N Anonymat :.. Question Note Barême Question Note Barême III-1 1 III-2 2,5 III-1 0,5 III-2 2. Note 20

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "N Anonymat :.. Question Note Barême Question Note Barême III-1 1 III-2 2,5 III-1 0,5 III-2 2. Note 20"

Transcription

1 UNIVERSITE PAUL SABATIER LUNDI 5 JANVIER 2011 L2 EEA-MI UE3 : 2L33EA1E3 EXAMEN ECRIT FINAL Durée : 1h30 CONVERSION DE L'ENERGIE ELECTRIQUE: Aucun document écrit n'est autorisé Le téléphone portable est interdit Seule la calculatrice non-programmable est autorisée N Anonymat :.. Question Note Barême Question Note Barême I-1 1 II-1 a 0,5 I-2 1 II-1b 0,5 I-3 0,5 II-2 1,5 I-4 0,5 II-3-1 a 1 I-5 1 II-3-1b 0,5 I-6 0,5 II-3-2 a 2,5 I-7 1 II-3-2b 0,5 I-8 1,5 II-3-2b 2 Total Ex. I : 7 Total Ex. II : 9 III-1 1 III-2 2,5 III-1 0,5 III-2 2 Total Ex. III : 6 Note 20 ***** Les exercices I, II & III sont indépendants *****

2 EXERCICE I : ETUDFE D'UNE BOBINE A 3 COLONNES EN REGIME CONTINU (7 POINTS) Figure 1 La figure 1 représente la vue de face d'une bobine à noyau constituée d'un circuit magnétique, à trois colonnes, équipé d'un bobinage dans la colonne centrale. Le bobinage, supposé parfaitement conducteur, comporte N 1 spires jointives. Les matériaux magnétiques sont homogènes, linéaires, isotropes et parfaitement isolants. On néglige les effets bords et de coins. On néglige aussi les lignes de champ magnétique qui se referment à travers l'air. On donne : µ 0 = 4π.10-7 H.m -1 Le nombre de spires est : N 1 = 60. La perméabilité relative µ ri, la longueur l i et la section A i des matériaux de la colonne centrale (C), de celle de gauche (G) et de celle de droite (D) sont respectivement : µ rc = 1990 l C =200 mm A C = 20 cm 2 µ rg = 1,2 µ rc l G = 2,4 l C A G = 2 A C µ rd = µ rg l G = l G A D = A G I-1 Compte tenu des hypothèses, proposer en justifiant votre choix, un modèle électrique de la bobine, entre ses bornes A et B. I-2 Calculer la valeur numérique de la réluctance R C (colonne centrale), puis celles de R G (colonne gauche) et R D (colonne droite). Page : 1 sur 7

3 I-3 En déduire la valeur numérique de la réluctance R BOB de la bobine, vue par le bobinage entre les points A et B. La bobine est alimentée par une source continue délivrant une intensité I = 2,8 A. I-4 Calculer la tension V qui apparaît aux bornes de la bobine, entre les bornes A et B. I-5 Déterminer la valeur numérique du flux Φ C établi dans la colonne C. En déduire les flux Φ G et Φ D, respectivement établis dans les colonnes G et D. I-6 Déterminer la valeur numérique de l'inductance L µ de la bobine à partir des résultats du I -5 seulement. I-7 Calculer les valeurs numériques des champs d'induction B C, B G et B D, dans les colonnes C, G et D, respectivement. Page : 2 sur 7

4 I-8 Calculer les valeurs numériques des champs d'excitation H C, H G et H D, dans les colonnes C, G et D, respectivement. EXERCICE II : TRANSFORMATEUR MONOPHASE EN RÉGIME SINUSOIDAL PERMANENT (9 POINTS) Un transformateur monophasé (fig. 2) est réalisé en disposant un second bobinage (secondaire) comportant N 2 = 240 spires sur la colonne centrale. Le primaire du transformateur (bobinage N 1 ) est alimenté en tension sinusoïdale à une fréquence ƒ = 50 Hz. Sa valeur efficace est notée V 1. On ne V 1 I 1 I 1 0 R0 L0 j m V 2 0 l j r I 2 V 2 Fig. 2 néglige aucun élément d'imperfection des bobinages. II-1 a Citer deux exemples d'applications du transformateur. II-1b Quel est l'intérêt d'utiliser 3 colonnes, comportant 2 bobinages, pour réaliser un transformateur monophasé. II-2 Les essais à puissances réduites en régime sinusoïdal ont donné : *A vide : V 1 = V 10 = V 1N =53,0 V I 1 = I 10 =2,80 A P 10 = 27,0 W *En court-circuit : V 1 = V 1CC = 2,57 V P 1CC = 125 W I 2 = I 2CC = I 2N = 25,0 A En négligeant les pertes fer (dans R 0 ) et la puissance magnétisante (dans L 0 ), déterminer les valeurs numériques des éléments r et lω. Page : 3 sur 7

5 1,5 Pt II-3 Fonctionnement en charge résistive sous tension nominale au primaire. On applique une tension sinusoïdale de fréquence ƒ = 50 Hz et de valeur efficace V 1 = V 1N au primaire du transformateur. La tension primaire V 1 reste fixe. On branche au secondaire une résistance R 2. Le courant circulant dans R 2 est I 2, et la tension à ses bornes est V 2. Seule R 2 varie pour obtenir les différents points de fonctionnement. II-3-1 a Par un calcul rigoureux, retrouver l'expression littérale de V 2 (I 2 ) en faisant apparaître V 20, r et lω. II-3-1b En négligeant la chute de tension dans l'inductance de fuite, proposer une expression littérale approchée dev 2 (I 2 ). II-3-2 Déterminer la valeur numérique du courant 1 1, pour un premier point de fonctionnement où I 2 = I 2N, avec V 1 = V 1N. Page : 4 sur 7

6 2,5 Pts II-3-3 Déterminer la valeur numérique de la puissance P 1, pour un second point de fonctionnement où V 2 = 110 V, avec V 1 = V 1N. II-3-4 Déterminer la valeur numérique du courant I 2, pour un troisième point de fonctionnement où P 2 =2 kw, avec V 1 = V 1N. Page : 5 sur 7

7 1,5 Pts EXERCICE III : PUISSANCE INSTANTANNEE D'UNE BOBINE A NOYAU EN REGIME SINUSOIDAL PERMANENT (6 POINTS) La bobine à noyau de l'exercice I (dipôle D) est alimentée, entre ses bornes A et B, au moyen d'une source idéale de courant i(t) = I 2 sin("t + # I ) à la fréquence f = 50 Hz. Le matériau magnétique n'est plus parfaitement isolant. On se propose de déterminer les caractéristiques électriques de ce dipôle passif à partir de relevés temporels de grandeurs électriques. La puissance instantanée du dipôle D est p(t) en Convention de Signe Récepteur. Sous l'action de i(t) traversant le dipôle D, sa tension est représentées par la figure 3. v(t) = V 2 sin("t + # V ). Les allures temporelles de i(t) et p(t) sont Figure 3 : Evolutions temporelles de i(t) (traits pleins) et p(t) (en pointillés) du dipôle D. III-1 Retrouver l'expression analytique de p(t) en fonction de la puissance active P du dipôle D, de sa puissance apparente S, ainsi que de t, ω, " V et " I. On donne : 2sin(A)sin(B) = cos(a " B) " cos(a + B) Page : 6 sur 7

8 III-2 A partir des valeurs extrêmes P Max et P Min de p(t) (voir fig.3), déterminer les valeurs numériques de P et S, puis celle de Q. 2,5 Pts III-3 En déduire la valeur numérique du facteur de puissance FP du dipôle D. III-4 Calculer la valeur numérique de la résistance R P et celle de la réactance X P du modèle parallèle équivalent du dipôle D. 2 Pts FIN Page : 7 sur 7

CONVERSION DE L'ENERGIE

CONVERSION DE L'ENERGIE UNIVERSITE PAUL SABATIER JEUDI 29 OCTOBRE 2009 L2 EEA-MI UE3 : CONVERSION DE L'ENERGIE PARTIEL Durée : 1h30 CONVERSION DE L'ENERGIE Aucun document écrit n'est autorisé Le téléphone portable est interdit

Plus en détail

Transformateurs monophasés

Transformateurs monophasés CHAPITRE 2 Transformateurs monophasés Gérard-André CAPOLINO Transformateur 1PH 1 Analyse du circuit magnétique Le circuit magnétique est constitué d un noyau en fer feuilleté et d enroulements. Le courant

Plus en détail

Chapitre 3 : Le transformateur

Chapitre 3 : Le transformateur I Présentation 1. Constitution 2. Symbole et convention Chapitre 3 : Le transformateur II Transformateur parfait en sinusoïdal 1. relation entre les tensions 2. formule de Boucherot 3. les intensités 4.

Plus en détail

LE TRANSFORMATEUR MONOPHASE

LE TRANSFORMATEUR MONOPHASE LE TRANSFORMATEUR MONOPHASE I. INTRODUCTION. Fonction Un transformateur est une machine statique permettant, en alternatif, le changement de grandeurs (tension et intensité) sans changer leur fréquence.

Plus en détail

QCM 1 de Physique (STI)

QCM 1 de Physique (STI) QCM 1 de Physique (STI) Question 1 Une bobine est parcourue par un courant de 1 A. Sans noyau ferromagnétique, l intensité de l induction magnétique est de 4 mt, avec le noyau ferromagnétique elle est

Plus en détail

APPLICATIONS DIRECTES

APPLICATIONS DIRECTES PSI FEUILLE D EXERCICES DE SCIENCES PHYSIQUES N 23 11/02/2017 2016/2017 Thème: Conversion électro-magnéto-mécanique (1) APPLICATIONS DIRECTES 1. Electroaimant de levage On considère l électroaimant représenté

Plus en détail

EXERCICES Conversion Puissance 1 Conversion électromagnétique statique

EXERCICES Conversion Puissance 1 Conversion électromagnétique statique EXERCICES Conversion Puissance 1 Conversion électromagnétique statique CP1 1. Transfert d une source de courant Une photopile est éclairée par une source d intensité lumineuse variable. Elle est équivalente

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2012-2013 Devoir n 5 CONVERSION DE PUISSANCE Toutes les parties sont indépendantes. Un formulaire se trouve en fin de problème. Partie I On désire tracer expérimentalement le cycle d hystérésis B

Plus en détail

le transformateur i 2 u 2 Le rôle d un transformateur est en général, de.. d une tension sans en changer ni.. (sinusoïdale), ni...

le transformateur i 2 u 2 Le rôle d un transformateur est en général, de.. d une tension sans en changer ni.. (sinusoïdale), ni... TRANSFORMATEUR MONOPHASE I. FONCTION DU TRANSFORMATEUR Le transformateur est un d énergie électrique... Il transfère, en.., une puissance.. d une.. à une.., en adaptant les valeurs de la tension (ou du

Plus en détail

Les transformateurs monophasés

Les transformateurs monophasés monophasés Un transformateur électrique est une machine électrique qui permet de de modifier les valeurs de tension et d'intensité du courant délivrées par une source d'énergie électrique alternative,

Plus en détail

Le courant alternatif

Le courant alternatif Le courant alternatif Exercices d'application : 1 la fréquence d un courant alternatif est de 40 Hz. Calculer ses période et pulsation 2 un courant d appel téléphonique à une fréquence de 25 Hz et une

Plus en détail

Transformateurs statiques monophasés

Transformateurs statiques monophasés Plan du cours Présentation Le transformateur parfait Le transformateur réel Les essais Constitution et principe des machines - durée h - G. Clerc Présentation Le transformateur permet d obtenir un changement

Plus en détail

LE TRANSFORMATEUR MONOPHASE

LE TRANSFORMATEUR MONOPHASE LE TRANSFORMATEUR MONOPHASE I) Généralité sur le transformateur : 1) Définition : Le transformateur a pour but de modifier les amplitudes des grandeurs électriques alternatives : il transforme des signaux

Plus en détail

II.1 Généralités sur le Transformateur Monophasé

II.1 Généralités sur le Transformateur Monophasé Chapitre II Modélisation et Simulation des Transformateurs Electriques 15 II.1 Généralités sur le Transformateur Monophasé II.1.1 Rôle L'utilisation des transformateurs électriques ont pour rôle de changer

Plus en détail

Transformateur monophasé

Transformateur monophasé Transformateur monophasé I - Constitution et caractéristiques On rappelle qu'un transformateur monophasé est constitué d'un circuit magnétique fermé portant deux enroulements appelés "primaire" et "secondaire".

Plus en détail

TRANSFORMATEUR MONOPHASE

TRANSFORMATEUR MONOPHASE TRANSFORMATEUR MONOPHASE Les parties à préparer avant la séance sont encadrées. Au début de chaque séance, l enseignant vérifiera que ce travail de préparation a bien été réalisé. OBJECTIFS DE LA MANIPULATION

Plus en détail

1 ) Transformateur monophasé. 1.1) Définition

1 ) Transformateur monophasé. 1.1) Définition Chapitre B...Transformateur monophasé ) Transformateur monophasé.) Définition Un transformateur est un quadripôle formé de deux enroulements enlaçant un circuit magnétique commun. C est une machine statique

Plus en détail

Variation de de flux flux magnétique dans dans une une bobine = force électromotrice induite (f.e.m. = tension)

Variation de de flux flux magnétique dans dans une une bobine = force électromotrice induite (f.e.m. = tension) Chapitre IV : Électromagnétisme IV.7 Loi de LENZ Expérience : Champ magnétique variable Tension induite Bobine de n spires Variation de de flux flux magnétique dans dans une une bobine force électromotrice

Plus en détail

TD Systèmes électriques. Mesures Physiques

TD Systèmes électriques. Mesures Physiques TD Systèmes électriques Mesures Physiques 05-06 Cette série de TD se décompose en 9 chapitres qui seront étudiés durant 0 séances de h. Le tableau en première page est une aide pour les étudiants de ère

Plus en détail

Université Paul Sabatier - F.S.I. Année Universitaire Master 1 EEA. EM7ECEGM : Alimentations à découpage. Durée : 1H30

Université Paul Sabatier - F.S.I. Année Universitaire Master 1 EEA. EM7ECEGM : Alimentations à découpage. Durée : 1H30 Master 1 EEA Examen du 9 janvier 2012 EM7ECEGM : Alimentations à découpage Sans document Durée : 1H30 PROBLÈME : ALIMENTATION FORWARD (14 PTS) La figure 1 représente une alimentation forward classique,

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

DÉPARTEMENT DU PREMIER CYCLE

DÉPARTEMENT DU PREMIER CYCLE DÉPARTEMENT DU PREMIER CYCLE DEVOIR DE SYNTHÈSE DE PHYSIQUE 14 Juin 006 Durée : 3 heures (09h -1h) Tout document est interdit. Toute calculatrice d un modèle autre que celui autorisé, est interdite. Les

Plus en détail

Cours d électrotechnique

Cours d électrotechnique Cours d électrotechnique LES MACHINES A COURANT ALTERNATIF MACHINE STATIQUE A COURANT ALTERNATIF PARTIE N : LE TRANSFORMATEUR PARFAIT TABLE DES MATIERES 1. Définition d un transformateur parfait?.... La

Plus en détail

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7 BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION 2001 Série : Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée: 4 heures Coefficient : 7 L'emploi de toutes les calculatrices

Plus en détail

TP2 : MODÉLISATION DE BOBINES EN RÉGIME SINUSOÏDALE

TP2 : MODÉLISATION DE BOBINES EN RÉGIME SINUSOÏDALE TP2 : MODÉLISATION DE BOBINES EN RÉGIME SINUSOÏDALE INTRODUCTION Les inductances se présentent principalement sous forme de nids d abeilles réalisés par va et vient latéral du fils lors du bobinage ou

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE. Session 2011 PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles. Spécialité : Génie Électrotechnique

BACCALAURÉAT TECHNOLOGIQUE. Session 2011 PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles. Spécialité : Génie Électrotechnique BACCALAURÉAT TECHNOLOGIQUE Session 211 PHYSIQUE APPLIQUÉE Série : Sciences et Technologies Industrielles Spécialité : Génie Électrotechnique Durée de l épreuve : 4 heures coefficient : 7 L emploi de toutes

Plus en détail

Introduction aux Circuits Electriques

Introduction aux Circuits Electriques Cours Cours CIRCUITS CIRCUITS Introduction aux Circuits Electriques Guillaume GATEAU N7 A GEA Partie 5 - Transformateur monophasé Rappel sur les circuits magnétiques Transformateur idéal Transformateur

Plus en détail

Redressement monophasé non commandé

Redressement monophasé non commandé electroussafi.ueuo.com 1/6 Redressement monophasé non commandé Rappel : A. Redressement simple alternance V = V max sin t = V sin t avec = 2πf Valeur moyenne de u : Valeur efficace de u : Tension maximale

Plus en détail

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE I TENSIONS ET INTENSITES ALTERNATIVES INSTANTANEES 1 Sinusoïde et vecteur de FRESNEL 2 Période, fréquence et pulsation 3 Tension maximum -Tension efficace

Plus en détail

Exercices : bobines et inductances

Exercices : bobines et inductances Exercices : bobines et inductances Sauf indication contraire, les tensions et intensités sont sinusoïdales et leur fréquence égale à 50 Hz. I. Tension et intensité pour une inductance (orientée avec la

Plus en détail

Étude des redresseurs à diodes (redresseurs non commandés)

Étude des redresseurs à diodes (redresseurs non commandés) Étude des redresseurs à diodes (redresseurs non commandés) Première partie : généralités 1. Rappels sur les diodes En électronique de puissance, la diode est utilisée comme un interrupteur unidirectionnel

Plus en détail

TD Alimentation à découpage -Forward -

TD Alimentation à découpage -Forward - I] Cahier des charges : TD Alimentation à découpage -Forward - On dispose d'une alimentation continue E=30 V. On désire réaliser une source de tension régulée à 12 V à l'aide d'une alimentation à découpage

Plus en détail

Conversion de puissance Chap2 Transformateur

Conversion de puissance Chap2 Transformateur Conversion de puissance Chap2 Transformateur 1. Etude du transformateur idéal 1.1. Description du transformateur 1.2. Hypothèses du modèle de transformateur idéal 1.3. Loi de transformation des tensions

Plus en détail

Courant alternatif. v 6

Courant alternatif. v 6 17 Courant alternatif v 6 1 Courant alternatif, à la maison 230 V 50 Hz "phase" "neutre" tri-phase chaque "phase" est décalée de 120 2 Valeur efficace La fonction qui représente la tension alternative

Plus en détail

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1 TD ELECTROTECHNIQUE 1 ère année Module MC2-2 V. Chollet - TD-Trotech07-28/08/2006 page 1 IUT BELFORT MONTBELIARD Dpt Mesures Physiques TD ELECTROTECHNIQUE n 1 Avec l aide du cours, faire une fiche faisant

Plus en détail

Induction, AC. v 7s

Induction, AC. v 7s 16-17 Induction, AC v 7s 1 Loi de Faraday Faraday découvre en 1830 qu' un champ magnétique peut induire un courant électrique dans une spire de fil électrique. Il constate que la condition nécessaire est

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE

BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE Session 2012 BACCALAURÉAT TCHNOLOGIQU STL - CHIMI D LABORATOIR T D PROCÉDÉS INDUSTRILS ÉPRUV D PHYSIQU Durée de l'épreuve : 2 heures Coefficient : 3 Le sujet comporte 6 pages numérotées de 1/6 à 6/6. La

Plus en détail

EPREUVE N 1 CULTURE DISCIPLINAIRE. (Durée : 5 heures ; Coefficient : 2) Matériel autorisé : Calculatrice autorisée. Aucun document n'est autorisé.

EPREUVE N 1 CULTURE DISCIPLINAIRE. (Durée : 5 heures ; Coefficient : 2) Matériel autorisé : Calculatrice autorisée. Aucun document n'est autorisé. CONCOURS DE RECRUTEMENT DE PROFESSEURS DE LYCEE PROFESSIONNEL AGRICOLE Enseignement Maritime SESSION 2012 Concours : EXTERNE Section : Electrotechnique et électroniques marines EPREUVE N 1 CULTURE DISCIPLINAIRE

Plus en détail

I. Transformateurs monophasés 1 Rôle Les transformateurs sont utilisés pour adapter (élever ou abaisser) une tension aux besoins de l utilisation.

I. Transformateurs monophasés 1 Rôle Les transformateurs sont utilisés pour adapter (élever ou abaisser) une tension aux besoins de l utilisation. I. Transformateurs monophasés 1 Rôle Les transformateurs sont utilisés pour adapter (élever ou abaisser) une tension aux besoins de l utilisation. Tension d alimentation Adapter la tension Pertes Tension

Plus en détail

Corrigé de TD-Transformateur-monophasé

Corrigé de TD-Transformateur-monophasé Corrigé de TD-Transformateur-monophasé Exercice 1 Soit un transformateur parfait 380v/220v 50 Hz de puissance apparente nominale S=2 kva. 1. Calculer les courants nominaux I 1N, I 2N et le rapport de transformation

Plus en détail

Conversion de puissance Chap2 Transformateur

Conversion de puissance Chap2 Transformateur Conversion de puissance Chap2 Transformateur 1. Etude du transformateur idéal 1.1. Description du transformateur 1.2. Hypothèses du modèle de transformateur idéal 1.3. Loi de transformation des tensions

Plus en détail

Circuit fixe dans un champ magnétique variable

Circuit fixe dans un champ magnétique variable Circuit fixe dans un champ magnétique variable II. Auto-induction 1. Flux propre et inductance propre Soit un circuit filiforme ( par exemple une bobine ) parcouru par un courant d intensité. Ce circuit

Plus en détail

TD4: Dipôles linéaires en régime sinusoïdal

TD4: Dipôles linéaires en régime sinusoïdal TD4: Dipôles linéaires en régime sinusoïdal Exercice 1: Détermination des valeurs efficaces et des déphasages Exercice 2: Dipôles R, L série et:/ou parallèle 1. Soit le dipôle AB constitué d'une résistance

Plus en détail

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES 3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES Durée : 4 heures L'épreuve est d'une durée de quatre heures et est constituée de deux parties indépendantes (électrotechnique et électronique). Les

Plus en détail

La machine à courant continu

La machine à courant continu Travaux dirigés BTS Maintenance Industrielle Exercice n 1 : Un moteur à courant continu porte sur sa plaque, les indications suivantes Excitation séparée 160 V 2 A Induit : 160 V 22 A 1170 tr.min -1 3,2

Plus en détail

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé 1. Valeur efficace d une tension et d un courant (rappels de PCSI) 1.1. Valeur moyenne d une tension (ou d un courant) périodique 1..

Plus en détail

Série : Oscillation électrique en régime sinusoïdale forcée

Série : Oscillation électrique en régime sinusoïdale forcée Exercice n 1 On considère un circuit électrique série constitué par un G.B.F délivrant une tension sinusoïdale U(t) = U m sin (2πNt), un condensateur de capacité C, un résistor de résistance R = 80 Ω et

Plus en détail

Physique appliquée BTS 1 Electrotechnique

Physique appliquée BTS 1 Electrotechnique Physique appliquée BTS 1 Electrotechnique Electromagnétisme Electromagnétisme Page 1 sur 21 1. Champ d excitation magnétique... 3 1.1. Interprétation de l aimantation.... 3 1.2. Champ d exitation magnétique

Plus en détail

Transformateur de tension monophasée Conversion Symbole Schéma Transformateur parfait alternatif / alternatif. m i 1 i 2. u 1. n 1

Transformateur de tension monophasée Conversion Symbole Schéma Transformateur parfait alternatif / alternatif. m i 1 i 2. u 1. n 1 G. inson - hysique Appliquée Transformateurs - C4 / 1 C4 - Conversions alternatif - alternatif. Transformateurs Transformateur de tension monophasée Conversion ymbole chéma Transformateur parfait alternatif

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE

BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE Série: Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée : 4 heures coefficient :7 L'emploi de toutes les calculatrices

Plus en détail

Une différence de potentiel comptée à partir de la masse portera le nom de tension :

Une différence de potentiel comptée à partir de la masse portera le nom de tension : SAE, Electro 1, Philippe Labroue (Accès internet : http://bachelor.autreradioautreculture.com/electro2.pdf) Champs électrique et potentiel : La charge électrique s exprime en Coulomb. La charge de l électron

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Electrotechnique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND

Plus en détail

Transformateur. 1 Présentation. 1.1 Schéma. 1.2 Principe de fonctionnement. Pour information Rappel

Transformateur. 1 Présentation. 1.1 Schéma. 1.2 Principe de fonctionnement. Pour information Rappel 1 Présentation 11 Schéma 12 Principe de fonctionnement Pour information 121 Rappel Loi de Faraday : une variation de flux à travers une spire créer une fém e Inversement une fém e dans une spire crée une

Plus en détail

Quadripôles électriques

Quadripôles électriques Retour au menu! Définition des quadripôles Quadripôles électriques De nombreux circuits peuvent être représentés par une «boîte» munie de deux bornes d entrée et de deux bornes de sortie, que l on nomme

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Place Cormontaigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fax : 03 87 31 85 36 Sciences Appliquées. Savoir-faire expérimentaux. Référentiel : S5 Sciences Appliquées.

Plus en détail

Tension aux bornes d un dipôle Courant par phase. Courant en ligne. P1 (pour un dipôle) Commenter les résultats.

Tension aux bornes d un dipôle Courant par phase. Courant en ligne. P1 (pour un dipôle) Commenter les résultats. triphase_td 1/5 Exercice 1 Dessiner une ligne triphasée et placer les tensions simples et les tensions composées. Quels sont les symboles utilisés pour les courants en ligne et les courants par phase?

Plus en détail

LES TRANSFORMATEURS. Cours et exercices LES TRANSFORMATEURS. Machines électriques UVT_ Mohamed ELLEUCH. L'intitulé de la leçon

LES TRANSFORMATEURS. Cours et exercices LES TRANSFORMATEURS. Machines électriques UVT_ Mohamed ELLEUCH. L'intitulé de la leçon Cours et exercices LES TRANSFORMATEURS L'intitulé de la leçon Le résumé de la leçon LES TRANSFORMATEURS Cette leçon est consacrée aux transformateurs (dits machines statiques). La fonction assurée par

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 8-9 Devoir n 6 CONVERSION DE PUISSANCE UTILISATION DE L ENERGIE EOLIENNE Un aéromoteur entraîne une génératrice électrique destinée à alimenter une installation électrique. Pour les aéromoteurs de

Plus en détail

1 Commande par onduleur d un moteur asynchrone triphasé

1 Commande par onduleur d un moteur asynchrone triphasé UNIVERSITÉ DE CAEN BASSE-NORMANDIE ANNÉE 2009/2010 U.F.R. de Sciences 23 Mars 2010 Master Professionnel AEII Electronique de puissance Terminal, durée 2h00 Document autorisé : une feuille A4 recto-verso

Plus en détail

Presser la touche F5 pour faire apparaître les signets qui favorisent la navigation dans le document.

Presser la touche F5 pour faire apparaître les signets qui favorisent la navigation dans le document. TRANSFORMATEUR MONOPHASE Presser la touche F5 pour faire apparaître les signets qui favorisent la navigation dans le document. Sommaire 1 Généralités... 1 1.1 Constitution... 1 1. Conventions Définitions

Plus en détail

8 Exercices corrigés sur l alternateur

8 Exercices corrigés sur l alternateur 8 Exercices corrigés sur l alternateur Exercice 1: Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une vitesse de rotation de 100 tr/min.

Plus en détail

LE TRANSFORMATEUR. Objectif

LE TRANSFORMATEUR. Objectif LE TRANSFORMATEUR Objectif Le transformateur permet d adapter, selon les besoins, une tension alternative sinusoïdale en l élevant ou en l abaissant sans en modifier la fréquence. Constitution. Le circuit

Plus en détail

CH5 : Les machines alternatives

CH5 : Les machines alternatives BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH5 : Les machines alternatives Objectifs : A l issue de la leçon, l étudiant doit : 5.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 2 : MACHINE SYNCHRONE Exercice 1 Un alternateur triphasé, 1000 kva, 4600 V, connection étoile, possède une résistance par phase égale à 2 et une résistance synchrone égale à 20. En pleine

Plus en détail

Support de travaux dirigés. D électronique de puissance

Support de travaux dirigés. D électronique de puissance MINISTEE DE L ENSEIGNEMENT SUPEIEU ET DE LA ECHECHE SCIENTIFIQUE Direction générale des études technologiques Institut supérieur des études technologiques de Nabeul Département : Génie Electrique Support

Plus en détail

V e. S e. relative ε r sachant que C = ε 0 ε r

V e. S e. relative ε r sachant que C = ε 0 ε r G. Pinson : Physique Appliquée Couant alternatif ACA-TD / ---------------- ACA-- Soit un circuit RL série, avec R = 0 Ω ; L = 70 mh. Calculer les tensions V R (tension aux bornes de R), V L (tension aux

Plus en détail

Transformateur et transfert de puissance

Transformateur et transfert de puissance PSI Moissan 0 TD Transformateur électrique Mars 03 I. Transformateur et transfert de puissance i e u Z u La loi des mailles donne ce qui donne Or u Z u i donc E i Z u i p R u jx u qi E i R u jx u u E R

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 010-011 Devoir n 5 CONVERSION DE PUISSANCE Une locomotive électrique moderne est capable de circuler avec deux types de tension d alimentation rencontrés sur le réseau ferroviaire : 5 kv à 50 Hz

Plus en détail

Chapitre 2 Transformateurs et Redresseurs à diodes

Chapitre 2 Transformateurs et Redresseurs à diodes Chapitre Transformateurs et Redresseurs à diodes Frédéric Gillon - Iteem Sommaire La conversion d énergie Équations Physiques de la conversion d énergie magnétique Le Transformateur Monophasé Le Transformateur

Plus en détail

-Exercices d électricité -

-Exercices d électricité - Université Claude ernard Lyon-I INSTITUT TECHNIQUES DE ÉDPTTION adresse postale: 8 av ockefeller-69373 LYON cedex 08-1re NNÉE DIPLÔME D ÉTT D UDIOPOTHÉSISTE -Exercices d électricité - 1 1 Electrocinétique

Plus en détail

Contrôle de Synthèse : Conversion d Energie Calculatrice autorisée, polycopié non autorisé, 2 heures

Contrôle de Synthèse : Conversion d Energie Calculatrice autorisée, polycopié non autorisé, 2 heures Contrôle de Synthèse : Conversion d Energie Calculatrice autorisée, polycopié non autorisé, 2 heures Les réponses ENCADRÉES doivent être littérales (avec les notations de cet énoncé) puis numériques en

Plus en détail

Chimie VII.10. Chimie VII.11. Chimie VII Tracer le domaine de prédominance ou d'existence des espèces Sn 4+, Sn 2+ et Sn

Chimie VII.10. Chimie VII.11. Chimie VII Tracer le domaine de prédominance ou d'existence des espèces Sn 4+, Sn 2+ et Sn Questions de cours 1. Définir oxydant et réducteur, oxydation et réduction. 2. Définir le nombre d'oxydation et calculer le no de S dans H 2 SO 4 3. Identifier l'oxydant et le réducteur puis écrire la

Plus en détail

. LE TRANSFORMATEUR REEL

. LE TRANSFORMATEUR REEL Transfo réel - Cours - 1/19. LE TRANSFORMATEUR REEL. I Présentation Le transformateur est un convertisseur statique, alternatif / alternatif. Il est soit élévateur, soit abaisseur de tension ou de courant.

Plus en détail

Lycée Maknassy ALIBI.A éme TEC et SC - Sc.physiques

Lycée Maknassy ALIBI.A éme TEC et SC - Sc.physiques 1 Lycée Maknassy 2011-2012 - 4 éme TEC et SC - ALIBI.A. Sc.physiques Exercice N 1 Un conducteur ohmique, de résistance R=100 Ω et une bobine d inductance L = 1H et de résistance interne supposée nulle

Plus en détail

I Introduction. II Étude du transformateur à vide. TP Conversion de puissance 2 Transformateur. 1 Présentation. 2 Matériel utilisé

I Introduction. II Étude du transformateur à vide. TP Conversion de puissance 2 Transformateur. 1 Présentation. 2 Matériel utilisé TP Conversion de puissance 2 Transformateur I Introduction 1 1 Présentation 1 2 Matériel utilisé 1 II Étude du transformateur à vide 1 1 Transformateur de tension 1 2 Intensité au primaire 3 3 Mesure des

Plus en détail

Travaux dirigés. Module Électricité 2. Électrocinétique, circuits magnétiques, transformateur monophasé, système triphasé

Travaux dirigés. Module Électricité 2. Électrocinétique, circuits magnétiques, transformateur monophasé, système triphasé 1ère année d IUT de Mesures Physiques Travaux dirigés Module Électricité 2 Électrocinétique, circuits magnétiques, transformateur monophasé, système triphasé Arnaud MARTIN & Olivier BACHELIER Courriel

Plus en détail

Chap2 Transformateur

Chap2 Transformateur Chap2 Transformateur 1. Etude du transformateur idéal 1.1. Description du transformateur 1.2. Hypothèses du modèle de transformateur idéal 1.3. Loi de transformation des tensions 1.4. Loi de transformation

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Licence : TDEE TD de machines synchrones Dr. BENDAOUD Exercice N 1 : Alternateur Un alternateur

Plus en détail

Détermination et utilisation du modèle d un transformateur monophasé

Détermination et utilisation du modèle d un transformateur monophasé NOM : prénom : Détermination et utilisation du modèle d un transformateur monophasé Grille d évaluation Les compétences à développer en sciences appliquées. Les compétences évaluées dans ce TP. C0 : Choisir

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

Milieux magnétiques. Aimantation

Milieux magnétiques. Aimantation Milieux magnétiques Aimantation La différence entre courants «libres» et courants «liés» La définition du vecteur aimantation La définition du vecteur excitation magnétique L équation de Maxwell-Ampère

Plus en détail

Université Paul Sabatier Licence STS Parcours PC Physique L1

Université Paul Sabatier Licence STS Parcours PC Physique L1 Université Paul Sabatier Licence STS Parcours PC Physique L1 Thèmes 5 et 6 Oscillations forcées ; résonance ; impédance 2009 2010, durée : 6 h Conformément à l usage typographique international, les vecteurs

Plus en détail

3. Vérifier que l'expression: q = Q M cos. est solution de l'équation différentielle, si la période propre. T 0 a pour expression T 0 = 2π L.C.

3. Vérifier que l'expression: q = Q M cos. est solution de l'équation différentielle, si la période propre. T 0 a pour expression T 0 = 2π L.C. Sujet 1 (R,L,C) Dans cette partie, on étudie une application des oscillations électriques dans le domaine de la météorologie. Pour mesurer le taux d'humidité relative de l'air (noté % d'hr), on peut employer

Plus en détail

Module d Electrotechnique ET2. Circuits Magnétiques

Module d Electrotechnique ET2. Circuits Magnétiques Module d Electrotechnique ET2 Circuits magnétiques IUT Cergy Pontoise Dép Génie Electrique Informatique Industrielle de Neuville Septembre 2010 Loi d Hopkinson Description Soit un circuit magnétique de

Plus en détail

Exercice 1 Calculs d intensité (3 points)

Exercice 1 Calculs d intensité (3 points) Page 1/ 5 Devoir électrocinétique n o 1 M1 EFTIS/IUFM Nice Le contrôle est constitué de cinq exercices indépendants, le barême étant approximatif et donné à titre indicatif seulement. Toute erreur éventuelle

Plus en détail

Procédures de qualification

Procédures de qualification Série 15 Procédures de qualification Planificatrice-électricienne CFC Planificateur-électricien CFC Connaissances professionnelles écrites Pos. 4. Technique des systèmes électriques Nom, prénom N de candidat

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTIGNE. 1 Place Cormontaigne BP 7064. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fax : 03 87 31 85 36 Sciences ppliquées. Savoir-faire expérimentaux.. Référentiel.. :. S5 Sciences. ppliquées......

Plus en détail

Les calculatrices sont autorisées. L usage de tout ouvrage de référence et de tout document est interdit.

Les calculatrices sont autorisées. L usage de tout ouvrage de référence et de tout document est interdit. Les calculatrices sont autorisées L usage de tout ouvrage de référence et de tout document est interdit. De très nombreuses parties sont indépendantes. Il est conseillé aux candidats de prendre connaissance

Plus en détail

Chapitre n 9 : Circuits alimentés en courant alternatif

Chapitre n 9 : Circuits alimentés en courant alternatif 5 ème OS Chapitre n 9 : Circuits alimentés en courant alternatif Considérations historiques La plupart des lampes de l époque étaient de basse résistance et devaient être montées en série, fonctionnant

Plus en détail

ELECTROTECHNIQUE - Deuxième année - - Devoir surveillé n 1 du lundi 11 octobre CORRIGE *********

ELECTROTECHNIQUE - Deuxième année - - Devoir surveillé n 1 du lundi 11 octobre CORRIGE ********* I.U.T. Formation Initiale D.U.T. GENIE ELECTRIQUE & INFORMATIQUE INDUSTRIELLE Enseignant responsable : B. DELPORTE Documents interdits Calculatrice autorisée Travail demandé : ELECTROTECHNIQUE Deuxième

Plus en détail

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition.

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition. Prof : Barhoumi Ezzedine Classe : 4 ème Math A.S. : 213/214 Tunisie - Sidi Bouzid - Lycée de Cebbala Les oscillations électriques forcées Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance

Plus en détail

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES 3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES Durée : 4 heures L'épreuve est d'une durée de quatre heures et est constituée de deux parties indépendantes (électrotechnique et électronique). Les

Plus en détail

PC A DOMICILE WAHAB DIOP LSLL

PC A DOMICILE WAHAB DIOP LSLL cos PC A DOMICILE - 779165576 WAHAB DIOP LSLL P13-OSCILLATIONS E L E C T R I Q U E S F O R C E E S E N R TRAVAUX DIRIGES TERMINALE S 1 On donne deux tensions sinusoïdales, exprimées en volts u 1 = 3cos(250t)

Plus en détail

Compléments d électricité appliquée. Séance 1: Généralités

Compléments d électricité appliquée. Séance 1: Généralités Compléments d électricité appliquée éance 1: Généralités xercice 1 : Les signaux périodiques. oit le signal suivant : 100 V(V) 5 10 15 20 t(ms) On vous demande de déterminer : a) la période b) la fréquence

Plus en détail

Fonctions de l'électronique : Introduction à l électronique. C. Koeniguer, P. Gogol

Fonctions de l'électronique : Introduction à l électronique. C. Koeniguer, P. Gogol Fonctions de l'électronique : Introduction à l électronique C. Koeniguer, P. Gogol Objectifs : Donner une vision des fonctions simples de l électronique : L électronique permet de transformer des signaux

Plus en détail

Travaux Dirigés d électronique de puissance et d électrotechnique

Travaux Dirigés d électronique de puissance et d électrotechnique Travaux Dirigés d électronique de puissance et d électrotechnique Exercice 1: redresseur triphasé non commandé On étudie les montages suivants, alimentés par un système de tensions triphasé équilibré.

Plus en détail

CHAPITRE 4 BOBINE À NOYAU DE FER (BNF) le noyau de fer ne sert qu à canaliser le flux magnétique

CHAPITRE 4 BOBINE À NOYAU DE FER (BNF) le noyau de fer ne sert qu à canaliser le flux magnétique CHAPITRE 4 BOBINE À NOYAU DE FER (BNF) le noyau de ne sert qu à canaliser le flux magnétique 1 Sans romagnétisme il n y aurait pas d électricité industrielle (alternateurs, transformateurs, moteurs). Toutes

Plus en détail

Exemple étudié. Caractérisation d'un matériau ferromagnétique 24/07/2009 CONTEXTE

Exemple étudié. Caractérisation d'un matériau ferromagnétique 24/07/2009 CONTEXTE Flux Exemple étudié Date de création www.cedrat.com Caractérisation d'un matériau ferromagnétique 24/07/2009 Auteur : Pascal Ferran - Université Claude Bernard Lyon Réf. FLU2_MH_MAG_01 Programme Dimension

Plus en détail

Génie électrique TD Source d'énergie

Génie électrique TD Source d'énergie Exercice 1 (difficulté *) On considère le circuit suivant : A i(t) C On donne : u(t) u L (t) L R=200 Ω D u R (t) R B M 1. Indiquer les branchements de l oscilloscope pour visualiser u(t) en voie1 et u

Plus en détail