Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère"

Transcription

1 Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b Correcto Exercces du MODULE : MExo4b Dstrbuto statstque à u caractère Exercce Mexo4 b Objectf : Cet exercce trate du calcul des caractérstques de valeurs cetrales et des caractérstques de dsperso das le cas où les doées sot groupées e classes c'est-à-dre que l o dspose du ombre d dvdus ayat ue observato comprse etre deux valeurs (ou égale à ue valeur). Remarque : Il s agt des mêmes doées que l exercce Mexo4a sauf que l o e doe pas les otes pour chaque étudat, mas le ombre d étudats ayat obteus ue ote comprse etre deux valeurs. Eocé : Soet les otes sur 00 obteues par 0 étudats à u exame. Le tableau de doées est le suvat (Fcher Mexo4b.xls) : Classe Effectf ( ) [40 à 50[ 4 [50 à 60[ 6 [60 à 70[ 0 [70 à 80[ 4 [80 à 90[ 4 [90 à 00[ ) Calculer le mode, la médae et la moyee (arthmétque) de cette dstrbuto ) Calculer l étedu, l écart absolu moye, la varace et l écart type de cette dstrbuto ) Calculer le coeffcet d asymétre de FISHER 4) Calculer le coeffcet d aplatssemet de Fsher La représetato graphque : Comme les classes ot des ampltudes égales, o a pas beso de corrger les effectfs avat de fare la représetato graphque. /5

2 Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b ) Calculer le mode, la médae et la moyee (arthmétque) de cette dstrbuto Le mode est doé par la formule : M o B + (B Avec c B la bore féreure de la classe (c B 60) B la bore supéreure de la classe (c B 70) d ' ' avec ' d ' ' + B effectf corrgé de la classe modale ) d d + d ' a Remarque : Comme les classes ot des ampltudes égales, o a pas beso de corrger les effectfs c'est-à-dre que ' Doc c d 0-64 et d Ce qu doe : M o 60 (70 60) 64 Médae : Pour calculer la médae o calcule les fréqueces cumulées ascedates et descedates : Classe x cumbas cumhaut Fcumbas Fcumhaut [40 à 50[ ,,0000 [50 à 60[ , 0,8667 [60 à 70[ ,6667 0,6667 [70 à 80[ ,8000 0, [80 à 90[ ,9 0,000 [90 à 00[ 95 0,0000 0,0667 La médae se trouve das la classe [60, 70[ M e B + a 0,5 F( B ) F( B ) F( B ) /5

3 Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b avec B : bore féreure de la classe médae (c 60) ; B bore supéreure (c 70) a : ampltude de la classe médae (c : ) F(B ) : fréquece relatve cumulée attete e B (c 0,) (f cum ) F(B ) : fréquece relatve cumulée attete e B (c 0,66) (f cum ) Doc c, 0,5 0, M e * 65,5 d où, Me 65, 5 0,66 0, Moyee La moyee (arthmétque) est doée par la formule O calcule doc les x das ue ouvelle coloe : Classe x x [40 à 50[ [50 à 60[ [60 à 70[ [70 à 80[ [80 à 90[ [90 à 00[ x x 0 Et o e fat la somme. x , ) Calculer l étedu, l écart absolu moye, la varace et l écart type de cette dstrbuto Das le cas de doées groupées e classe l étedu sera la dfférece etre la bore supéreure de la derère classe et la bore féreure de la premère. Sot Ecart absolu moye : e x x O calcule das ue ouvelle coloe la valeur absolue des somme. x, o multple par et o e fat la x x Classe x x [40 à 50[ , 85, [50 à 60[ , 67,98 [60 à 70[ ,, [70 à 80[ ,67 4,68 [80 à 90[ ,67 74,68 [90 à 00[ ,67 57,4 /5

