Epreuve de Mathématiques - Durée : 4 heures.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Epreuve de Mathématiques - Durée : 4 heures."

Transcription

1 Lycée Saint-Exupéry BAC BLANC - Février 04 - Terminales S Epreuve de Mathématiques - Durée : 4 heures. Le sujet est composé de exercices communs à tous les candidats, d un exercice réservé aux candidats n ayant pas suivi l enseignement de spécialité, et d un exercice réservé aux candidats ayant suivi l enseignement de spécialité. Les exercices sont indépendants les uns des autres. Le candidat doit traiter les 4 exercices qui le concernent. La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies. L usage de la calculatrice est autorisé. Le sujet est à rendre avec la copie. Exercice ( 4 points) Commun à tous les élèves. Les parties A et B sont indépendantes Partie A : et sont deux évènements indépendants sur un univers fini. Démontrer que et sont indépendants. Partie B : Un employé se rend à son travail en bus. S il est à l heure, il prend le bus de ramassage gratuit mis à disposition par l entreprise, s il est en retard, il prend le bus de la ville, il lui en coûte,50. Si l employé est à l heure un jour donné, la probabilité qu il soit en retard le lendemain est. S il est en retard un jour donné, la probabilité qu il soit en retard le lendemain est. Pour tout entier naturel non nul, on appelle l événement : «l employé est en retard le jour». On note la probabilité de et celle de. On suppose que 0.. Détermination d une relation de récurrence. a. Donner les probabilités conditionnelles : et. b. Déterminer en fonction de puis en fonction de. (Construire un arbre pondéré) c. Exprimer en fonction de et. d. En déduire que.. Etude de la suite. Pour tout entier naturel non nul, on pose. a. Démontrer que la suite est une suite géométrique de raison. b. Exprimer puis en fonction de. c. Justifier que la suite est convergente et calculer sa limite. Exercice (5 points) Uniquement pour les élèves ne suivant pas la spécialité maths. Les questions et peuvent être abordées de façon indépendante.. a. Résoudre dans l équation ² 0. Donner les solutions sous forme algébrique puis exponentielle. b. En déduire, grâce au changement de variable, les solutions dans de l équation : 0. Les donner sous forme algébrique.. Le plan est muni d un repère orthonormé direct ; ; d unité graphique cm. On considère les points A, B et C d affixes respectives, et. a. Déterminer les formes algébriques de et ainsi que celle de I milieu de [AC]. b. Faire une figure, y-placer les points A, B, C et I. c. Soit l ensemble de points M d affixe tels que. Déterminer la nature de. Puis, montrer que le point D d affixe appartient à. Que peut-on en déduire à propos du triangle ACD? d. Soit l ensemble de points M d affixe tels que. Déterminer la nature de. Puis, montrer que les points A, C et D appartiennent à. En déduire la nature du triangle ACD.

2 Exercice (5 points) Uniquement pour les élèves suivant la spécialité maths. Cet exercice est à traiter sur une feuille à part. Vu qu'il contient une annexe, vous devez détacher les deux feuilles de votre énoncé, rendre la première (donc celle-ci) avec votre exercice de spécialité, et la deuxième (donc l'autre) avec vos exercices du tronc commun. Le plan est muni d un repère orthonormal. Soient et deux entiers naturels non nuls ; on appelle "réseau" associé aux entiers et l ensemble des points du plan dont les coordonnées ; sont des entiers vérifiant les conditions 0 et 0. On note, ce réseau. Les parties A, B et C sont indépendantes. A Représentation graphique de quelques ensembles. Dans cette question, les réponses sont attendues sans explication, sous forme d un graphique dûment complété sur l annexe mise en bas de cette page et à rendre avec la copie. Représenter graphiquement les points ; du réseau, vérifiant :. mod et mod, sur le graphique de l annexe ;. mod, sur le graphique de l annexe ;. mod, sur le graphique de l annexe. (Faites clairement ressortir les points du réseau que vous considérez comme solution.) B Résolution d une équation. On considère l équation : 7 4, où les inconnues et sont des entiers relatifs.. Déterminer un couple d entier relatifs ; solution de l équation.. Déterminer l ensemble des couples d entiers relatifs solutions de l équation.. Démontrer que l équation admet une unique solution ; pour laquelle le point ; correspondant appartient au réseau,. C Une propriété des points situés sur la diagonale du réseau. Si et sont deux entiers naturels non nuls, on considère la diagonale du réseau, avec 0; 0 et ;.. Démontrer que les points du segment sont caractérisés par les conditions : 0 ; 0 ;.. Démonter que si et sont premiers entre eux, alors les points et sont les seuls points du segment appartenant au réseau,.. Démonter que si et e sont pas premiers entre eux, alors le segment contient au moins un autre point du réseau,. (On pourra considérer le pgcd des nombres et, et poser et.) Annexe, à rendre avec votre exercice de spécialité. y 8 y 8 y x x x Graphique Graphique Graphique Nom, prénom, classe :

