d'aide à a Commuaion (CAC) Sommaire 1 ROE... 50 2 COMMUTATION SUR UNE CHARGE SEFIQUE... 50 2.1 ESTIMATION ES PERTES... 52 2.1.1 Peres quand l'inerrupeur

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

Exemple de système asservi CONCEPT DU SCOOTER AUTOBALANCE

Exemple de système asservi CONCEPT DU SCOOTER AUTOBALANCE Cours 9 - Raidié des SLCI Lyée Bellevue Toulouse - CPGE MP Raidié des SLCI Uno I (Cone iniial) Uno III Le sooer Uno III es un arfai exemle de sysème asservi qui doi êre néessairemen sable our un bon fonionnemen.

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPREILS DE MESURE EN COURANT ALTERNATIF I- PARAMETRES CARACTERISTIQUES D UN SIGNAL ALTERNATIF : Un signal alernaif es caracérisé par sa forme (sinus, carré, den de scie, ), sa période (

Plus en détail

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C.

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C. Principe d une minuerie (Afrique 2006) 1. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION. Le monage du circui élecrique schémaisé ci-dessous (figure 1) compore : - un généraeur idéal de

Plus en détail

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ )

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ ) SESSION 1998 Page 1/5 Examen : BTS Coef. : 2 Spécialié : MECANIQUE ET AUTOMATISME INDUSTRIEL Durée : 2h Epreuve : U.32 SCIENCES PHYSIQUES Code : MSE 3 SC ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

Etude des dipôles R, L et C en régime transitoire

Etude des dipôles R, L et C en régime transitoire Eude des dipôles, L e C en régime ransioire I Présenaion des dipôles L e C e du régime ransioire 1) Condensaeur d u e u d C ( )² i C du e P Cu du E() C u e d d Propriéés : La ension aux bornes d un ondensaeur

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

Chapitre 9 : Redressement

Chapitre 9 : Redressement Cors 9 M 2 Préamble 1. défnons 2. le hyrsor Chapre 9 : Redressemen pon de graez 4 Dodes 1. sr charge résse a. monage b. obseraon c. analyse de fonconnemen d. granders caracérsqes 2. monage sr charge RL

Plus en détail

VARIATION DE VITESSE D'UN MOTEUR À COURANT CONTINU

VARIATION DE VITESSE D'UN MOTEUR À COURANT CONTINU VARIATION DE VITESSE D'UN MOTEUR À COURANT CONTINU 1. Premier exemple La broche d or à commande nmériqe es mise en movemen par n moer capable de variaion de viesse. C'es n moer à coran conin alimené par

Plus en détail

Diode, thyristor : le redressement

Diode, thyristor : le redressement PAIE 11 FONCIONS 47, hyrisor : le redressemen La conversion d énergie appelée redressemen perme d obenir un couran unidirecionnel à parir d un couran alernaif sinusoïdal ne diode peu assurer cee foncion

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

Réponse d un dipôle RL à un échelon de tension

Réponse d un dipôle RL à un échelon de tension éonse d un diôle L à un échelon de ension Tire Descriion emarques 1- Le diôle L es une associaion en série d une bobine e d un conduceur ohmique (ou résisor) : I- Inroducion 2- L échelon de ension : es

Plus en détail

La fonction générer un signal rectangulaire

La fonction générer un signal rectangulaire Sie Inerne : www.gecif.ne Discipline : Génie Elecrique La foncion générer un signal recangulaire I Idenificaion de la foncion Générer un signal élecrique consise à produire des variaions de ension don

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Conditionnement du signal

Conditionnement du signal Lycée Technique Mohammedia Condiionnemen du signal 1 ère STE Unié ATC Professeur : MAHBAB 1STE CONDITIONNER UN SIGNAL L.T Mohammedia F.Cours n 12 La chaîne d'acquisiion Prof : MAHBAB Page 1 / 2 1. Inroducion

Plus en détail

CHAPITRE 5 ONDULEURS AUTONOMES

CHAPITRE 5 ONDULEURS AUTONOMES Universié e Savoie Licence A Moule U6 Énergie e converisseurs 'énergie CHAPI 5 ONDULUS AUONOMS. Inroucion Les onuleurs son les converisseurs saiques coninu-alernaif permean e fabriquer une source e ension

Plus en détail

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs Circuis résisifs e réacifs Chapire 14 Circuis résisifs e réacifs Sommaire Elémens résisifs e réacifs Comporemen d une résisance en régime alernaif sinusoïdal Comporemen d un condensaeur en régime alernaif

Plus en détail

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques B. OSCILLATIONS, ONDES ET LUMIERE 1. Inroducion Un oscillaeur es un sysème qui effecue des mouvemens d aller-reour de par e d aure d une posiion moyenne, par un mouvemen plus ou moins régulier. Si les

Plus en détail

Effets différés Structures en béton Chap. ch.