4 Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b 0 O obtet : e,0, x Varace : Elle est doée par (x) (x V ) ou par la formule développée O calcule doc les coloes suvates : V(x) x x x Classe x x x [40 à 50[ ,97 89, [50 à 60[ ,7 770, 850 [60 à 70[ ,77 7,7 450 [70 à 80[ ,7 00, [80 à 90[ ,57 94, [90 à 00[ ,97 64, somme ,8 5946, V(x) (x 5946,7 0 ) 98, Ou ecore : V(x) x , 98, 66 0 Remarque : les deux chffres dffèret à cause des arrods utlsés (c 0 - ). Le calcul par la formule développée est plus smple car l e écesste qu ue seule coloe. écart type est tout smplemet la race carrée de la varace sot : σ V (x) 98,66 4,09 ) Calculer le coeffcet d asymétre de FISHER γ σ Il faut pour cela calculer les momets cetrées d'ordre et 4 x x x x Classe x x [40 à 50[ , -887, ,8 [50 à 60[ , -876,5 9887,45 [60 à 70[ , -,5,9 [70 à 80[ ,67 606,86 60,45 [80 à 90[ ,67 60, 48600, [90 à 00[ ,67 47,7 565,75 somme , ,85 4 4/5

5 Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b 80, , , ,9 940,056 Ce qu doe le coeffcet d asymétre : γ 0, 6 σ 4,09 Le coeffcet d asymétre est légèremet postf, la dstrbuto est légèremet asymétrque étalée vers la drote. Pour le coeffcet d aplatssemet o obtet par la formule : 4(x) γ avec (x) V(X) (x) 4(x) ,85 γ 0,64 (x) 98,66 γ est égatf c'est-à-dre que la dstrbuto est dte platycurtque (légèremet). Elle est doc plus aplate que la lo ormale de mêmes moyee et écart-type. 5/5

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

1 ère partie : STATISTIQUE DESCRIPTIVE

1 ère partie : STATISTIQUE DESCRIPTIVE ère parte : STATISTIQUE DESCRIPTIVE CHAPITRE : COLLECTE DE L INFORMATION, TABLEAUX ET GRAPHIQUES. I. Défto et vocabulare Défto : la statstque est ue méthode scetfque qu cosste à réur des doées chffrées

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

ANALYSE DES CORRESPONDANCES SIMPLES

ANALYSE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez MESURE DE LIAISON ENTRE DEUX VARIABLES QUALITATIVES KHI-DEUX Mesure de la laso etre deux varables qualtatves

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chaptre 4 : RÉGRESSION 4. Régresso léare smple 4.. Équato de la régresso 4.. Estmato par les modres carrés 4..3 Coeffcet de détermato 4..4 Iférece sur les coeffcets 4..5 Prévso et aalyse des résdus Régresso

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

TP SdF N 12. Estimations de fiabilité

TP SdF N 12. Estimations de fiabilité TP SdF N 1 Estimatios de fiabilité Ce TP a pour objet d élaborer des estimateurs de fiabilité à partir de doées statistiques. 1. Rappeler les caractéristiques d u estimateur et la otio d itervalle de cofiace..

Plus en détail

Espaces vectoriels (et affines).

Espaces vectoriels (et affines). Esaces vectorels (et affes) Cha 04 : cours comlet Esaces vectorels réels ou comlexes (Su) Défto : K-esace vectorel Défto 2 : K-algèbre Théorème : exemles Défto 3 : combaso léare de vecteurs Défto 4 : sous-esace

Plus en détail

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2

2013 LES DÉLAIS DE PAIEMENT. STATISTIQUES DE 2000 À 2012 EN NOMENCLATURE NAF rev. 2 203 LES DÉLAIS DE PAIEMENT STATISTIQUES DE 2000 À 202 EN NOMENCLATURE NAF rev. 2 Javer 204 Itroducto Des séres statstques chroologques des délas de paemet et du solde du crédt teretreprses sot dspobles

Plus en détail

Analyse de régression

Analyse de régression Itroducto à la régresso Aalyse de régresso La régresso est utlsée pour estmer ue focto f( ) décrvat ue relato etre ue varable explquée cotue,, et ue ou pluseurs varables explcatves,. = f(,, 3,, )+ε Remarque

Plus en détail

SCHEMA DE BERNOULLI ET LOI BINOMIALE. EXEMPLES

SCHEMA DE BERNOULLI ET LOI BINOMIALE. EXEMPLES SCHEMA DE BERNOULLI ET LOI BINOMIALE EXEMPLES Nveau : termale Pré-requs : Espace probablsé Varable aléatore réelle sur u espace probablsé f Lo de probablté de X Espérace mathématque Varace O se place das