3 Exercice (7 points) Commun à tous les élèves. On s intéresse aux fonctions f dérivables sur [0; + [ vérifiant les conditions : () : pour tout réel x appartenant à [0; + [, f 0 (x) = 4 (f(x)) () : f (0) = 0 On admet qu il existe une unique fonction f vérifiant simultanément () et (). Les deux parties peuvent être traitées de manière indépendante. L annexe sera complétée et remise avec la copie à la fin de l épreuve. Partie A. Étude d une suite Afin d obtenir une approximation de la courbe représentative de la fonction f, on construit une suite de points notés (M n ), d abscisse x n et d ordonnée y n telles que : x 0 = 0 et pour tout entier naturel n, x n+ = x n + 0, y 0 = 0 et pour tout entier naturel n, y n+ = - 0, y n + y n + 0,8. a. Les coordonnées des premiers points sont consignées dans le tableau suivant : n x n 0 0, 0,4 y n 0 0,800 0,47 0 Compléter ce tableau. On donnera les résultats à 0-4 près. b. Placer, sur le graphique donné en annexe, les points M n pour n entier naturel inférieur ou égal à 7. c. D après ce graphique, que peut-on conjecturer sur le sens de variation de la suite (y n ) et sur sa convergence?. a. Pour x réel, on pose p(x) = -0, x + x+ 0,8. Etudier les variations de p sur [ 0;] et montrer que si x [0 ; ] alors p(x) [0; ]. b. Montrer que pour tout entier naturel n, 0 y n y n+. c. La suite (y n ) est-elle convergente? Partie B. Étude d une fonction Soit g la fonction définie sur [0 ; + [ par g(x) = e e 4x 4x et (C + g ) sa courbe représentative.. Montrer que g'(x) = 6 puis que la fonction g vérifie les conditions () et (). ( + ) ².a. Montrer que (C g ) admet une asymptote dont on donnera une équation. b. Étudier les variations de g sur [0 ; + [. c. Montrer que l'équation g(x) = admet une unique solution sur [ 0 ; +õ [. Déterminer l abscisse α du point d intersection de et de la tangente à (C g ) à l origine. Tracer, dans le repère de l annexe, la courbe (C g ) et les éléments mis en évidence dans les questions précédentes de cette partie B. Exercice 4 (4 points) Commun à tous les élèves. Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des propositions est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n est demandée. Une réponse exacte rapporte point ; une réponse inexacte enlève 0,5 points ; l absence de réponse est comptée 0 points. Si le total est négatif, la note de l exercice est ramenée à 0.. Les solutions dans [ 0 ; ] de l'inéquation : cos ( 4x+ π 4 ) - π 5π a) x 8 ; π 4 8 ; π 4 b) x π 8 ; π 4 c) x 0; π π 8 ; 7π 8. On considère l algorithme ci-contre : En saisissant n =, à la sortie de cet algorithme : a) S vaut 0. b) u vaut. c) S vaut. sont les réels x tels que : Initialisation : S prend la valeur, i prend la valeur 0, u prend la valeur Saisir n Traitement : Tant que i<n, u prend la valeur u+ i S prend la valeur S+u, i prend la valeur i+, Fin tant que Sortie : Afficher S et u