Effets différés Structures  en béton Chap. ch. Effes différés Sruures ECOLE POLYTECHNIQUE ENAC Prof. Dr Aurelio Muoni Année aadémique 25-26 Chap. h. Assisan : N. Kosi ED-1 Effes de la empéraure sur une sruure en béon armé L aier e le béon, omme ou

Plus en détail

Notion d oscillateur mécanique

Notion d oscillateur mécanique CHAPITRE 11 SYSTÈMES OSCILLANTS 1 Noion d oscillaeur mécanique 1. Définiion On appelle oscillaeur (ou sysème oscillan) un sysème pouvan évoluer, du fai de ses caracérisiques propres, de façon périodique

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

TD n 1 Convolution et Corrélation Eléments de CORRIGE

TD n 1 Convolution et Corrélation Eléments de CORRIGE UNIVERSITE DE LA ROCHELLE - IUP GI IUP Mol Acqisiion Traimn Sinal - TD n Convolion Corrélaion Elémns CORRIGE Exrcic : Soi l sinal échlon E U, ampli E. Rprésnr raphiqmn calclr l proi convolion par li- mêm

Plus en détail

DIPÔLE CONDENSATEUR-DIPÔLE RC

DIPÔLE CONDENSATEUR-DIPÔLE RC HAPITE P7 DIPÔLE ONDENSATEUDIPÔLE I) DIPÔLE ONDENSATEU I.1. Définiion e symbole I.2. harge e décharge d un condensaeur I.3. Inerpréaion I.4. apacié d un condensaeur I.5. Énergie emmagasinée par un condensaeur

Plus en détail

Les composants électroniques de commutation

Les composants électroniques de commutation Les omposans éleroniques e ommuaion hapire L TRANSSTOR POLAR Sommaire 1 GNRALTS... 24 2 OMMUTATON DU TRANSSTOR POLAR NPN... 25 2.1 RAPPLS... 25 2.2 LS PHASS D'UN TRANSSTOR A LA OMMUTATON... 25 2.2.1 Transisor

Plus en détail

Programmation dynamique

Programmation dynamique Programmaion dynamiqe ade-mem rédigé par Alain GAUGRIS onslan en éonomie inernaionale alaingagris@yahoofr 5 Ojeif On désire agir sr n sysème disre o onin don l éa es déri à l insan [ [ par ne variale d

Plus en détail

Université de Picardie Jules Verne UFR des Sciences

Université de Picardie Jules Verne UFR des Sciences Uiversié de Picardie Jles Vere 13-14 UFR des Scieces Exercice 1 Licece meio Mahémaiqes - Semesre 3 Saisiqe Exame de ldi 6 javier 14 Drée h To docme ierdi - Calclarices aorisées 1) Das e poplaio doée, o

Plus en détail

Caractérisation de cellules solaires

Caractérisation de cellules solaires Caraérisaion de ellules solaires 1. Sruure e prinipe de fonionnemen d une ellule solaire [1] 1.1 Prinipe de fonionnemen Une ellule solaire es un omposan éleronique qui onverie la lumière du soleil en éleriié.

Plus en détail

TD4 : Montage amplificateur de puissance (push-pull) Calculs de puissances

TD4 : Montage amplificateur de puissance (push-pull) Calculs de puissances TD4 : Monage amplificaeur de puiance (puh-pull) Calcul de puiance Objecif pédagogique de ce TD : Comprendre le principe de foncionnemen de l'amplificaeur de clae B : équence de conducion de ranior e forme

Plus en détail

CH.7 PROBLÈME DE FLOTS

CH.7 PROBLÈME DE FLOTS H.7 PROLÈME E FLOTS 7.1 Le réeaux de ranpor 7.2 Le flo maximum e la coupe minimum 7.3 L'algorihme de Ford e Fulkeron IM ch 7 1 7.1 Le réeaux de ranpor Réeau de ranpor : graphe oriené avec pour chaque arc

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

Modélisation Numérique Non Linéaire

Modélisation Numérique Non Linéaire Modélisaion Nmériqe Non Linéaire Rappels Aspes physiqes E E. Elasiqes (insananées - réversibles) Déformaions. Visqeses (f d emps) Plasiqes (irréversibles - non linéaire) S.. Rappels Aspes physiqes Eroissage

Plus en détail

LE TRANSFORMATEUR PUISSANCE ABSORBEE = PUISSANCE FOURNIE (UTILE)

LE TRANSFORMATEUR PUISSANCE ABSORBEE = PUISSANCE FOURNIE (UTILE) LE TRASFORMATER I - PRESETATIO ET COSTITTIO Le transformater monophasé est n convertisser statiqe qi convertit n signal alternatif en n atre signal alternatif de même fréqence, mais de valer efficace différentes.

Plus en détail

Réglage valeur moyenne

Réglage valeur moyenne P Cours : l insrumenaion élecrique A- Le généraeur de basses fréquences ou G.B.F - Présenaion uilisé : Réglage fréquence Réglage ampliude Réglage valeur moyenne Sweep : Possibilié de créer un signal de

Plus en détail

Amplification de puissance

Amplification de puissance Académie de Marinique Préparaion Agrégaion Sciences Physiques B. Ponalier Amplificaion de puissance Objecifs Comparer les différenes classes d amplificaion du poin de vue: du foncionnemen du rendemen Classe

Plus en détail

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE U-32 PHYSIQUE APPLIQUÉE

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE U-32 PHYSIQUE APPLIQUÉE Session 2014 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE E3 Sciences Physiques U-32 PHYSIQUE APPLIQUÉE Durée : 2 heures Coefficien : 2,5 Maériel auorisé : - Toues les calcularices

Plus en détail

Cours. réseaux monophasés. Valeurs instantanées Diagramme de Fresnel, Puissances active, réactive et apparente. BERTHILLON Philippe Physique appliquée

Cours. réseaux monophasés. Valeurs instantanées Diagramme de Fresnel, Puissances active, réactive et apparente. BERTHILLON Philippe Physique appliquée 3 Cors BTS CPI réseax monophasés Valers instantanées Diagramme de Fresnel, Pissances active, réactive et apparente BERTHILLON Philippe Physiqe appliqée 1. Présentation 1.1 Porqoi de l alternatif sinsoïdal?

Plus en détail

TPn 21 Régulation de vitesse d un train Durée: 4 heures

TPn 21 Régulation de vitesse d un train Durée: 4 heures TEE Sciences e Technologies de l'indusrie e du Développemen Durable Dae Lycée Nicolas Apper OBJECTIFS Régulaion de la viesse d un rain TP 2 Séquence 2 Décoder un schéma élecrique Décoder un schéma bloc

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

LES PROBLÈMES ADDITIFS - B - TD : Compétences des élèves en calcul. TD : Compétences des élèves en calcul. I. Les situations et les problèmes associés

LES PROBLÈMES ADDITIFS - B - TD : Compétences des élèves en calcul. TD : Compétences des élèves en calcul. I. Les situations et les problèmes associés I. Les sitations et les problèmes assoiés TD : analyse e problèmes II. Les propriétés es opérations LES PROBLÈMES ADDITIFS TD : ne sitation por éovrir l assoiativité III. Traitement : avant les proéres

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

II. Observation d une seule courbe à l oscilloscope

II. Observation d une seule courbe à l oscilloscope PC - Lycée Dumon D Urville TP 1 : uilisaion de l oscilloscope numérique I. Compéences à acquérir Les compéences évaluées au cours de ce TP son: - Uiliser un GBF - Uiliser un oscilloscope : Afficher des

Plus en détail

LES COMPTEURS 3. COMPTEURS ET DECOMPTEURS ASYNCHRONES :

LES COMPTEURS 3. COMPTEURS ET DECOMPTEURS ASYNCHRONES : ISET de Nabeul ours de Sysème logique (2) hapire 3. OBJETIFS LES OMPTEURS Eudier les différens ypes de compeurs. omprendre le principe de foncionnemen de chaque ype. Mairiser les éapes de synhèse d un

Plus en détail

C est lui qui va fixer la rapidité de la boucle vitesse. Nous invitons le lecteur à se reporter à la fig 13.

C est lui qui va fixer la rapidité de la boucle vitesse. Nous invitons le lecteur à se reporter à la fig 13. 1.3/ Régulaeur Proporionnel C es lui qui va fixer la rapidié de la boucle viesse. 1.3.1/ Schéma du régulaeur P Nous invions le leceur à se reporer à la fig 13. 1.3.2/ Foncionnemen Le monage perme l ajusage

Plus en détail

GEOMETRIE ELEMENTAIRE PLANE : CORRIGES

GEOMETRIE ELEMENTAIRE PLANE : CORRIGES GEOMETRIE ELEMENTIRE PLNE : CORRIGES Exercice GEP : (N Enoncé Soient d et d dex droites d éqations respectives ax + by + c = et ax ' by ' c' ( a b ( ', ', + + = avec ( ab, (, a qelle condition ces dex

Plus en détail

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur.

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur. Chapire 1 Eude des ensions élecriques ; Naure de la ension du seceur. On a vu que la ension produie par un alernaeur dans une cenrale élecrique changeai ou le emps. On ne peu donc pas se conener de brancher

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation INGOD Charloe MEYE Anne DAEAU Mayeul 22 GESSET omain éponse Temporelle d'un circui C dégradé en régime quelconque : foncions inégraion e dérivaion Philippe GUY 23-24 INGOD Charloe MEYE Anne DAEAU Mayeul

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Elec 3 : Circuit RLC

Elec 3 : Circuit RLC Travaux Praiques de physique Elec 3 : ircui R Version du 8/3/6 Plan Rappels Théoriques ircuis R e R ircui «idéal» ircui R en ension coninue ircui R en ension sinusoïdale, résonance Applicaions Manipulaion

Plus en détail

FONCTIONS. 1) Limites. 1-1 méthodes pour lever une indétermination. au voisinage d un infini. x 2 + x 2

FONCTIONS. 1) Limites. 1-1 méthodes pour lever une indétermination. au voisinage d un infini. x 2 + x 2 Mathématiqes BTS CIRA FONCTIONS ) Limites - méthodes por lever ne indétermination a voisinage d n infini x + Exemple f(x) = x Qelle est la limite en +? + 3x + On factorise par les monômes dominants f(x)

Plus en détail

TP N 3 REDRESSEMENT MONOPHASÉ NON CONTROLÉ

TP N 3 REDRESSEMENT MONOPHASÉ NON CONTROLÉ Université de TOULON et d VA Noms rénoms : Institt Universitaire de Technologie Note : GENIE ELECTIQUE & INFOMATIQUE INDUSTIELLE Travax ratiqes d Electrotechniqe Grope : T N 3 EDESSEMENT MONOHASÉ NON CONTOLÉ

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé CINETIQUE CHIMIQUE. Viesse de réacion en réaceur fermé. Généraliés sur la cinéique chimique L obje de la cinéique chimique es l éude de l évoluion au cours du emps d une réacion hermodynamiquemen possible.

Plus en détail

BACCALAURÉAT PROFESSIONNEL Systèmes Electroniques Numériques. Contrôle en Cours de Formation

BACCALAURÉAT PROFESSIONNEL Systèmes Electroniques Numériques. Contrôle en Cours de Formation SESSION 2007 BACCALAURÉAT PROFESSIONNEL Sysèmes Eleroniques Numériques E1 ÉPREUVE SCIENTIFIQUE A CARACTERE PROFESSIONNEL Sous épreuve E11 MATHÉMATIQUES Conrôle en Cours de Formaion Evaluaion n 1 Dae :

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

COURS ELE2700 ANALYSE DES SIGNAUX

COURS ELE2700 ANALYSE DES SIGNAUX ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE ÉLECTRIQUE AUTOMNE 20 COURS ELE2700 ANALYSE DES SIGNAUX SÉANCE #3 (TP2) FENÊTRES TEMPORELLES OBJECTIFS Éudier e comparer l effe de différenes fenêres

Plus en détail

Jeu des (7) familles b d t p instit90 jeu de cartes

Jeu des (7) familles b d t p instit90 jeu de cartes Jeu es (7) familles insi90 jeu e cares Averissemen : Je ne souhaie as rerouver mes fiches sur es sies commerciaux ou sur es sies e collègues cherchan un financemen e leur acivié. Le sie insi90 s es inscri

Plus en détail

TD Biomécanique 4. t vol t

TD Biomécanique 4. t vol t Exercice La fiure suiane représene la force ericale appliquée par un indiidu lors d un es de déene sur plae forme de force. Lors de ce es, l indiidu par arrêé. - -4-6 -8 - - -4-6 -8 - -..4.6.8. Calculer

Plus en détail

Chapitre 2 Autocorrélation des erreurs

Chapitre 2 Autocorrélation des erreurs Chapire Aocorrélaion des errers Licence Economérie Economérie II 007-008 Marin Fornier Fornier@gae.cnrs.fr L3 Economérie - Economérie II. Présenaion d problème L3 Economérie - Economérie II. Présenaion

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

RAPPELS DE COURS SUR L'ALTERNATIF

RAPPELS DE COURS SUR L'ALTERNATIF RAPPELS DE CORS SR L'ALERNAF - DÉFNON D CORAN ALERNAF SNSOÏDAL Les varatons e l'ntensté nstantanée, notée, e ce type e corant en foncton temps sont représentés par ne snsoïe. 0 0 3 4 - Le temps qe met

Plus en détail

I. Expressions d une grandeur sinusoïdale 1.1. Généralités

I. Expressions d une grandeur sinusoïdale 1.1. Généralités Chap. 1 : REGIME MONOPHASÉ SINUSOIDAL I. Expressions d ne grander sinsoïdale 1.1. Généralités La tension est ne tension qi s écrit sos la forme Avec : Remarqe : por n corant i sinsoïdal, l'expression s'écrit

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

MODULE 2 : Estimation par intervalle de confiance

MODULE 2 : Estimation par intervalle de confiance Echailloage M MODULE : Esiaio ar iervalle de cofiace Il s agi das ce odle de rover e esiaio ar iervalle de cofiace d araère θ, c es-à-dire de cosrire e «forchee de valers éries erea de sier» θ avec e robabilié

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

TD N 5 : Systèmes linéaires Les outils mathématiques

TD N 5 : Systèmes linéaires Les outils mathématiques Sysèmes Elecronique DUT APP 06 / 07 TD N 5 : Sysèmes linéaires Les ouils mahémaiques Chap. : Inroducion aux SA S.POUJOULY @poujouly hp://poujouly.ne Elémens de correcion Exercice n 3 : Modélisaion d'un

Plus en détail

Démarrage étoile triangle

Démarrage étoile triangle Dae: Page : sur 6 Démarrage éoile riangle Démarrage éoile riangle. Problémaique Lorsque la puissance des moeurs uilisés devien plus imporane (à parir d une peie dizaine de kilowas) l appel de couran au

Plus en détail

LOIS FONDAMENTALES EN COURANT CONTINU

LOIS FONDAMENTALES EN COURANT CONTINU Chapire : LOS FONMENTLES EN CONT CONTN u cours de ce chapire, nous apprendrons à connaîre les grandeurs fondamenales que son le couran e la ension, à éablir e à appliquer les lois fondamenales dies des

Plus en détail

Réseau Continu. Mcc. Charge. v DRL. v H. c.o c.f. C.P.G.E-TSI Les hacheurs 2006/2007

Réseau Continu. Mcc. Charge. v DRL. v H. c.o c.f. C.P.G.E-TSI Les hacheurs 2006/2007 C.P.G.E-S es hacheurs 2006/2007 es hacheurs. nrodion : e Hacheur es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Réseau Coninu

Plus en détail

TP 7 : Numérisation d un signal : quantification et traitement numérique

TP 7 : Numérisation d un signal : quantification et traitement numérique Parie I : Élecronique TP TP 7 : Numérisaion d un : quanificaion e raiemen numérique I Inroducion Lors du précéden TP, nous avons éudiée une éape de la numérisaion d un : l éape d échanillonnage. Il ne

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail