Un complément à la leçon sur l équation fonctionnelle de la fonction exponentielle

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Un complément à la leçon sur l équation fonctionnelle de la fonction exponentielle"

Transcription

1 Préparation au CAPES Strasbourg, octobre 2008 Un complément à la leçon sur l équation fonctionnelle de la fonction eponentielle Il est naturel de construire la leçon Caractérisation des fonctions eponentielles par l équation fonctionnelle f( + y) = f()f(y) en supposant connue une définition de la fonction eponentielle. En effet le terme «caractérisation» indique que cette fonction a été définie auparavant. Mais soit on l a définie comme solution de l équation différentielle y = y et y(0) = 1, et cela demande d avoir démontré l eistence et l unicité de la solution de cette équation différentielle ce qui est loin d être facile, même en connaissant le principe de la méthode d Euler. Soit on l a définie comme réciproque de la fonction logarithme, mais encore a-t-il fallu démontrer auparavant l eistence d une primitive de la fonction t 1 t ce qui est aussi loin d être évident. Nous proposons ici un théorème qui permet de démontrer l eistence de fonctions vérifiant l équation fonctionnelle en n utilisant que des propriétés fondamentales de Q et R. On pourra utiliser ce résultat soit pour définir directement l eponentielle, soit comme complément à la leçon. 1. Le théorème principal Théorème Soit a un réel strictement positif. Il eiste une unique fonction f monotone sur R telle que { (1) R, y R, f( + y) = f()f(y), ( ) (2) f(1) = a ; Démonstration Analyse : Supposons qu il eiste une fonction f vérifiant ( ). Étape 1. On déduit de (1) que les valeurs de la fonction f sont positives ou nulles car pour tout R on a f() = f( 2 )2. On déduit de (2) que la fonction f ne s annule pas car f() = 0 = f(1) = f(1 )f() = 0. De plus f(0) = 1 car f(0)f(1) = f(1) et f(1) 0. On en conclut que f(0) = 1 et R, f() > 0. Étape 2. En utilisant (1), on vérifie par récurrence sur n que pour tout R et tout entier n N on a ( f(n) = f() n d où aussi f = n) n f(). Comme f(0) = 1, on en déduit que pour n Z on a f(n) = f() n. Et en utilisant (2) on conclut que r Q, f(r) = a r. Étape 3. Cas où a = 1. Dans ce cas la restriction de f à Q est constante. Comme f est supposée monotone, elle est nécessairement aussi constante sur R et égale à 1 (tout réel est compris entre deu rationnels).

2 2 Nicole Bopp Étape 4. Cas où a > 1. Dans ce cas la restriction de f à Q est strictement croissante d après l étape 2. La fonction f, supposée monotone sur R, est donc nécessairement croissante. On en déduit que pour fié dans R on a (r Q et r ) = a r f(), (r Q et r ) = a r f(). L ensemble {a r r Q, r } est non vide et majoré (par a n 0 où n 0 est un entier strictement supérieur à ). Il admet donc une borne supérieure A = sup{a r r Q, r }, et de même l ensemble {a r r Q, r } admet une borne inférieure D où nécessairement B = inf{a r r Q, r }. A f() B. On déduit des définitions des bornes inférieures et supérieures, l eistence d une suite de rationnels r n et d une suite de rationnels ρ n telles que lim n arn = A et lim n aρn = B. Or la suite a ρn rn tend vers 1 pour n tendant vers l infini (voir le lemme en annee). On en déduit que A = B. Par conséquent on a nécessairement R, f() = sup{a r r Q, r } = inf{a r r Q, r }. Étape 5. Cas où a < 1. On démontre de façon analogue (il suffit de renverser les inégalités) que R, f() = inf{a r r Q, r } = sup{a r r Q, r }. Conclusion. S il eiste une fonction f vérifiant ( ) elle est déterminée de façon unique par les résultats obtenus au étapes 3 à 5. Montrons maintenant que ces formules définissent une fonction monotone sur R vérifiant ( ). C est l objet de la Synthèse : Nous la ferons uniquement dans le cas où a > 1. C est trivial dans le cas où a = 1 et analogue dans le cas où a < 1. Soit f la fonction définie par ( ) R, f() = sup{a r r Q, r }. Propriété 1. Comme la fonction r Q a r est croissante sur Q (on a supposé a > 1), on a Q, sup{a r r Q, r } = a d où f() = a, en particulier f(1) = a. Propriété 2. Soient deu réels < y. Il eiste alors deu rationnels r 1 et r 2 tels que < r 1 < r 2 < y. Puisque la fonction r Q a r est strictement croissante sur Q, on a a r 1 < a r 2. La définition de f implique alors que d où l on déduit que f() a r 1 < a r 2 f(y), la fonction f est strictement croissante sur R.

3 Fonctions eponentielles 3 Propriété 3. Soit R. Comme la fonction f est monotone, elle admet une limite à droite f( + ) et à gauche f( ) en et comme elle est croissante f( ) f( + ). Plus précisément on définit f( + ) = inf{f(y) y R, y} et f( ) = sup{f(y) y R, y }. Comme Q R on a donc sup{f(r) r Q, r } f( ) f( + ) inf{f(r) r Q, r}. Or les deu termes etrèmes de ces inégalités sont égau (par le lemme). On en déduit que f( + ) = f( ) c est-à-dire que f est continue au point et on conclut que la fonction f est continue R. Propriété 4. Soient et y deu réels. Comme Q est dense dans R, il eiste une suite r n de rationnels tendant vers et une suite ρ n de rationnels tendant vers y. Grâce à la propriété 1 et au propriétés de la fonction r Q a r on a pour tous n N f(r n + ρ n ) = f(r n )f(ρ n ). Comme la fonction f est continue sur R, on obtient en passant à la limite dans cette relation que R, y R, f( + y) = f()f(y). On a donc démontré l eistence (et l unicité) d une fonction f vérifiant (1) (voir propriété 1) et (2) (voir propriété 4). Elle est définie par la formule ( ). Remarquons qu on cherchait une fonction monotone et qu en prime on a récupéré une fonction continue. Cette fonction est donc le prolongement continu à R de la fonction r Q a r (un tel prolongement est nécessairement unique). C est pourquoi il est désormais licite de la noter R, f() = a. Pour le moment nous utiliserons la notation f a pour cette fonction : d une part pour noter sa dépendance par rapport au paramètre a, d autre part pour lui donner un nom qui ne contient pas la variable. L égalité ci-dessous est aisément vérifiée pour Q et par prolongement continu on a aussi R, f 1 () = f a ( ). a Il suffit donc d étudier les fonctions f a pour a > 1. Proposition Pour tout a > 1, la fonction f a est une bijection strictement croissante de R sur ]0, + [. Notons fa 1 sa réciproque. Elle est de plus dérivable et on a pour tout R f a() = f a(0)f a () ( R) et ( fa 1 ) f () = a(0) ( > 0). Démonstration. Puisque la fonction f a est strictement croissante on a pour N N R et > N = a > a N et a < a N, d où lim + a = + et lim a = 0. Et comme f a est continue, on déduit du théorème des valeurs internédiares que c est une surjection de R sur ]0, + [. La stricte croissance implique de plus que c est une injection. Par conséquent l application réciproque fa 1 est bien définie sur ]0, + [ et elle est aussi continue.

4 4 Nicole Bopp Comme f a est continue on peut écrire son intégrale sur un intervalle compact et on déduit de l équation fonctonnelle (1) que pour tout R f a () 1 0 f a (y) dy = 1 0 f a ( + y) dy = +1 f a (y) dy. Or la dernière epression est une fonction de la variable qui est dérivable et 1 0 f a(y) dy est une constante non nulle car strictement positive. On en déduit que f a est dérivable sur R et que fa 1 est dérivable sur ]0, + [. On peut donc dériver par rapport à y les deu membres de l égalité f a ( + y) = f a ()f a (y) et on obtient pour tous et y réels f a( + y) = f a ()f a(y). Cette epression donne pour y = 0 R, f a() = f a(0)f a (). On peut aussi dériver l égalité fa 1 (f a ()) = et on obtient ainsi > 0, ( fa 1 ) f () = a(0). Et voilà l allure du graphe des fonctions a. g b b>a Et la fonction eponentielle ou la fonction logarithme népérien? Parmi les fonctions que nous avons définies ci-dessus il y en a deu qui seraient plus sympathiques, à savoir les fonctions f a et fa 1 telles que f a(0) = 1. Bien sûr, nous savons que c est pour a = e que nous obtenons ainsi la fonction eponentielle égale à f e et la fonction logarithme népérien égale à fe 1. Mais nous ne savons pas encore déterminer e.

5 Fonctions eponentielles 5 La question qui se pose est donc la suivante : Pour cela on remarque que pour α > 0 on a Eiste-t-il a > 0 tel que f a(0) = 1? R, f a (α) = f a α(). Il suffit de le vérifier pour α et rationnels puis de passer à la limite en utilisant la continuité de f a. On en déduit que R, f a α() = αf a(). En choisissant α = 1 f 2 = lim (0) 0 2 (par eemple) on obtient que 1 f 2 α(0) = 1. Et donc en posant e = 2 α on obtient une fonction f e définie sur R telle que et une fonction g e = f 1 e f e = f e et f e (0) = 1, définie sur ]0, + [ telle que g e() = 1 et g e(1) = 0. Conclusion Nous avons donc ainsi défini (en n utilisant que les propriétés rappelées en annee) la fonction eponentielle, à savoir f e et la fonction logarithme népérien, à savoir fe 1. Remarquons toutefois que le calcul de e défini ainsi n est pas aisé (voir Houzel). On pourrait poursuivre en caractérisant ces fonctions par l équation différentielle qu elles vérifient (il ne resterait qu à démontrer un résultat d unicité). On pourrait aussi montrer comment eprimer les fonctions a à l aide de la fonction eponentielle et de la fonction logarithme népérien. 3. Annee : les propriétés de Q et de R utilisées Nous avons utilisé le fait que Q est dense dans R et l eistence de la borne inférieure (resp. supérieure) d une partie non vide minorée (resp. majorée) de R. Nous avons aussi utilisé les propriétés de la fonction r Q a r R. Pour démontrer l eistence de a 1 n pour n N, il faut utiliser le théorème des valeurs intermédiaires sur R (il faut donc connaître quelques propriétés des fonctions continues). Il est alors facile d obtenir son sens de variation. Le seul résultat non classique que nous avons utilisé est le Lemme Soit (r n ) n N ) une suite de rationnels strictement positifs tendant vers 0. Alors pour tout réel a > 0, la suite de réels a rn tend vers 1. Démonstration. Soit ε un réel strictement positif, que l on supposera par commodité strictement inférieur à 1. On sait alors (par eemple en utilisant la formule du binôme) que lim (1 + n ε)n = + et lim (1 n ε)n = 0. Puisque a est strictement positif, il eiste un entier M tel que (1 ε) M a (1 + ε) M.

6 6 Nicole Bopp Puisque (r n ) est une suite de nombres strictement positifs tendant vers 0, il eiste un entier N tel que n > N = 0 < r n 1 1 d où M. M r n On déduit du sens de variation des fonctions r Q (1 ± ε) r que pour n > N (1 ε) 1 rn (1 ε) M et (1 + ε) M (1 + ε) 1 rn. Et en utilisant la croissance de la fonction b R b rn, on déduit que n > N = 1 ε a rn 1 + ε, ce qui démontre que la suite a rn tend vers 1. Références O. Debarre & N. Bopp (2006) Eponentielles et logarithmes, méthode d Euler, bopp/capes/inde.htm Une définition (avec une démonstration complète) de la fonction eponentielle comme solution de l équation différentielle y = y. C. Houzel (1996) Analyse mathématique, Belin Sup. On y trouve (p. 42) la construction de la fonction eponentielle par la méthode indiquée ici. La définition de e et une méthode de calcul approché sont données p. 68. T. Lambre (1998), L épreuve sur dossier à l oral du CAPES de mathématiques, II. Analyse, Ellipses. On y trouve une démonstration plus raisonnable que dans Houzel de la dérivabilité de a et diverses caractérisations de l eponentielle et du logarithme J.-D. Mercier (2007), L épreuve d eposé au CAPES de mathématiques Vol III, Publibook. Ouvrage bien connu!. Deu leçons rédigées avec beaucoup de compléments autour de ce thème.

Des démonstrations en analyse

Des démonstrations en analyse Préparation au CAPES (IUFM/ULP) Nicole Bopp Strasbourg, novembre 007 Des démonstrations en analyse 1. Caractérisations équivalentes du fait que R est complet L une des trois propriétés ci-dessous est admise

Plus en détail

LEÇON N 71 : Fonctions exponentielles

LEÇON N 71 : Fonctions exponentielles LEÇON N 71 : Fonctions onentielles Pré-requis : Notions de dérivabilité ; Une fonction dont la dérivée est nulle est constante ; Théorème de Cauchy-Lipschitz pour l existence d une solution d une équation

Plus en détail

Les fonctions logarithmes

Les fonctions logarithmes DOCUMENT 34 Les fonctions logarithmes. Eistence des fonctions logarithmes.. L aspect algébrique. L idée de transformer les produits de nombres réels en sommes, afin de simplifier les calculs numériques,

Plus en détail

Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle

Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle DOCUMENT 36 Une définition et des caractérisations des fonctions exponentielles à partir d une équation fonctionnelle Une propriété importante des fonctions exponentielles est qu elles sont solutions de

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

LEÇON N 73 : Caractérisation des fonctions exponentielles réelles par l équation fonctionnelle f(x + y) = f(x) f(y).

LEÇON N 73 : Caractérisation des fonctions exponentielles réelles par l équation fonctionnelle f(x + y) = f(x) f(y). LEÇON N 73 : Caractérisation des fonctions exponentielles réelles par l équation fonctionnelle f(x + y) = f(x) f(y). Pré-requis : Continuité et dérivabilité ; Fonctions logarithme (dérivée et propriétés

Plus en détail

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Corrigé en janvier 2009 Rapidité de convergence d une suite réelle L objectif de ce texte est de se donner des outils pour «mesurer» la rapidité

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

Math I Analyse Feuille 4 : Fonctions, fonctions continues

Math I Analyse Feuille 4 : Fonctions, fonctions continues Math I Analyse Feuille 4 : Fonctions, fonctions continues 1 Quelques calculs élémentaires 11 Limites On rappelle les limites suivantes : lim ep = + et lim ep = 0 lim ln = + et lim ln = 0 Eercice 1 Soit

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

(ln x) 3 + x. x+ 1 x. xe 1 x

(ln x) 3 + x. x+ 1 x. xe 1 x Calculs et entraînement. Eercice 1. [limites ] Calculer les limites suivantes : 1. lim + e + ln. lim + (ln ) 3 + sin 3. lim + 1 + + 4. lim + e 1 sin + cos 7. lim + + 1 1 10. lim + 1 13. lim 5. lim e 1

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Limites et fonctions continues Vidéo partie. Notions de fonction Vidéo partie 2. Limites Vidéo partie 3. Continuité en un point Vidéo partie 4. Continuité sur un intervalle Vidéo partie 5. Fonctions monotones

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis I Limites Continuités Exercice 1 : Soit ] [ la fonction définie par : Déterminer les

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

Equation fonctionnelle pour les fonctions exponentielles

Equation fonctionnelle pour les fonctions exponentielles 1 Université Claude Bernard Lyon I CAPES de Mathématiques : Oral Année 27 28 Equation fonctionnelle pour les fonctions exponentielles Introduction On s intéresse à l équation fonctionnelle (E) x, y R,

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction eponentielle Problème à résoudre { On cherche les fonctions f dérivables sur R telles que f(0) = f = f Nous avons déjà essayé de construire une représentation graphique approchée d'une telle

Plus en détail

Nombres réels, bornes supérieures et inférieures

Nombres réels, bornes supérieures et inférieures Nombres réels, bornes supérieures et inférieures Exercice 1 : Si et sont des réels positifs ou nuls, montrer que Allez à : Correction exercice 1 : Exercice 2 : Déterminer les ensembles suivants, mettre

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

Devoir maison sur les suites - Exemples d application

Devoir maison sur les suites - Exemples d application 9- HKBL suites récurrentes u n+ = f(u n ) / 9 Devoir maison sur les suites - Eemples d application Voici la liste des eercices corrigés : Eercice : (niveau ) Étudier la suite (u n ) définie par u R et

Plus en détail

Formules de Taylor. Applications.

Formules de Taylor. Applications. CAPES 27 Décembre 27 Oral Analyse Formules de Taylor. Applications. Remarques Le niveau naturel de cette leçon est celui du Deug. Pré-requis. Continuité, dérivabilité, inégalité des accroissements finis,

Plus en détail

Limite à l infini. Branches infinies

Limite à l infini. Branches infinies DOCUMENT 25 Limite à l infini. Branches infinies 1. Introduction et notations Considérons les trois fonctons réelles f, g et h définies par : f() = + 1 + e, g() = sin, h() = 1/ 2 et donnons de grandes

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Table des matières La fonction réciproque de la fonction eponentielle 2. Définition......................................................... 2.2 Propriété.........................................................

Plus en détail

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1 Eercice.. 2. 3. e 2 ln = e 2 ( 2 ) /2 } ln {{ / } (ln ) 3 2 2 = (ln ) 3 / 2 / /(2) 2 }{{} sin 0 car sin est bornée et 0. 0 4. e (aucune difficulté!) 5. Il faut distinguer 0 et 0. 6. (croissances comparées)

Plus en détail

Fonctions logarithmes

Fonctions logarithmes La fonction logarithme népérien. Définition et propriétés Fonctions logarithmes La fonction eponentielle est continue et strictement croissante sur R. Le corollaire du théorème des valeurs intermédiaires

Plus en détail

Parties majorées, minorées - borne supérieure, borne inférieure

Parties majorées, minorées - borne supérieure, borne inférieure Aix-Marseille Université 2012-2013 Analyse I PLANCHE 1 : LIMITES, CONTINUITÉ Parties majorées, minorées - borne supérieure, borne inférieure Exercice 1 Soit a, b R. Montrer les implications suivantes :

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Limites de fonctions

Limites de fonctions Bibliothèque d eercices Énoncés L Feuille n Limites de fonctions Théorie Eercice Démontrer que 0 Soient m, n des entiers positifs + Étudier 0 3 Démontrer que 0 ( + + ) = Eercice = + m m n Montrer que toute

Plus en détail

Chapitre 8 : Limites de fonctions, continuité et applications

Chapitre 8 : Limites de fonctions, continuité et applications Chapitre 8 : Limites de fonctions, continuité et applications 1. Introduction On introduit d abord de manière rigoureuse les notion de limites de fonctions définies sur un intervalle de R et de continuité

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

Limites et asymptotes

Limites et asymptotes Chapitre 3 Limites et asymptotes Sommaire 3. Définitions, propriétés........................... 87 3.. Limite finie en un point........................... 87 3..2 Limite infinie en un point..........................

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 2016-2017 Analyse I PLANCHE 3 : DÉRIVATION - DÉVELOPPEMENTS LIMITÉS Dérivabilité, dérivée, Eercice 1 [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de

Plus en détail

LEÇON N 75 : 75.1 Extremums. Pré-requis : Notions de continuité et de dérivabilité ; Formule de Taylor-Young ; f continue m,m f([a,b]) [m,m].

LEÇON N 75 : 75.1 Extremums. Pré-requis : Notions de continuité et de dérivabilité ; Formule de Taylor-Young ; f continue m,m f([a,b]) [m,m]. LEÇON N 75 : Applications de la dérivation à l étude d extrémums éventuels d une fonction numérique d une variable réelle. Exemples. L exposé pourra être illustré par un ou des exemples faisant appel à

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Jérôme Germoni Novembre 2 Première étude : par équation différentielle.. Définition On s inspire de la définition de l exponentielle vue en terminale. Théorème (admis) Il existe

Plus en détail

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10 CPI - ANALYSE CORRECTION Eercices Chapitre 3 - Limites et fonctions continues Eercice 3 Correction : { Soit E 3 + 75 }, R et + 36 3 On a + 36 3 9 3 On pose f 3 + 75 Comme f est impaire, il suffit de l

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Chapitre 12 Limites et continuité de fonctions Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Limites et continuité de fonctions 1 / 53 Notations : On note, sauf

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment Limites s Soit f une fonction définie sur un intervalle I et 0 un point de I ou une etrémité de I.. Limite réelle en un point Soit l un nombre réel. On dit que f admet l pour limite en 0 si f() est aussi

Plus en détail

Les fonctions réciproques

Les fonctions réciproques DOCUMENT 28 Les fonctions réciproques 1. Introduction et définition Pour tout ensemble E, il existe une loi de composition naturelle sur l ensemble des applications de E dans E qui est la composition des

Plus en détail

Chapitre 4. Applications

Chapitre 4. Applications Chapitre 4 Applications 1. Définitions et exemples Définition 4.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

Fonctions usuelles Limites

Fonctions usuelles Limites Fonctions usuelles Limites I) Généralités Dans tout ce cours, I désignera un intervalle de Y (intervalle ouvert, fermé, semi-ouvert ). Si I = [a, b], on appellera I un segment de Y. On considère la fonction

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot NOMBRES RÉELS 1 Approximations d un réel 1.1 Ensembles de nombres Notation 1.1 On note R l ensemble des nombres réels. On note Q l ensemble des nombres rationnels i.e. l ensemble des nombres de la forme

Plus en détail

Formule de Taylor-Lagrange

Formule de Taylor-Lagrange Formule de Taylor-Lagrange Exercice. Soit x un réel strictement positif et f une fonction sur [0, x].. Quelles sont les hypothèses qui permettent d écrire la formule de Taylor-Lagrange pour f sur [0, x]

Plus en détail

La fonction logarithme

La fonction logarithme La fonction logarithme Table des matières La fonction logarithme népérien. Fonction réciproque d une fonction monotone............. Définition................................. 3.3 Représentation de la

Plus en détail

4.1 L ensemble des réels est un corps ordonné

4.1 L ensemble des réels est un corps ordonné Table des matières 4 Propriétés de R 4. L ensemble des réels est un corps ordonné....................... 4.. Propriétés d ordre de R............................. 4..2 Valeur absolue..................................

Plus en détail

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B EXERCICES 1 Soit E l ensemble des rationnels inférieurs à 2. 1 - Montrer que E admet une borne supérieure M dans R. 2 - Montrer que M = 2 (on pourra raisonner par l absurde). 3 - E est-il une partie fermée

Plus en détail

Limites d une fonction Continuité ponctuelle

Limites d une fonction Continuité ponctuelle Limites d une fonction Continuité ponctuelle Bcpst 1 3 janvier 2017 I Parties de et ordre I.1 Intervalles Definition 1.1 Intervalle de Un intervalle de est un ensemble d une des formes suivantes (a, b)

Plus en détail

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires Université Paris Est Créteil DAEU TD : Fonctions Continues et le Théorème des Valeurs Intermédiaires Dans cette fiche on définie une propriété très importante qui est vérifiée par un très grand nombre

Plus en détail

Limite et continuité de fonctions réelles

Limite et continuité de fonctions réelles Limite et continuité de fonctions réelles Denis Vekemans Introduction : on désigne par "fonction réelle" tout fonction d une variable réelle à valeurs réelles. 1 Limite finie 1.1 Définitions 1.1.1 Définition

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

TD 1: optimisation des fonctions d une variable réelle

TD 1: optimisation des fonctions d une variable réelle TD 1: optimisation des fonctions d une variable réelle 1 Sans économie Eercice 1. Pour chacun des eemples suivants, calculer supf et inff. De plus, indiquer si ces bornes sont I I atteintes, et en quel(s)

Plus en détail

Bornes supérieures et inférieures

Bornes supérieures et inférieures Bornes supérieures et inférieures Exercice :. Montrer que pour tout n N, m N 0 < (m + n) 2 4 2. En déduire que A = { (m + n) 2, n N, m N } Admet une borne inférieure et une borne supérieure que l on déterminera.

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

AS - DECOMPOSITION D UN NOMBRE REEL EN BASE a COURBE DE PEANO

AS - DECOMPOSITION D UN NOMBRE REEL EN BASE a COURBE DE PEANO AS - DECOMPOSITION D UN NOMBRE REEL EN BASE a COURBE DE PEANO Soit a un entier strictement plus grand que 1. Notons N a = {0,1,...,a 1}. Définition On dira qu un nombre réel positif x est de classe a,

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal Cours de Terminale S / Fonctions : ites et continuité E. Dostal Août 204 Table des matières 2 Fonctions : ites et continuité 2 2. Limites.............................................. 2 2.2 Théorèmes.............................................

Plus en détail

1.2. EXPONENTIELLE ET LOGARITHME 15. Passons à la fonction tangente, dont on rappelle la définition : tan(x) =

1.2. EXPONENTIELLE ET LOGARITHME 15. Passons à la fonction tangente, dont on rappelle la définition : tan(x) = .. EXPONENTIELLE ET LOGARITHME 5 seront démontrées dans le chapitre approprié en eercice : cos() sin() lim = 0, et lim =. 0 0 Passons à la fonction tangente, dont on rappelle la définition : tan() = sin()

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

4.6 Application de la dérivée à l étude des fonctions

4.6 Application de la dérivée à l étude des fonctions 54 4.15. Théorème Règle de l Hôpital. f() Soit f et g deu fonctions telle que la limite lim est une forme indéterminée ( 0 0 ou f () 0 g() ). Alors si lim 0 g eiste (soit un nombre réel, soit + soit ()

Plus en détail

La formule de Taylor et les développements limités

La formule de Taylor et les développements limités La formule de Taylor et les développements ités I) La formule f de Taylor 1.1 ) Formule de Taylor avec reste intégral On considère une fonction de classe (c est-à-dire 1 fois dérivables et à dérivées continues,

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc.

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc. 1 Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Filière SMIA : Exercices avec Corrigés Analyse 1 : Par BENAZZOUZ HANA Série1

Plus en détail

est et si a < 0 alors c est +. On échange les deux côtés de 0 lorsque b < 0. . Donc la limite est = ln(1+x) )

est et si a < 0 alors c est +. On échange les deux côtés de 0 lorsque b < 0. . Donc la limite est = ln(1+x) ) P.C.S.I. Éléments de correction. Eercice. Fau: sur R + prendre et.. Vrai c est du cours.. Fau: prendre +cos. 4. Vrai: Supposons f T périodique et croissante. Soient < y réels et n N tel que + nt > y; alors

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a)

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques. m = y B y A f(b) f(a) 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre VII : Dérivation Notations : On reprend dans ce chapitre les notations

Plus en détail

Représenter graphiquement (sur un même schéma) ces trois ensembles.

Représenter graphiquement (sur un même schéma) ces trois ensembles. PCSI DEVOIR SURVEILLÉ de MATHÉMATIQUES n 4 07/1/001 Durée : 4 heures EXERCICE 1 : Calculatrices interdites Dans le plan complee rapporté au repère orthonormal (O; e 1, e, on définit une transformation

Plus en détail

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln Eercice ) f ( ) = ln ; f () = ln + ) ln ln ln f ( ) = ; f () = = ² ² ) f ( ) = ( ln ) 4 ; f () = 4 ( ln ) 4) f ( ) = ; f () = = ln ln ² ln ² ) ( ln + ) ( ln ) ln f ( ) = ; f () = = ln + (ln + )² ( ln +

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

Continuité d une fonction

Continuité d une fonction Continuité d une fonction Sur un intervalle Pour démontrer qu une fonction est continue sur un intervalle, il suffit de dire qu elle est composée de fonctions continues sur cet intervalle. Les fonctions

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

Ensembles ordonnés, propriétés de R

Ensembles ordonnés, propriétés de R MPSI Lycée Rabelais Semaine du 4 janvier 008 Ensembles ordonnés, propriétés de R Ensembles ordonnés Exercice 1 : Soient (E, ), (F, ) deux ensembles ordonnés. Soit la relation binaire définie dans E F par

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Dérivation des fonctions numériques d une variable réelle

Dérivation des fonctions numériques d une variable réelle Maths PCSI Exercices Dérivation des fonctions numériques d une variable réelle 1 Aspects locaux 1 + x 1 x si x 0 Exercice 1 Etudier la dérivabilité en 0 de x x 1 sinon Exercice 2 Dériver x 1 + 2 + x. Recommencer,

Plus en détail

Cours d analyse - Résumé sur les suites 2015/2016

Cours d analyse - Résumé sur les suites 2015/2016 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Eercices : Étude de fonctions Eercice : Calculer les limites suivantes : (. lim 3 2 +(ln) 3 ) 0 + 2. lim 3. lim ln(e +) ln 3 2 + 4. lim 5. lim 6. lim 7. lim e 2 3 2 e 3+ (ln) (e 4 3 ) + e2 ln+ ln+e 8.

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

Recherche des extremums d une fonction

Recherche des extremums d une fonction DOCUMENT 32 Recherche des etremums d une fonction 1. Introduction De nombreuses situations issues des mathématiques, des sciences epérimentales ou de la vie économique et sociale conduisent à la recherche

Plus en détail

Corrigé des Exercices d approfondissement du chapitre 0.

Corrigé des Exercices d approfondissement du chapitre 0. Corrigé des Exercices d approfondissement du chapitre 0. Exercice 0.17. Supposons que g f soit surjective et montrons que g est surjective. Soit z G. Comme g f est surjective, il existe x E tel que g f(x)

Plus en détail

Limites, continuité. ECE3 Lycée Carnot. 10 janvier 2012

Limites, continuité. ECE3 Lycée Carnot. 10 janvier 2012 Limites, continuité ECE3 Lycée Carnot 10 janvier 01 Ce premier gros chapitre sur l étude de fonctions depuis septembre regroupe en fait des résultats de nature diverse, qui recouvrent à peu près tout ce

Plus en détail

Chapitre 8 : Fonctions continues

Chapitre 8 : Fonctions continues Ce document est mis à disposition selon les termes de la licence Creative Commons «Attribution - Partage dans les mêmes conditions 4.0 International». https://melusine.eu.org/syracuse/immae/ Chapitre 8

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5 FONCTION LOGARITHME I FONCTION RECIPROQUE La fonction carrée La fonction carrée est dérivable et strictement monotone sur [ 0 ; 2 ] D'après le corollaire du théorème des valeurs intermédiaire pour tout

Plus en détail

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS Chapitre GÉNÉRALITÉS SUR LES FONCTIONS I. GÉNÉRALITÉS SUR LES FONCTIONS DE VARIABLE RÉELLE Sau indication particulière, pour simpliier, les onctions sont déinies sur un intervalle I de non réduit à un

Plus en détail

Dérivabilité 10 décembre 2016

Dérivabilité 10 décembre 2016 Dérivabilité 10 décembre 2016 1 Dans tout ce capitre f désigne une fonction définie sur un intervalle I et a 2 I. 1. Définitions et premiers résultats 1.1 Définitions On connait depuis le lycée la définition

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

Fonction exponentielle 1

Fonction exponentielle 1 Fonction eponentielle 1 Unicité de la solution de l équation différentielle Conséquences 1. Si f est une solution de l équation différentielle y = y, y(0) = 1, alors, pour tout réel, f( )f() = 1 et f()

Plus en détail

Continuité, cours, terminale S

Continuité, cours, terminale S Continuité, cours, terminale S Continuité, cours, terminale S F.Gaudon http://mathsfg.net.free.fr 26 mars 2013 1 Continuité 2 Généralisation à des intervalles quelconques Continuité 1 Continuité 2 Généralisation

Plus en détail

Limite d une fonction en un point de R. Fonctions continues.

Limite d une fonction en un point de R. Fonctions continues. DOCUMENT 23 Limite d une fonction en un point de R. Fonctions continues. 1. Introduction et notations Considérons la fonction f : x sin x définie sur R. La valeur 0 n appartient pas à x l ensemble de définition

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Fonctions usuelles Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Eercice **I * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

Plus en détail

CHAPITRE 3 PRIMITIVES ET INTEGRALES FONCTIONS LOGARITHMES ET EXPONENTIELLES

CHAPITRE 3 PRIMITIVES ET INTEGRALES FONCTIONS LOGARITHMES ET EXPONENTIELLES CHAPITRE 3 PRIMITIVES ET INTEGRALES FONCTIONS LOGARITHMES ET EXPONENTIELLES 3--PRIMITIVES ET INTEGRALES 3---Primitives Soit f une fonction définie sur un intervalle I. On appelle fonction primitive de

Plus en détail

Etude théorique d équation d ordre 2

Etude théorique d équation d ordre 2 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Etude théorique d équation d ordre 2 Eercice 1 [ 01555 ] [Correction] Soit q : R R + une fonction continue non nulle. On se propose de

Plus en détail

Croissance comparée des fonctions logarithmes, puissances et exponentielles

Croissance comparée des fonctions logarithmes, puissances et exponentielles DOCUMENT 30 Croissance comparée des fonctions logarithmes, puissances et exponentielles Rappelons que : 1. Introduction et résultats préinaires Les fonctions logarithmes sont les primitives sur R + des

Plus en détail