4 . Soit une fonction telle que pour x : x+ x On a alors a) lim f(x) = - x - b) lim f(x) = x - c) lim x + f(x) = +e x. 4. On considère la pyramide régulière à base carrée ABCDS de côté 5 cm ; c'est-à-dire que les quatre triangles SCD, SAD, SBA et SBC sont équilatéraux et ABCD un carré de côté 5. Les points I et J sont sur [ SC] et [ SD] tels que SJ =,75 et Le point K appartient à la face (SBC) tel que les droites (IK) et (BC) ne sont pas parallèles. On appelle l intersection des plans (IJK) et (BDC) a) et (IJ) sont non coplanaires b) Le point d'intersection de (IK) et (BC) appartient à c) Le point d'intersection de (IK) et (BA) appartient à Annexe Nom, prénom, classe : 4

5 Lycée Saint-Exupéry BAC BLANC - Février 04 - Terminales S Correction Exercice ( 4 points) Commun à tous les élèves (0,5 + 0,75 + 0,75) + (0,5 + (0,5+ 0,5) + (0,5 + 0,5)) Partie A : Cf. cahier de cours! Partie B :. Détermination d une relation de récurrence. a. Donner les probabilités conditionnelles : et. et b. Déterminer en fonction de puis en fonction de. (Construire un arbre pondéré) L expérience est décrite par l arbre ci-dessous où est un entier naturel. Ainsi :.. c. Exprimer en fonction de et.. d. En déduire que Comme les événements et sont complémentaires alors Ainsi,.. Etude de la suite. Pour tout entier naturel non nul, on pose a. Démontrer que la suite est une suite géométrique de raison. Pour tout entier non nul, or d après la question.d,. Donc,. Donc, la suite est une suite géométrique de raison b. Exprimer puis en fonction de. Comme est une suite géométrique de raison alors pour tout entier naturel non nul, on a :.. or 0 Donc, pour tout entier naturel non nul, on a :. Pour tout entier naturel non nul, on a : donc c. Justifier que la suite est convergente et calculer sa limite. Comme alors lim 0. Donc, lim. La suite est convergente vers. Interprétation, la probabilité que la personne arrive en retard le è jour lorsque tend vers + est. 5

6 Exercice (5 points) Uniquement pour les élèves ne suivant pas la spécialité maths. ( + ) + (0,5 + 0,5 + (0,75 + 0,5) + (0,75 + 0,5). a. 4 solutions complexes conjuguées et. cos Donc,. donc ou or sin Donc, une notation exponentielle de est donc une notation exponentielle de est b. Dans Ê, 0 ² 0 d après la question.a. les solutions de l équation ² 0 sont et. Résolvons donc : et Donc S = ;. Le plan est muni d un repère orthonormé direct ; ; d unité graphique cm. On considère les points A, B et C d affixes respectives, et. a. ; et b. OK c. M() M() appartient à la médiatrice de [AC]. Donc, est la médiatrice de [AC]. 5 et 5 Donc, D DA = DC Ainsi, le triangle ACD est isocèle en D. d. M() rayon. Donc, est le cercle de centre I et de rayon. M() appartient au cercle de centre I et de donc A donc C donc D Les points A, C et D appartiennent au cercle de centre I et de rayon. Or I est le milieu de [AC]. Donc, [AC] est un diamètre de ce cercle. Comme D appartient à un cercle de diamètre [AC] alors le triangle ACD est rectangle en D. En conclusion : Le triangle ACD est rectangle et isocèle en D. Exercice (7 points :A: (0,5 ) ;0,5;0,5;(0,5+0,5);(I:0;5, H :0,5 ; C :0,5);0,5;B: 0,5+0,5) ; 0,5;0,5;( 0,5+0,5);(0,5+0,5);(0,5+0,5) ) Commun à tous les élèves. Partie A. a. n x n 0 0, 0,4 0,6 0,8, y n 0 0,800 0,47 0,886,965,99,9984 b. c. on peut conjecturer que la suite (y n ) est croissante pour n 0 et qu'elle converge vers. a. Pour x réel, on pose p(x) = -0, x + x+ 0,8. p est définie et dérivable sur Ë donc sur [ 0; ] et p'(x) = -0,4x+. De plus -0,4x+ 0 0,4x - x,5. On obtient donc : x 0 signe de p + p 0,8 Il est alors clair que si x [ 0;], p(x) [0,8;] Donc p(x) [ 0; ] 6

7 b. On Pose Pn : " 0ÂynÂyn+Â", pour n É y0= 0 et y=0,8 - Vérifions que la propriété est vraie au rang 0 : 0Â0Â0,8 donc P0 est vraie - Supposons qu'il existe un entier p tel que la propriété soit vraie au rang p c'est-à-dire que : 0ÂypÂyp+ Démontrons qu'alors la propriété est encore vraie au rang suivant p + - Or 0ÂypÂyp+Âdonc p(0)âp(yp)âp(yp+)âp() car p est croissante sur [ 0; ] Donc 0Âyp+Âyp+Â.Donc la propriété est vraie au rang p + Donc la propriété est vraie pour tout entier n 0 et donc la suite y est croissante et bornée c) la suite y converge car elle est croissante et majorée par Partie B. Étude d une fonction Soit g la fonction définie sur [0 ; + [ par g(x) = g(0) = 0 e e 4x 4x + et (C g ) sa courbe représentative. De plus g est de la forme u v avec u(x) = e4x - : u est définie, dérivable sur Ë et u'(x) = 4 De même, v(x) = + : v est définie, dérivable sur Ëet v'(x) = 4. de plus pour x Ë, v(x) 0 Donc g est définie et dérivable sur Ë et g' = (u'v uv') v² ( ) Donc pour x Ë : g'(x) = 4 e4x ( +) 4 ( ) ( + ) ² D'autre part : 4 (g(x))² = 4- ( e4x ) + 4( ) = ( + ) ² conditions. a. g(x) = = + + = 6 e4x + ² 4( ) ² = 6 ( + ) ² ( + ) ² = g'(x) donc g satisfait bien aux deux = 0 Or lim 4x = + õ et x + X + lim ex = + õ donc par composition lim x + e4x = + õ donc lim x + et donc par somme, produit puis quotient lim x + g(x) =. Donc (C g) admet une asymptote horizontale d'équation y = b. g'(x) = 6 ( donc il est clair que pour x [ 0 ; +õ [, g'(x) >0 et donc que g est strictement croissante sur [ 0; +õ [ + ) ² c. sur [ 0; +õ [ : g est continue ( car dérivable), strictement croissante. De plus g(0)=0 et lim g(x) = ;, comme [ 0; [, le x + théorème de la bijection nous dit que l'équation g(x)= admet une unique solution sur [ 0 ; +õ [. la tangente en 0 à (C g ) a pour équation y = g'(0)(x 0)+g(0) ce qui donne y=4x est lors solution de l'équation 4x= donc = Exercice 4 (4 points) Commun à tous les élèves.. Dans Ë et avec k Î : (I ) :cos 4x+ π 4 - cos 4x+ π 4 cos( π 4 ) π 4 +kπ Â4x+ π 4  5π 4 +kπ Donc (I) π +kπ  4x  +kπ π 8 + kπ  x  π 4 + kπ Pour k =0, on trouve π 8  x  π 5π et pour k = : 4 8 Âx π 4 et ce sont les seules solutions dans [ 0; Donc Réponse a) x π 8 ; π 5π 4 8 ; π 4. Donc réponse c) S vaut. N U 6 S 4 0 i 0 7

8 x+. lim x - x = lim x - x x + x + x = lim x - x x x+ donc par quotient lim x - x = De plus, lim Donc d après le théorème des gendarmes lim x - Remarque : on montre de même que la limite de f en + õ x+ lim x + x Or lim x - x =0 et lim x - x = 0 x - ex = 0 donc par somme lim x - +ex =. f(x) = : Réponse b) = mais lim x + +ex = +õ ce qui ne permet pas de conclure quant à 4. Dans le triangle SDC : les points S, J et D et S, I et C sont alignés dans cet ordre et d une part 0,75. Donc,. Donc d après la réciproque du théorème de Thalès (IJ) est parallèle à (DC) 0,75, d autre part Or ( IJK) contient (IJ) et (BCD) contient (DC) : ces deux plans étant sécants en la droite, le théorème du toit nous dit que donc est parallèle à (IJ) : donc et (IJ) sont coplanaires (IK) et (BC) sont coplanaires dans le plan (SCB), elles sont non parallèles et donc elles sont sécantes en un point R. Or R (IK) donc R (IJK) et R (BC) donc R (DCB) donc R est un point commun aux deux plans : R appartient donc à leur droite d'intersection : Réponse b) Remarques : (IK) et (BA) ne sont pas coplanaires donc elles n'ont pas de point d'intersection y M M 4 M 5 M 6 M M M 0 0 x 8

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

ENTRÉE EN TS. Exercice 1 Second degré - les aspects élémentaires.

ENTRÉE EN TS. Exercice 1 Second degré - les aspects élémentaires. 1 ENTREE EN CLASSE DE TERMINALE S. FEUILLE D EXERCICES 2015 1. Pour qui est ce document. Ce document est destiné à tous les élèves entrant en Terminale S, quelle qu ait été leur moyenne dans la discipline

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014 BA BLAN DE MATHÉMATIQUES TERMINALES ES et L ORRETION SUINTE oefficients, ou Année scolaire - Durée heures Page sur 8 pages Année EXERIE. ommun à tous les candidats sur points Un club de remise en forme

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Géométrie (barycentre et produit scalaire dans l espace)

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Géométrie (barycentre et produit scalaire dans l espace) Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Géométrie barycentre et produit scalaire dans l espace) Frédéric Demoulin 1 Dernière révision : 24 avril 2011 1. frederic.demoulin

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES

DEVOIR COMMUN DE MATHÉMATIQUES Classe de Seconde DEVOIR COMMUN DE MATHÉMATIQUES Vendredi 14 février 2014 Durée de l épreuve : 2 H 00 Ce sujet comporte 6 pages numérotées de 1 à 6. Dès que ce sujet vous est remis, assurez-vous qu il

Plus en détail

Corrigé, bac S, mathématiques

Corrigé, bac S, mathématiques Corrigé, bac S, mathématiques jeudi juin 0 Eercice 4 points Le plan est muni d un repère orthonormé (O; ı ; j) On considère une fonction f dérivable sur l intervalle [ 3; ] On dispose des informations

Plus en détail

ANNALES DE MATHEMATIQUES

ANNALES DE MATHEMATIQUES ANNALES DE MATHEMATIQUES TERMINALE S LYCEE LOUIS ARMAND Année scolaire 1999/2000 Annales du baccalauréat S 2000 2 Lycée Louis Armand Annales du baccalauréat S 2000 TABLE DES MATIÈRES Table des matières

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Nombres complexes

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Nombres complexes Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin 1, Olivier Hervé 2 Dernière révision : 22 mai 2008 Document diffusé via le site www.bacamaths.net de Gilles Costantini

Plus en détail

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité Fiche d eercices : Continuité, Dérivabilité et Etude de fonctions Continuité Eercice On considère la fonction f définie sur [ ; + [ par : f() E() pour [ ; 4[ f() 4 + 4 pour [ 4 ; + [ a. Tracer la représentation

Plus en détail

BREVET BLANC MATHEMATIQUES

BREVET BLANC MATHEMATIQUES BREVET BLANC MATHEMATIQUES Avril 2014 ---------- Durée de l épreuve : 2 heures ---------- Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Le sujet est à rendre avec la copie L usage de la calculatrice