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

Interprétation des variables d écart

Interprétation des variables d écart Iterprétato des varables d écart IFT575 Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplexe c. Dualté d. Aalyse de sesblté Das la soluto optmale du problème Wydor Glass, o a

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

6GEI300 - Électronique I. Examen Partiel #1

6GEI300 - Électronique I. Examen Partiel #1 6GEI3 Électroque I Autome 27 Modalté: Aucue documetato est permse. Vous avez drot à ue calculatrce o programmable. La durée de l exame est de 3h Cet exame compte pour 2% de la ote fale. Questo 1. Questos

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

INITIATION AUX PROBABILITES

INITIATION AUX PROBABILITES INITIATION AUX PROBABILITES. Vocabulare.. Expérence aléatore Une expérence aléatore est une expérence dont les résultats sont lés au hasard. Exemple : le trage d'une carte à jouer... Evènement Un événement

Plus en détail

Statistique à une variable.

Statistique à une variable. Statstque à une varable. Bref rappel des notons acquses dans les classes antéreures. Une populaton est un ensemble d ndvdus sur lesquels on étude un caractère ou une varable, qu prend dfférentes valeurs

Plus en détail

" BIOSTATISTIQUE - 1 "

 BIOSTATISTIQUE - 1 ISTITUT SUPERIEUR DE L EDUCATIO ET DE LA FORMATIO COTIUE Départemet Bologe Géologe S0/ " BIOSTATISTIQUE - " Cours & Actvtés : Modher Abrougu Aée Uverstare - 008 Modher Abrougu Bostatstque «I» ISEFC - 008

Plus en détail

Analyse de survie. Michel Fioc. (Michel.Fioc@iap.fr, www2.iap.fr/users/fioc/enseignement/analyse_de_survie/)

Analyse de survie. Michel Fioc. (Michel.Fioc@iap.fr, www2.iap.fr/users/fioc/enseignement/analyse_de_survie/) École doctorale d astroome et d astrophysque d Île de Frace. I.A.P., févrer 2013 Post-master. Approche statstque bayésee par l exemple Aalyse de surve Mchel Foc (Mchel.Foc@ap.fr, www2.ap.fr/users/foc/esegemet/aalyse_de_surve/)

Plus en détail

6.1 Modèle multiplicatif de mortalité excédentaire (proportional

6.1 Modèle multiplicatif de mortalité excédentaire (proportional 6 Tests d hypothèse (Klei 6.3, Lawless 10.2 et 10.3, Klugma 13.4) 6.1 Modèle multiplicatif de mortalité excédetaire (proportioal hazard) O veut comparer la mortalité d u groupe sous étude avec celle d

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES SOMMAIRE. Normes sur u espace vectorel E 2.. Défto d'ue orme. Cter l'égalté tragulare reversée. 2.2. Normes usuelles

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1 1 Statistique iferetielle. Relatios Iteratioales Lucya Firlej Pl. E.Bataillo, Bat.11, cc.06 34095 Motpellier cedex 5 Frace lucya.firlej@umotpellier.fr S3. Statistics. 30 h d eseigemet: 10 cours, 10 TD,

Plus en détail

MICROECONOMIE APPROFONDIE ET CALCUL INTERTEMPOREL

MICROECONOMIE APPROFONDIE ET CALCUL INTERTEMPOREL 3èm aé r smstr II Alcatos à la gsto d ortfull. L modèl CAPM. a. Préfércs tr tmorlls t otmsato sur érods.. rdmt d actf t rsqu. msur sml du rdmt d u actf r avc d + d rx du ttr à la f d la érod cosdéré rx

Plus en détail

PHYSIQUE DES SEMICONDUCTEURS

PHYSIQUE DES SEMICONDUCTEURS MIISTERE DE L'ESEIGEMET SUPERIEURE ET DE LA REHERHE SIETIFIQUE UIERSITE DE BEHAR Départemet es Sceces Laboratore e Pysque es spostfs à semcoucteurs (L.P.D.S ttp://www.uv-becar.z/lps/ PHYSIQUE DES SEMIODUTEURS

Plus en détail

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (5/0/00) Chapitre 4 Lois de Probabilité Sommaire. Itroductio. 4. Lois discrètes..4.. Loi uiforme..4... Défiitio...4... Espérace et variace..5..

Plus en détail

Reconnaissance des formes: Fenêtre de Parzen

Reconnaissance des formes: Fenêtre de Parzen Préom Nom Recoaissace des formes: Feêtre de Parze Pricipes de l'appretissage o paramétrique Estimatio o paramétrique de la desité Feêtres de Parze vs. k plus proches voisis Feêtres de Parze Réseau de euroes

Plus en détail

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES ITE ARITHMETIQE ET GEOMETRIQE EXERCICE : Voc e sére de formle mse e place das le cors : ITE ARITHMETIQE r r p q (p q r 5 ( (...... ( ITE GEOMETRIQE q 6 q q... q q q 7 q 8... q q r s r s q Voc este e sére

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Exercices sur le conditionnement : corrigé

Exercices sur le conditionnement : corrigé Exercces sur le codtoemet : corrgé ECE Lycée Kastler mars 008 Exercce * Pour be compredre commet ça se passe le meux est de commecer par retradure claremet l'éocé e utlsat les otatos esemblstes vues e

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Chapitre III. Gaz parfaits

Chapitre III. Gaz parfaits Chatre III Gaz arfats IIIA : Déftos rorétés IIIAI : Gééraltés : U gaz arfat est u flude déal qu satsfat à l équato d état vr, ou ecore c est u gaz qu obét rgoureusemet aux tros los MARIOE, GAY LUSSAC et

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

Rappel (voir cours 1). On obtient l ampleur de chacune de ces dispersions par les sommes suivantes :

Rappel (voir cours 1). On obtient l ampleur de chacune de ces dispersions par les sommes suivantes : Master SV U7 COURS III - - Aalyse de varace (ANOVA I Patrc Coqullard I. ANOVA T RGRSSION MULTIPL I.. Rappels Ue régresso multple s accompage toujours d ue aalyse de varace ( ANalyse Of VArace = ANOVA.

Plus en détail

Analyse Statistique des Données de Lifetest

Analyse Statistique des Données de Lifetest Aalyse Statstque des Doées de Lfetest Evas Gouo Laboratore de Statstque Applquée de l Uversté de Bretage-Sud Pla Gééraltés Les modèles paramétrques Essas accélérés : modèle d accélérato Exemple Step-Stress

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 010 SBN : 978--1-54754- Sommare Remercemets... troducto De l terchageablté à Sx Sgma... 1 V CHAPTRE 1 Du toléracemet tradtoel

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Suites numériques : définition générale.

Suites numériques : définition générale. 1 Suites arithmétiques Suites umériques : défiitio géérale.... Le pricipe de récurrece... 3 Suites arithmétiques... 4 Formule 1 des suites arithmétiques... 5 Appreos à compter... 6 Formule des suites arithmétiques...

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

Vitesses de recouvrement et lois de Chung-Mogulskii dans pour le processus empirique

Vitesses de recouvrement et lois de Chung-Mogulskii dans pour le processus empirique Vitesses de recouvremet et lois de Chug-Mogulskii das pour le processus empirique Davit VARRON Laboratoire de Statistiques et Modélisatio, 6 rue Blaise Pascal, 3517 Bruz Résumé: E cotiuatio des travaux

Plus en détail

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1 Momet d'ue force Théorème du momet ciétique Théorème du momet ciétique référetiel iertiel repère fixe /réf. o poit o fixe / repère m M V dt = d P OM dt = OM d P d OM P = d OM P OM d P = V dt m V OM d P

Plus en détail

AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION

AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION AJUSTEMENT ANALYTIQUE RÉGRESSION - CORRÉLATION. INTRODUCTION Il est fréquet de s'terroger sur la relato qu peut exster etre deux gradeurs e partculer das les problèmes de prévso et d estmato. Tros types

Plus en détail

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre.

Au sommaire : Des généralités. Polynôme d'endomorphisme. Polynômes minimal d'un endomorphisme. Valeur et vecteur propres. Sous-espace propre. - De la réducto des edomorphsmes - Ce cours a été rédgé e ovembre 994 alors que e préparas l'agrégato de mathématques et ms à our e u et ullet 2. Das le cas où l comporterat des erreurs, merc de me les

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

Cours 8 : Analyse de variance à un facteur

Cours 8 : Analyse de variance à un facteur PSY 004 Techques d aalyses e sychologe Cours 8 : alyse de varace à u facteur Table des matères Secto. "U cou de dé jamas 'abolra le hasard"... Secto. Itroducto à l aalyse de varace NOV... Secto 3. Réartto

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

Application de la théorie des valeurs extrêmes en assurance automobile

Application de la théorie des valeurs extrêmes en assurance automobile Applcato de la théore des valeurs extrêmes e assurace automoble Nouredde Belagha & Mchel Gru-Réhomme Uversté Pars 2, ERMES-UMR78-CNRS, 92 rue d Assas, 75006 Pars, Frace E-Mal: blour2002@yahoo.fr E-Mal:

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Introduction aux matrices et au calcul matriciel

Introduction aux matrices et au calcul matriciel Chapitre 2 : Itroductio aux matrices et au calcul matriciel Das le premier chapitre, ous avos vu la résolutio par la méthode du pivot de systèmes d équatio du type : x + 2y z 1 (S) x y + z 3 x + y 2z 3

Plus en détail

Chapitre 3 RÉGRESSION CORRÉLATION

Chapitre 3 RÉGRESSION CORRÉLATION Chapitre 3 RÉGRESSION CORRÉLATION Les doées se présetet sous la forme d ue suite de couples de valeurs umériques(x i, y i ), umérotés de à i =. O ote m x, s x ², m y, s y ² les moyees et les variaces des

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Méthodologie statistique

Méthodologie statistique Métodologe statstque M050 LA CORRECTIO DE LA O-REPOSE PAR REPODERATIO ET PAR IMPUTATIO atale Cao Documet de taval Isttut atoal de la Statstque et des Etudes Ecoomques ISTITUT ATIOAL DE LA STATISTIQUE ET

Plus en détail

Cours 3 : Probabilités

Cours 3 : Probabilités PS 004 Techques d aalyses e sychologe Cous 3 : Pobabltés Table des matèes Secto. La oulette usse : oblème emque?... 3 Secto. Rôle de la obablté e statstques ductves... 3 Secto 3. La dstbuto bomale... 4

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

T.P. 2 Exercice 1 Séries statistiques et distributions statistiques

T.P. 2 Exercice 1 Séries statistiques et distributions statistiques T.P. Exercce Séres statstques et dstrbutons statstques Connassances préalables : Buts spécfques : Outls nécessares: Annexe oton de sére et dstrbuton statstques. Jongler avec ces notons et avec les notons

Plus en détail

Les sinistres graves en assurance automobile : Une nouvelle approche par la théorie des valeurs extrêmes

Les sinistres graves en assurance automobile : Une nouvelle approche par la théorie des valeurs extrêmes Les sstres graves e assurace automoble : Ue ouvelle approche par la théore des valeurs extrêmes Nouredde Belagha (*, Mchel Gru-Réhomme (*, Olga Vasecho (** (* Uversté Pars 2, ERMES-UMR78-CNRS, 2 place

Plus en détail

Quelques inégalités classiques

Quelques inégalités classiques Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques

Plus en détail

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques IFT393 Qualté du logcel et métrques Chaptre 7 Collecte et aalyse des métrques Pla du cours Itroducto Qualté du logcel Théore de la mesure Mesure du produt logcel Mesure de la qualté du logcel Études emprques

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Devoir de révision vacances de printemps. Durée : 2 heures nom et prénom : Exercice 2 :

Devoir de révision vacances de printemps. Durée : 2 heures nom et prénom : Exercice 2 : Termiale sts Devoir de révisio vacaces de pritemps Durée : heures om et préom : Exercice 1 : U laboratoire pharmaceutique fabrique u médicamet. Le test de cotrôle de qualité de ce médicamet porte sur deux

Plus en détail

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005)

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005) EXERCICES SUR LES STATISTIQUES Exercce 1 Un commerçant effectue des lvrasons de fuel pour les chaudères. La répartton des volumes dstrbués à chaque lvrason s effectue selon le tableau suvant : Volumes

Plus en détail

f(t) g(t)dt f²(t)dt g²(t) dt a a a

f(t) g(t)dt f²(t)dt g²(t) dt a a a PCSI Chatre 4 : Produts scalares-résumé Das ce chatre E est u -ev. Produts scalares. Défto et exemles de référeces Def: O aelle rodut scalare sur E toute alcato de E² das est bléare. est symétrque: x,ye,

Plus en détail

RSA : Théorie et attaque

RSA : Théorie et attaque RSA : Théore et attaque La cryptographe, c est à dre l étude des systèmes de chffremet et de sécursato, est ue scece qu évolue vte Nous e voulos pour preuve la multtude de documets datat de cette aée (parus

Plus en détail

Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (25/02/2003) ... Chapitre 8. Tests du χ 2. Sommaire

Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (25/02/2003) ... Chapitre 8. Tests du χ 2. Sommaire Chaptre 8 Tests du χ Sommare 1. Itroducto... Prcpe des tests du χ.....1. La statstque du χ..... Les codtos d applcato..3.3. Les degrés de lberté.....3 3. Test du χ d'ajustemet.......4 3.1. Prcpe du test.....4

Plus en détail

6. RADIERS 6.1. GÉNÉRALITÉS

6. RADIERS 6.1. GÉNÉRALITÉS 6. RADIERS 6.. GÉNÉRALITÉS U raer est ue alle plae, évetuellemet ervurée, costtuat l'esemble es foatos 'u bâtmet. Il s'éte sur toute la surface e l'ouvrage. Ce moe e foato est utlsé as eux cas : lorsque

Plus en détail

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite.

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite. www.mathsenlgne.com 2G3 - EQUATINS DE DRITES CURS (1/5) CNTENUS CAPACITES ATTENDUES CMMENTAIRES Drote comme courbe représentatve d une foncton affne. - Tracer une drote dans le plan repéré. - Interpréter

Plus en détail

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression Pla du cours Méthodes de statistique iféretielle. A. Philippe Laboratoire de mathématiques Jea Leray Uiversité de Nates Ae.Philippe@uiv-ates.fr 1 Itroductio 2 Probabilités : Variables Aléatoires Cotiues

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Module de statistiques

Module de statistiques Module de statstques On utlsera les exemples suvants dans tout le chaptre : Exemple 1 : Dans une maternté, on a référencé les pérmètres crânens à la nassance de 290 nouveaux nés. Pérmètre ( en cm ) 32

Plus en détail

ÉCOLE POLY TECHNI QUE FÉDÉRALE DE LAUSANNE. Aides à la Décision pour la Construction de Tunnels - A D C T - J.-P. Dudt LMR

ÉCOLE POLY TECHNI QUE FÉDÉRALE DE LAUSANNE. Aides à la Décision pour la Construction de Tunnels - A D C T - J.-P. Dudt LMR ÉCOLE POLY TECHNI QUE FÉDÉRALE DE LAUSANNE Aides à la Décisio pour la Costructio de Tuels - A D C T - J.-P. Dudt LMR LABORATOIRE DE MÉCANIQUE DES ROCHES But des A D C T Idetifier les icertitudes / costr.

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail

Cours et Exercices de Probabilités et Statistique descriptive Niveau Licence 1

Cours et Exercices de Probabilités et Statistique descriptive Niveau Licence 1 Cours et Exercices de Probabilités et Statistique descriptive Niveau Licece 1 U.F.R. Maths-Ifo i Prof. Auguste AMAN et Dr. Jea Marc OWO Table des matières I Statistique descriptive 1 1 Les doées statistiques

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Informatique quantique IFT6155. Algorithmes simples

Informatique quantique IFT6155. Algorithmes simples Iformatique quatique IFT6155 Algorithmes simples 1 Calcul de foctios À chaque foctio f : X Y o peut associer ue opératio uitaire F x y := x y f(x) clairemet F = F, F F = I et F x 0 := x f(x) Si f est ue

Plus en détail