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015 MATHEMATIQUES BREVET BLANC Vendredi 3 Avril 2015 Exercice 1 : ( 2,5 points) Un sac contient 5 boules noires numérotées de 1 à 5 et 3 boules blanches numérotées de 1 à 3. Chacune de ces boules a la même

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 014 Durée : h00 Calculatrice autorisée Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉCOLE NATIONALE DE L AVIATION CIVILE ANNÉE 2006 CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉPREUVE DE MATHÉMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte (dans l énoncé d origine, pas

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Exercice 1 /6 Calculer et donner le résultat sous la forme d une fraction irréductible ou d un nombre décimal.

Exercice 1 /6 Calculer et donner le résultat sous la forme d une fraction irréductible ou d un nombre décimal. NOM : Prénom : Classe : Observations : Compétences testées lors de ce devoir Rechercher, extraire et organiser l information utile. Raisonner, argumenter, pratiquer une démarche expérimentale ou technologique,

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES GYMNASE DU BUGNON - LAUSANNE Mai 2008 EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES Date : mai 2008 Durée : 3h Matériel mis à disposition par le gymnase : - Matériel apporté par les

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00

DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00 DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00 ------------------------- Le candidat répondra sur une copie

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord EXERCICE 1 : 5 points Commun à tous les candidats On sait que la courbe C passe par les points A( 2; 0,5), B(0; 2), C(2; 4,5), D(4,5;

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

Baccalauréat ES Amérique du Nord 30 mai 2013

Baccalauréat ES Amérique du Nord 30 mai 2013 Baccalauréat ES Amérique du Nord 30 mai 03 EXERCICE 4 points Cet exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles. Pour chacune de ces questions,

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier maths Seconde Cours de mathématiques 2010-2011 F.Lagrave - Lycée Beaussier cours de mathématiques cours avec exercices T A B L E D E S M A T I È R E S 1 Généralités sur les fonctions 7 1.1 Notion de

Plus en détail

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES L usage de la calculatrice est autorisé. Durée : 2 heures. Le barème tient compte de la qualité de la rédaction et de la présentation

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL MINISTÈRE DE L ÉDUCATION DE L ALPHABÉTISATION ET DES LANGUES NATIONALES RÉPUBLIQUE DU MALI Un Peuple Un But Une Foi PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE

Plus en détail

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y DM Devoir maison 4 lire une abscisse placer un point d'abscisse connu convertir un nombre dans une unité donnée le triangle isocèle construction à partir d'un dessin milieu d'un segment le cercle,construction

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1 Exemple de sujet n 1 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 1 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

PROGRAMME DE MATHEMATIQUES

PROGRAMME DE MATHEMATIQUES MINISTERE DE L EDUCATION NATIONALE -------------- DIRECTION DE LA PEDAGOGIE ET DE LA FORMATION CONTINUE -------------- COORDINATION NATIONALE DE MATHEMATIQUES REPUBLIQUE DE COTE D IVOIRE UNION-DISCIPLINE-TRAVAIL

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Devoir maison numéro 03 Première S

Devoir maison numéro 03 Première S Devoir maison numéro 03 Première S Conseils pour ces vacances : Se reposer durant la première semaine, puis se mettre à travailler régulièrement et de plus en plus jusqu à la rentrée Pour ceux qui ont

Plus en détail

66 exercices de mathématiques pour Terminale ES

66 exercices de mathématiques pour Terminale ES 3 novembre 205 66 exercices de mathématiques pour Terminale ES Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr 3 novembre 205 I Suites........................................ I. Suite

Plus en détail

Expérimentation 2007

Expérimentation 2007 Mathématiques série S Épreuve pratique au baccalauréat Expérimentation 2007 - Banque de sujets - Ce document peut être utilisé librement dans le cadre des activités de l'enseignement scolaire, de la formation

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail