DESSd ingéniérie mathématique Université d Evry Val d Essone Evaluations des produits nanciers

Dimension: px
Commencer à balayer dès la page:

Download "DESSd ingéniérie mathématique Université d Evry Val d Essone Evaluations des produits nanciers"

Transcription

1 DESSd ingéniérie mahémaique Universié d Evry Val d Essone Evaluaions des produis nanciers Véronique Berger Cours Janvier-Mars 2003 version du 27 mars 2003 Conens I Présenaion du plan de cours 3 II Insrumens nanciers 3 1 Dé niion 3 2 Typologie e principe d évaluaion Acifs de base Acions Obligaions Absence d Opporunié d Arbirage (AOA) Change Maières premières Marché des produis de crédi Prix forward d un acif Produis dérivés Call e Pu sur acif Valorisaion par réplicaion dans un univers à deux daes e deux éas du monde : hypohèse AOA e exisence d une probabilié risque neure Marché incomple : un exemple depricingpar sur-réplicaion (TD) Processus binomial à plusieurs périodes III Evaluaion en emps coninu 23 1

2 3 Théorème de valorisaion dans le cas monodimenionnel e avec coe ciens de di usion non sochasiques Quelques dé niions Porefeuille auo nançan Sraégie de rading Opporunié d arbirage Grandes lignes de la démonsraion Analogies avec le modèle discre à une période Di érences Formules Black e Sholes Prix du call Prix du pu Prix forward d un acif Prix BS du call e du pu comme foncion du prix forward de l acif Volailié BS implicie e smile Valorisaion d aures opions exoiques (les calculs qui suiven fon en parie l obje de TD) Digiale sur le sous jacen S 1ère méhode Digiale sur le sous jacen S 2ème méhode Digiale sur le sous jacen S 3ème méhode : porefeuille réplican e valorisaion en présence de smile TD calcul du dela BS Opion barrière Consrucion de la sraégie : approche du rading Vene à découver Formule BS pour un sous-jacen versan des dividendes Acions Résoluion de l EDP de valorisaion d un call sur acion Change Théorème de valorisaion dans le cas mulidimensionnel e avec coe ciens de di usion sochasiques Théorème Démonsraion rappel Formule BS avec aux d inérê sochasique Prix forward d un acif IV Modèle de smile 61 2

3 7 Modèle log-décalé Valorisaion d un call Lien avec le modèle de aux Ho and Lee Remarques e exemples numériques Modèle à volailié locale non paramérique : mo dèle di de Dupire Formule de Tanaka Applicaion Equaion de Focker-Plank EDP suivi par le prix des calls e équaion de la vol locale 67 9 Modèle SABR (Sigma Alpha Bea Rho) 68 Par I Présenaion du plan de cours Le cours s organise en 2paries. Une première parie es dédiée à uneinroducion de nore problémaique de valorisaion des produis nanciers e propose une descripion de ces produis e de leur principe de valorisaion. La seconde s aache à appliquer ces principes à la valorisaion des produis dérivés e de présener ainsi les méhodologies uilisées en salle des marchés. Par II Insrumens nanciers 1 Dé niion Un acif ou insrumen nancier es un moyen d e ecuer des ransfers ineremporels de richesse e de risque sur cee richesse. Ils permeen aux inervenans de s échanger des ux nanciers présens e fuurs, connus ou encore incerains au momen de la mise en place de l insrumen nancier. 2 Typologie e principe d évaluaion Laypologie uiliséehabiuellemen disinguedeux grands groupes d acifs : les acifs de base e les acifs dérivés. 1 1 Cee ypologie doi se comprendre dans la perspecive de la valorisaion. Elle n es pas liéeà l organisaion praiquedes marchés nanciers présenée lors du cours depremier semesre par Philippe Riaule e Emmanuel Hue. 3

4 2.1 Acifs de base Dans le bu de clari er l exposé, on se propose ou d abord de dresser une lise des acifs de base. On disinguera 4 ypes d acifs de base. Nous donnerons pour chacun une descripion e pour cerains les principes de valorisaion Acions Une acion es un ire de propriéé sur une enreprise qui donne droi enre aure au versemen d une parie des béné ces fuurs ou dividendes. Ces dividendes son aléaoires dans la mesure où le monan n es connu que peu avan le versemen. L acquéreur de l acion a donc échangé un ux A, leprix del acion, au momen de l acquisiion de l acion conre un muliude de ux fuurs incerains. Parmi ces ux fuurs on peu comper le ux généré par le revene évenuelle du ire. Là encore le monan de ce ux de revene es inconnu au momen de la mise en place de l acquisiion de l insrumen nancier. Le prix d une acion aujourd hui es donc la valeur accordée par les inervenans du marché aux ux fuurs auxquels l acion leur donne droi. Ce prix ucue jour après jour suivan l anicipaion que peuven avoir les inervenans sur la haueur de ces ux e l inérê qu ils y accorden. Le prix n es pas le résula d une évaluaion héorique mais la résulane d un équilibre enre l o re e la demande Obligaions Une obligaion es un ire de dee émis par une insiuion ou une enreprise. Il s agi pour l émeeur d empruner de l argen par l inermédiaire de ires négociables. Les ux fuurs reçus par l acquéreur de l obligaion son calculés à parir d un aux xe comme les OAT (Obligaion assimilable du Trésor: obligaion émise par l Ea) ou de aux indexés sur l in aion par exemple. De même que pour les acions les prix des obligaions ucuen en suivan un niveau changean d équilibre enre l o re e la demande. En revanche, une évaluaion héorique peu êre uile pour mere en relief des arbirages possibles. Valorisaion des obligaions à coupon xe Prix d uneobligaion zéro coupon ou «srip» Une obligaion zéro coupon es un acif qui verse un ux xe à une dae fuure T. On peu résumer ce acif par le schéma 1: 100 es appelé nominal ou noionnel. Le prix en de ce acif es formalisé par : 100 B(,T) ou plus généralemen N B(,T) avec N le noionnel de l obligaion zéro-coupon e B(,T) le prix zéro-coupon. Inroduisons la noion corollaire de aux zero-coupon R(,T), qui es le aux de 4

5 Figure 1: obligaion zéro coupon T 100 euros rendemen acuariel du zero-coupon. Il s agi du aux auquel les 100 euros son emprunés (ou prêés) La formule qui le dé ni es la suivane : B(,T) = 1 (1+ R(,T)) (T ) Remark 1 Les aux qui prévalen à chaque insan sur le marché résulen d un équilibre enre l o re e la demande de numéraire. Ils son le re e d un équilibre macroéconomique qui s éabli enre les inervenans prêeurs e les inervenans empruneurs. Pour simpli er, considérons que les inervenans prêeurs son les consommaeurs e les inervenans empruneurs son les indusriels ou les insiuions, elles que l Ea, qui invesissen. Du poin de vue des consommaeurs le niveau des aux re èe leur préférence pour le présen. Des aux élevés dénoen une fore préférence pour le présen : les consommaeurs qui prêen leur argen e donc qui ne pourron consommer que lors du remboursemen cherchen un for dédommagemen à ce délai de consommaion. Du poin de vue des empruneurs, le niveau des aux re èen la renabilié espérée des invesissemens que l emprun qu ils émeen leur perme de réaliser. Prix d une OAT à aux xe Lorsque l Ea éme à une obligaion à aux xe S, il emprune un nominal N e s engage en conreparie à verser, généralemen annuellemen, un coupon que l on noera C el que C = S N quies donc un pourcenage xedu nominal, e àrembourser lecapial àla dae d échéance T n. Le schéma des ux es donné par la gure 2.On peu considérer oue OAT comme une combinaison linéaire d obligaion zéro-coupon. Ainsi à chaque dae τ supérieure ou égale à, il es possible d évaluer l obligaion en considéran chacun des ux fuurs comme celui d une obligaion zéro coupon. On a alors: 5

6 Figure 2: OAT T n P = X T i>τ C B(τ,T i ) + NB(τ,T n ) (1) " # X = N S B(τ,T i ) + B(τ,T n ) T i>τ Le marché des OAT es en France un marché liquide : il es donc possible à ou momen, en inerrogean le marché, de connaîre le prix des obligaions exisanes. Les prix recueillis e le formalisme de l équaion (1) permeen de calculer le prix des zero-coupon. On di aussi «sripper la courbe des aux». Dans la mesure où le marché des srips ou zero-coupon es liquide il peu aussi apporer une informaion complémenaire. Mais le srip es en fai un produi dérivé des obligaions qui son la vériable source de valorisaion des zérocoupons. Exercise 1 TD Absence d Opporunié d Arbirage (AOA). De niion 2 Une opporunié d arbirage es la possibilié donnée à un inervenan du marché de moner une opéraion à invesissemen nul lui rapporan dans le fuur des gains oujours posiifs e sricemen posiifs avec une probabilié non nulle. Exercise 2 TD Change Un aux de change es le prix d une devise exprimé en une aure devise. Leprix en Yen d un dollar éai au 8 Janvier 2002 de Cee valeur, quirésule d un équilibre enre l o re e la demande (dans le cadre de parié libre), ucue jour après jour. Sur le marché des changes peuven êre aussi considérés comme acifs de base les conra à erme de change. Il s agi pour un inervenan d acheer pour une dae fuure déerminée dans le conra un ceraine quanié de devise 6

7 Figure 3: conra d acha à erme de 3 millions de dollars T 3M dollars 3M *X yens à un prix pré xé. Supposons qu un indusriel japonais ai acheé des biens de producion à un indusriel Américain e ce pour un monan de 3 millions de dollars. Ce indusriel japonais doi s acquier à la dae T d une facure en dollar d un monan de 3M. Nous sommes en e nore acheeur japonais, pour ne pas subir de risque d une dépréciaion évenuelle du yen (hausse du prix du dollar en Yen, le dollar Yen passan pour xer les idées de à 140 ) décide de renrer dans un conra d acha à erme de 3 millions de dollar. On peu résumer la ransacion par le schéma 3. Pour une valeur X pariculière appelée aux de change à erme la ransacion es à coû nul, c es à dire qu elle ne génère pas en de paiemen d une conreparie vers l aure en. Nous noerons par la suie cee valeur X(,T). Une fois le conra en place, nore acheeur japonais a l assurance de pouvoir acheer à la dae T les 3 millions de dollars nécessaires au règlemen de safacure pour une somme en Yen qui es xée en, e ce quelle que soi l évoluion de la parié dollar/yen. Principe d absence d opporunié d arbirage appliqué à la valorisaion des conras à erme de change Quelle es la valeur de X(,T)? Pour répondre à cee quesion procédons en deux éape : la mise en place d une sraégie répliquane puis la mise en oeuvre du principe d AOA. Mise en place d une sraégie réplicane à base d acifs de base: change spo e zéro-coupons Pour garanir à l acheeur japonais le versemen de 3M de dollars au aux de change à erme X(,T), la banque qui a proposé l acif me en place le monage suivan. Elle achèe dès aujourd hui sur le marché US un zéro coupon de nominal 3M e d échéance T. En T elle recevra les 3M de dollars. Un el zéro coupon lui coûe en, B US (,T) 3M dollars. Pour nancer un el acha elle s endee en Yen à haueur de B US (,T) 3M X() 7

8 Figure 4: Réplicaion d un acha à erme de 3 millions de dollars Emprun en Yen pour financer l acha des dollars par la vene d un zéro coupon Yen Valeur nulle par consrucion : le monage es auofinançan Récepion des 3M de dollars Remboursemen de la dee en Yen Acha d un zéro coupon dollar de noionnel 3M de dollars. qu elle devra rembourser en T pour un monan de B US (,T) 3M X()/B JPY (,T) Ce monage perme à la banque de mere à disposiion de son clien les 3M de dollars à la dae T. En conreparie de ces 3M de dollars, la banque demandera à son clien de lui verser en yen, oujours à la dae T, la somme de B US (,T) 3M X() B JPY (,T) somme qui permera à la banque de rembourser sa dee en Yen. On a donc, dans le cadre de cee sraégie de réplicaion On obien alors : 3M X(,T) = 3M X()BUS (,T) B JPY (,T) X(,T) = X()BU S (,T) B JP Y (,T) Mise en oeuvre du principe d AOA. Pour valoriser les acifs sur les marchés liquides on fai l hypohèse que sur ces marchés il y a AOA. Cee hypohèse se jusi e par le fai que, sur les marchés liquides, les opporuniés d arbirage son rès vie repérées par des arbiragises e que le marché sous 8

9 Figure 5: Sraégie d arbirage des conras à erme de change La banque vend à l inervenan 3M de yens au prix à erme X, e me en place une sraégie d arbirage. T leur inervenion se «rééquilibre» rès rapidemen avec les mécanismes que nous avons pu voir précédemmen. L évaluaion que nous allons faire ici de X(,T) repose sur l hypohèse que le marché des conras à erme de change es bien arbiré, c es à dire qu il n exise pas d opporunié d arbirage. Prouvons donc que cee valeur obenue par réplicaion es la seule qui convienne sous l hypohèse d AOA, c es à dire que siun aure inervenan proposai un conra à erme avec aux de change à erme di éren, on aurai une opporunié d arbirage. Supposons que la banque propose un conra à erme à valeur X 0 > X(,T). Alors il es possible d e ecuer le monage illusré par la gure 5. Ce monage es une combinaison du monage précédemmen décri e d un conra de vene à erme passé avec l inervenan au aux X 0 ( ux en poinillé). Par consrucion l invesissemen en es nul. En revanche, il génère en T un ux sricemen posiif en Yen de 3M X 0 3M X()BU S (,T) B JP Y (,T) = 3M (X 0 X(,T)) > 0 Ce qui es incompaible avec l absence d opporunié d arbirage. Inversemen on monre que si un inervenan propose un conra à erme à X 0 < X(,T) il es possible de l arbirer, c es à dire de moner une opéraion nancière à coû nul qui rappore une somme posiive avec une probabilié non nulle, en l occurrence dans ce cas pariculier à coup sûr. En la présence d une opporunié d arbirage, les arbiragises auraien massivemen acheé des dollars à erme (dans le cas X 0 < X(,T)) ou inversemen vendu des dollars à erme (dans le cas X 0 > X(,T)) aux conreparies proposan X 0. Ces conreparies s apercevan que le prix qu elles proposen suscie 9

10 Figure 6: Dollar/Yen forward au 8 Janvier 2002 dae 08/01/02 08/01/04 08/01/05 08/01/06 08/01/07 08/01/08 08/01/09 08/01/10 08/01/11 08/01/11 change forward 132,54 129,59 124,06 117,48 111,11 105,29 100,13 95,51 91,28 87,24 des demandes imporanes réajusen leur prix, ce qui a pour e e «réequilibrer» le marché vers la valeur X(,T). Exemple numérique des aux de change à erme sur données du 8 janvier 2002 Pour donner une idée concrèe des aux forward que l on peu obenir acuellemen nous donnons gure 6lavaleur du aux de changeforward pour di érenes mauriés. La dae d évaluaion es le 08/01/02 Le premier aux de change donné es en fai le aux de change spo dollar/yen du 8 janvier. On s aperçoi sur ces valeurs que nore acheeur japonais en achean à erme peu vouloir pro er de la faible cheré du dollar à erme Maières premières Le marché des maières premières a vu le développemen de produis nanciers permean aux aceurs de se couvrir conre les variaions de prix. Il s agi esseniellemen de conra de vene e d acha à erme. Sur cerains marchés ces conras exisen depuis rès longemps (marché à erme de méaux à Amserdam au 18ème, marché à erme de céréale au Chigago Board of Trade au 19ème) e sur cerains son ils nouvellemen apparus comme sur le marché de l énergie (pérole, gaz, élecricié) Marché des produis de crédi Les produis de crédis e leur valorisaion seron présenés par Monique Jeanblanc dans le cours dédié aux problémaiques de crédi Prix forward d un acif Nous sommes en e l on considère un acif S (une obligaion ou une acion) don on veu déerminer le prix à erme en T(>). Pour simpli er on considère que ce acif ne verse pas de coupon ou de dividendes enre e T. De même que dans le cas du change à erme nous plaçons sous AOA e raisonner en deux éapes : 1) éablir un prix "de réplicaion", 2) conclure sur ce prix en uilisan l hypohèse d AOA. Réplicaion Considérons que nous sommes une banque e qu un clien s adresse à nous pour une vene à erme. Il nous fau donc moner une sraégie que l on 10

11 Figure 7: acha à erme T Le clien nous reme l acif Nous acheons au clien l acif au prix forward Figure 8: opéraion de repo T L acif es empruné L empruneur paie S au prêeur Le prêeur rend S (1+rrepo) à l empruneur de l acif L acif es rendu représene par la gure 7 : nous sommes la banque e de nore poin de vue nous e ecuons un acha à erme de l acif S. Pour répliquer de els ux la banque va mere en place une sraégie à base d acifs de base qui son ici, l acif spo, e une opéraion de repurchase agreemen die ausi opéraion repo. Repurchase Agreemen Une opéraion de repo ou en anglais repurchase agreemen consise en l acha (ou la vene) d un acif assori(e) de la revene (resp. du racha) de ce acif. La revene ou le racha s e ecue à une dae e pour une valeur qui son xées au momen de la mise en place de l opéraion. L acha e la revene (ou symériquemen la vene e le racha) s e ecue auprès de la même conreparie. Cee opéraion es illusrée par la gure 8. Nous venons de présener les opéraions de repo comme des opéraions de prê ou d emprun d acif. Mais on peu renverser la perspecive e les iner- 11

12 prêer comme des des prês en empruns de cash avec nanissemen. L acif es alors en quelque sore un bien hypohéqué qui garani le prêeur de cash du remboursemen à l issue du prê. Ce principe de nanissemen qui donne une garanie au prêeur du cash explique que les aux repo son généralemen inférieurs aux aux auxquels l empruneur peu empruner lorsqu il le fai sans apporer de garanie au prêeur (emprun par émission d obligaion). Réplicaion (suie) econséquencedel AOA Nous renrons dans l opéraion d acha à erme. Nous nous couvrons par une opéraion repo e par une vene spo ( spo signi e que l on exécue la vene immédiaemen, c es à dire en ). Le monage, sa couverure e la résulane son représenés sur la gure 9. L opéraion globale qu e ecue la banque es une opéraion qui en ne lui génère aucun ux, donc aucun invesissemen e qui en T lui rappore P f S (1+ r repo ) Sous AOA une opéraion à invesissemen nul ne peu que rapporer 0. On a donc : P f = S (1 + r repo ) 2.2 Produis dérivés Les acifs dérivés son de façon générale des conras de vene ou d acha d acifs nanciers de base sous des conraines pariculières. L acif de base es alors appelé acif sous-jacen. Conrairemen au chapîre précéden il ne vous sera pas proposé ici une descripion des di érens acifs dérivés que l on peu rouver sur les marchés nanciers. Nous nous concenrerons pluô sur les méhodes d évaluaion de ces produis. Nous commencerons par la descripion e l évaluaion d un acif dérivé simple : l opion d acha ou de vene. La méhode d évaluaion repose sur ² une hypohèses d absence d opporunié d arbirage, analogue à celle que nous avons vu pour l évaluaion du aux de change à erme; ² une modélisaion de l évoluion du cour du sous jacen, modélisaion don nous n avions pas eu besoin pour l évaluaion du aux de change à erme; Les méhode d évaluaion e ecivemen uilisée sur les marchés, propose une modélisaion des cours des sous jacens par un processus en emps coninu. Avan d exposer cee méhode, e pour mieux comprendre les principes qui sous enden l évaluaion des produis dérivés, nous commencerons par des modélisaions du sous jacen plus simple. Ce chapire sur les produis dérivés s organisera de la façon suivane. ² Une descripion de nore produi de référence : l opion d acha ou call en anglais 12

13 Figure 9: Monage comple de la banque : conra à erme e couverure T Acha à erme de l acif + Nous acheons au clien l acif au prix forward P f Opéraion de repo S (1+r repo ) S couverure + Vene spo de l acif S + = P f S (1+r repo ) 13

14 Figure 10: Acha avec couverure en cas de hausse du prix Ce que veu payer nore acheeur : MAX (S T,K) K K S ² Une évaluion de ce produi dans un univers discre à une période e deux éas du monde puis dans un univers d évoluion binomiale à plusieurs périodes. La valorisaion en emps coninue sera abordée dans la seconde parie du cours Call e Pu sur acif Un call sur un acif donne à son déeneur la possibilié d acheer à une dae xée l acif à un prix K convenu à l avance. Il va permere à un inervenan qui sai devoir acquérir ce acif à une dae fuure de se couvrir conre une hausse évenuelle du cours. A la dae T d acquisiion, le déeneur de l opion veu débourser en T pour acheer l acif Max(S T,K) comme illusré par la gure 10. Pour avoir l assurance de ne payer que MAX(S T,K), l agen qui désire se couvrir achèe un produi nancier, un call, quiluiversera0sil acif sous-jacen vau moins que K e S T K sinon e donc synhéiquemen MAX(S T K,0). Soi graphiquemen ce que nous pouvons voir sur la gure Valorisaion par réplicaion dans un univers à deux daes e deux éas du monde : hypohèse AOA e exisence d une probabilié risque neure Un univers à deux daes e deux éas du monde Nous sommes en e l on adme que nore univers de valorisaion puisse êre représené par deux daes e T e deux éas du monde en T, un éa «hau» e un éa «bas». 14

15 Figure 11: Payo d un call payoff MAX (S T -K,0) S K Figure 12: Modèle à 1 période e deux éas T Hau Ph Sh 1+r Ch S 1 C Bas Pb Sb 1+r Cb 15

16 Dans ce univers de valorisaion nous disposons de deux acifs de base : un acif sans rique e un acif risqué. L acif sans risque es un placemen zérocoupon au aux r. On le normalise de façon qu en sa valeur soi 1. En T il vaudra donc(1 + r) T e ce quel que soi l éa du monde Si pour simpli er our simpli er on choisi T- =1, alors en T l acif sans risque vau 1+r. L acif risqué qui vau S en vaudra S h dans l éa hau e S b dans l éa bas avec S h < S b. La probabilié pour que l éa du monde hau (resp. bas ) se réalise es P h (resp.p b ). Remark 3 l inégalié S h < S b es srice. Si l on avai l égalié l acif serai un acif sans risque e l opporunié d une opion ne se pose pas. P i=h,b 2 ]0,1[. Le cas où l un des deux coe ciens vau 1 es un cas dégénéré où l opporunié d une opion ne se pose pas non plus. Nore objecif L ob jecif de cee secion es double. Il es ou d abord de valoriser nore call sous l hypohèse AOA e plus généralemen de monrer l équivalence : AOA, il exise une probabilié Q die risque neure équivalene (2) à la probabilié hisorique sous laquelle les prix acualisés des acifs, acifs de base e acifs dérivés, son des maringales valorisaion du call Nous allons procéder pour valoriser nore call comme nous l avions fai pour l évaluaion du aux de change forward : évaluer un prix de réplicaion puis uiliser l AOA pour conclure. Par combinaison linaire de ces deux acifs il e facile de répliquer le payo du call les conraines son les suivanes: Soi, si l on noe ² C h = MAX(S h K,0) e ² C b = MAX(S b K,0) α (1+ r) + β S h = MAX(S h K,0) α (1 + r) + β S b = MAX(S b K,0) α (1 + r) + β S h = C h α (1 + r) + β S b = C b Le sysème se résou de la façon suivane 16

17 β = (C h C b )/(S h S b ) α = [C h S h (C h C b )/(S h S b )]/(1 + r) = [C b S h C h S b ]/[(S h S b ) (1+ r)] Le prix de réplicaion de nore opion es alors donnée par C = α 1+ β S = [C b S h C h S b ]/[(S h S b ) (1 + r)] + (C h C b )/(S h S b ) S Que l on peu réécrire en foncion des payo s C h e C b e de coe cien pondéraeur h e b : Avec ² h =[S*(1+r)-S b ] / (S h -S b ) e ² b =[S*(1+r)-S h ] / (S h -S b ) C = [ h C h + b C b ]/(1+ r) (3) En n l hypohèse d AOA nous perme de conclure : le prix du call es son prix de réplicaion, soi donc C. Par ailleurs on remarque que: ainsi que S = [ h S h + b S b ]/(1 + r) (4) 1 = [ h (1+ r) + b (1 + r)]/(1 + r) (5) Propriéésdes coe ciens pondéraeurs emise en reliefd une probabilié risque neure Monrons que b = 1 h e que i=h,b 2 ]0,1[ b = [S (1 + r) Sh]/(Sh Sb) = [S (1 + r) S h + S b S b ]/(S h S b ) = 1 h Pour monrer que b 2 ]0,1[ parons de b = [S (1+ r) S h ]/(S h S b ) 17

18 Pour monrer b 2 ]0,1[ il nous su de monrer que S b < S (1+ r) < S h Monrons que l on ne peu pas avoir S (1 + r) < S b Si l on a S (1 + r) < S b alors on a S (1 + r) < S b < S h. On es donc en présence d un acif qui rappore sysémaiquemen sricemen plus que l acif sans risque. Il y a donc opporunié d arbirage : on emprune au aux sans risque e l on place l argen empruné sur l acif S. L invesissemen en es nul e le revenu en T es sricemen posiif. Conclusion en AOA on ne peu pas avoir S (1+ r) < S b. Monrons de la même façon que l on ne peu pas avoir S (1 + r) = S b Si l on a S (1 + r) = S b alors on a S (1 + r) = S b < S h. On es donc en présence d un acif qui rappore sysémaiquemen plus que l acif sans risque e sricemen plus avec une probabilié non nulle. Il y a donc opporunié d arbirage : on emprune au aux sans risque e l on place l argen empruné sur l acif S. L invesissemen en es nul e le revenu en T es posiif e sricemen posiif dans l éa du monde hau, c es àdireavec une probabilié non nulle. Conclusion en AOA on ne peu pas avoir S (1+ r) = S b. De la même façon le leceur monrera en s apuuyan sur l hypohèse AOA que l on ne peu pas avoir S h S (1 + r) Conclusion b = 1 h i=h,b 2 ]0,1[ Probabilié risque neure i=h,b peu s inerpréer comme un probabilié. Cee probabilié es appelée probabilié risque neure e noée Q. i=h,b 2 ]0,1[ enraine que Q es équivalene à la probabilié d observaion, que l on noera P e que l on avai précédemmen caracérisée par P i=h,b. Dans cee nouvelle perspecive réécrivons les équaions (3),(4) e (5). S = E Q ( S T 1 + r ) E rivialemen... C = E Q ( C T 1+ r ) 1 = E Q (1+ r) ( (1+ r) ) Que vien d obenir? On vien de monrer que sous l hypohèse AOA les di érens prix de nore marché s éablissen par l espérance, sous une probabilié Q équivalene à P, des gains acualisés. Ou encore que les prix acualisés de nos acifs son des maringuales sous Q. Où a on uilisé l hypohèse AOA? On l uilise par deux fois. 18

19 ² pour monrer que Q e équivalene à P. ² lorsque l on déclare que le prix de nore opion es le prix du porefeuille répliquan. En e e l on monre en raisonnan comme nous avions fai pour le aux de change forward, que si le prix de l opion n es pas le prix du porefeuille répliquan alors il y a une opporunié d arbirage. Quelques mos supplémenaires sur Q. Elle es appelée probabilié risque neure. Rappelons nous que pour obenir le prix aujourd hui d un ux xe C dans le fuur on se conenai de l acualiser. La probabilié risque neure perme d éendre cee méhodologie àla valorisaion de ux don les monans ne seron connus que lors de lors paiemen : on acualise e l on somme les di érens éas du monde en les pondéran par la probabilié risque neure. En n il es imporan de souligner que cee probabilié n es pas la probabilié hisorique. La probabilié hisorique n inervien pas pour la valorisaion du call. Pour donner à Q une inerpréaion économique, inroduisons deux acifs élémenaires: un acif «hau» qui paie 1 Euro dans l éa hau e 0 sinon; un acif «bas» paie 1 Euro dans l éa bas e 0 sinon. On monre facilemen que le prix de l acif hau es h /(1+r) e que le prix de l acif bas es b /(1+r).Ces acifs son appelés prix d Arrow Debreu. Ils formen la base canonique de ous les payo s possible de nore monde simpli é. h e b son en fai (au discoun près) plus des prix qu une vériable probabilié. En conclusion nous venons de monrer AOA ) il exise une probabilié Q die risque neure équivalene à la probabilié hisorique sous laquelle les prix des acifs, acifs de base e acifs dérivés, son des maringales Monrons la réciproque. Parons donc de l hypohèse que ou payo se valorise par l uilisaion d une probabilié risque neure équivalene à la proba hisorique. Monrons qu alors une opporunié d arbirage n es pas possible. Dans nore monde simpli é, une opporunié d arbirage es une sraégie de valeur nulle en e généran en T un ux oujours posiif e sricemen posiif dans au moins un éa du monde. Soi donc une sraégie qui génère en T un ux oujours posiif e sricemen posiif dans au moins un éa du monde. Monrons que la valeur en d un el monage es sricemen posiif. Pour xer les idées noons f h le ux en l éa hau e f b le ux en l éa bas avec f i=h,b 0 e f h > 0. Le prix en de cee sraégie es donné par : f h f b F = h 1 + r + b 1 + r Sous les hypohèse i=h,b 2 ]0,1[, F es donc sricemen posiif. En conséquence sous l hypohèse d exisence d une probabilié risqueneure équivalen à la probabilié hisorique il ne peu y avoir d opporunié d arbirage. 19

20 Figure 13: Marché imcomple T éa h éa m éa b Marché incomple : un exemple de pricing par sur-réplicaion (TD) Nous parons du modèle simple à une période mais cee fois on considère qu au emps T 3 éas du monde disincs peuven survenir. 2 acifs liquides son présens sur le marché : il s agi d un acif sans risque, qui vau 1 en e qui vau (1 + r) en T, e ce, quel que soi l éa du monde, e d un acif S qui vau S en e S i en T, avec i = h,m ou b. Le ou es illusré gure 13. Nous prendrons r = 0 e S = 3 S h = 4 S m = 2 S b = 1. Un rader reçoi une demande de quoaion pour un acif X qui génère en T un ux X i = h,m,b avec X h = 2 X m = 1 X b = 1. Dans le cadre du modèle à deux éas du monde e deux acifs liquides la méhodologie d évaluaion consisai à bâir à parir de l acif sans risque e l acif risqué S liquide un porefeuille répliquan le payo du call que nous avions à évaluer. Ici cela n es plus possible. 20

21 Supposons que soi demandé au rader de vendre ce acif X.L obje du TD es de déerminer la valeur X à laquelle le rader accepera de vendre l acif X. Quesion 1 Monrer en quoi le rader ne peu pas répliquer parfaiemen X à parir de l acif sans rique e de S. Les objecifs du rader son les suivans : se couvrir oalemen e proposer sous cee conraine de couverure le prix le plus aracif possible. Auremen di, avec l argen de la prime(= X ) que lui versera son clien, le rader compe acheer un porefeuille combinan l acif sans risque e l acif S el que, quel que soi l éa du monde, son porefeuille lui rappore en T plus qu il ne doi reverser à l acheeur de l acif X. Le rader doi ouefois «opimiser» son porefeuille de façon à demander à son clien la prime la plus faible possible. Quesion 2 Ecrire le programmed opimisaion linéaire correspondan aux objecifs du rader. Rappel de programmaion linéaire Inroduisons les noaions : ² I = fi : i = 1,2,..mg J = fj : j = 1,2,..ng ² x e c deux veceurs der n ² y e b deux veceurs de R m ² A une marice de M n,m (R) Par I 1 on noe une parie des indices de I, c es à dire quei 1 ½ I e I 2 = InI 1. D une façon analogue, J 1 ½ J e J 2 = JnJ 1. Les deux problèmes d opimisaion linéaires sous conraines mixes : e P B1 Min < c,x > x Sous (Ax) i b i i 2 I 1 (Ax) i = b i i 2 I 2 x j 0 j 2 J 1 PB2 Max < b,y > x Sous (A T y) j c j i 2 J 1 (A T y) j = c j i 2 J 2 y i 0 i 2 I 1 se nommen problèmes duaux avec conraines mixes. On monre que si l ensemble admissible de PB1 es vide, il en va de même pour PB2,e inversemen. Par ailleurs si l on noe x ey les soluions du PB1 e de PB2 alors on a < c,x >=< b,y > 21

Université d Evry Val d Essonne DESS d Ingéniérie Mathématique option Finance Introduction à la valorisation des produits financiers

Université d Evry Val d Essonne DESS d Ingéniérie Mathématique option Finance Introduction à la valorisation des produits financiers Universié d Evry Val d Essonne DESS d Ingéniérie Mahémaique opion Finance Inroducion à la valorisaion des produis financiers Véronique Berger versiondu10janvier2006 Conens I Insrumens financiers 5 1 Définiion

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX Obje de la séance 9: défini le risque de aux e présener

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET MODELES DE LA COURBE DES AUX D INERE UNIVERSIE d EVRY Séance 4 Philippe PRIAULE Plan de la Séance Les modèles sochasiques de déformaion de la courbe des aux: Approche déaillée Le modèle de Black: référence

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Sous-évaluation des prix d options par le modèle de Black & Scholes.

Sous-évaluation des prix d options par le modèle de Black & Scholes. Sous-évaluaion des prix d opions par le modèle de Black & Scholes. Mise en évidence par une dynamique combinan mouvemen brownien e processus à saus. Marc Debersé ocobre 6 Résumé S il es bien connu que

Plus en détail

Introduction aux produits dérivés

Introduction aux produits dérivés Chapire 1 Inroducion aux produis dérivés de crédi Le risque de crédi signifie les risques financiers liés aux incapaciés d un agen (un pariculier, une enreprise ou un éa souverain) de payer un engagemen

Plus en détail

S5 Info-MIAGE 2012-2013 Mathématiques Financières Emprunts indivis. Université de Picardie Jules Verne Année 2012-2013 UFR des Sciences

S5 Info-MIAGE 2012-2013 Mathématiques Financières Emprunts indivis. Université de Picardie Jules Verne Année 2012-2013 UFR des Sciences S5 Info-MIAGE 2012-2013 Mahémaiques Financières Empruns indivis Universié de Picardie Jules Verne Année 2012-2013 UFR des Sciences Licence menion Informaique parcours MIAGE - Semesre 5 Mahémaiques Financières

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt»

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt» Exercice du Gesion Financière à Cour Terme «Cas FINEX Gesion du risque de aux d inérê» Ce cas raie des différens aspecs de la gesion du risque de aux d inérê liée à la dee d une enreprise : analyse d emprun,

Plus en détail

Le modèle de Black Scholes

Le modèle de Black Scholes Le modèle de Black Scholes Philippe Briand, Mars 3 1. Présenaion du modèle Les mahémaiciens on depuis longemps essayé de résoudre les quesions soulevées par le monde de la finance. Une des caracérisiques

Plus en détail

Solvency II, IFRS : l impact des modèles d actifs retenus

Solvency II, IFRS : l impact des modèles d actifs retenus Les normes IFRS en assurance Solvency II, IFRS : l impac des modèles d acifs reenus 31 e journée de séminaires acuariels ISA-HEC Lausanne e ISFA Lyon Pierre THÉROND pherond@winer-associes.fr 18 novembre

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

Méthode d'analyse économique et financière ***

Méthode d'analyse économique et financière *** Méhode d'analyse économique e financière *** Noion d acualisaion e indicaeurs économiques uilisables pour l analyse de projes. Dr. François PINTA CIRAD-Forê UR Bois - Kourou CHRONOLOGIE D INTERVENTION

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

Pricing des produits dérivés de crédit dans un modèle

Pricing des produits dérivés de crédit dans un modèle Pricing des produis dérivés de crédi dans un modèle à inensié Nordine Bennani & Cyril Sabbagh Table des maières 1 Présenaion générale des dérivés de crédi 3 1.1 Inroducion...................................

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

ÉVALUATION DES PRODUITS DÉRIVÉS DE CRÉDIT Fevrier 2003

ÉVALUATION DES PRODUITS DÉRIVÉS DE CRÉDIT Fevrier 2003 ÉVALUATION DES PRODUITS DÉRIVÉS DE CRÉDIT Fevrier 2003 Idriss Tchapda Djamen UniversiéClaudeBernardLyon1 Insiu de Science F inancière e d 0 Assurances (ISFA) 1. Résumé. Évaluaion des produis dérivés de

Plus en détail

Les Univers Virtuels de la Finance

Les Univers Virtuels de la Finance Les Univers Viruels de la Finance Viruel Worlds of Finance ierre Devolder 1 Résumé. La mesure neure au risque es devenue une noion cenrale en finance moderne: elle s obien par changemen de mesure de probabilié

Plus en détail

budgétaire et extérieure

budgétaire et extérieure Insiu pour le Développemen des Capaciés / AFRITAC de l Oues / COFEB Cours régional sur la Gesion macroéconomique e les quesions de dee Dakar, Sénégal du 4 au 5 novembre 203 Séance S-4 : Souenabilié budgéaire

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Gestion Actif Passif et Solvabilité

Gestion Actif Passif et Solvabilité Gesion Acif Passif e Solvabilié Charles Descure & Crisiano Borean Generali France 7/9 Boulevard Haussmann 759 Paris Tel. : +33 58 38 86 84 +33 58 38 86 64 Fax. : +33 58 38 8 cdescure@generali.fr cborean@generali.fr

Plus en détail

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT icence Sciences Economiques 3ème année er semesre MICROECONOMIE APPROFONDIE ET CACU INTERTEMPORE CHAPITRE 6 CONSOMMATION ET CACU INTERTEMPORE : HYPOTHESE DU REVENU PERMANENT Vision simplifiée du schéma

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

pour un régime de rentiers

pour un régime de rentiers Les Crières normes d allocaion IFRS en assurance d acifs pour un régime de reniers 1 er juille 2004 Frédéric PLANCHET Acuaire associé Pierre THEROND Acuaire 1 er juille 2004 Page 1 Conexe (1) La déerminaion

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques.

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques. Mesures de risque dynamiques, pricing d opions vanilles e EDSR quadraiques. Cyrille Guillaumie 1 Thibau Masrolia 2 Rappor echnique rendu en juin 213 1. European Securiies and Markes Auhoriy, cyrille.guillaumie@esma.europa.eu

Plus en détail

Méthodes financières et allocation d actifs en assurance

Méthodes financières et allocation d actifs en assurance Méhodes financières e allocaion d acifs en assurance - Norber GAURON (JWA Acuaires, Paris) - Frédéric PLANCHE (Universié Lyon, Laboraoire SAF) - Pierre HEROND (JWA Acuaires, Lyon) 2005. (WP 2025) Laboraoire

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

EVALUATION DE L OPTION DE RACHAT ANTICIPE DANS LES CONTRATS D ASSURANCE-VIE. Première version mars 1996. Version actuelle février 1997

EVALUATION DE L OPTION DE RACHAT ANTICIPE DANS LES CONTRATS D ASSURANCE-VIE. Première version mars 1996. Version actuelle février 1997 AFFI JUIN 997 EVALUATION DE L OPTION DE RACHAT ANTICIPE DANS LES CONTRATS D ASSURANCE-VIE Taoufik CHERIF Isabelle PRAS 2 Première version mars 996 Version acuelle février 997 Résumé L obje de ce aricle

Plus en détail

Question 1: Analyse et évaluation des obligations

Question 1: Analyse et évaluation des obligations Quesion 1: Analyse e évaluaion des obligaions (31 poins) Vous ravaillez dans le déparemen des invesissemens obligaaires pour une compagnie d assurance-vie. Vous avez créé le ableau ci-dessous conenan des

Plus en détail

L évaluation immobilière. Michel Baroni 27/11/2009

L évaluation immobilière. Michel Baroni 27/11/2009 L évaluaion immobilière Michel Baroni 27/11/2009 Méhodes exisanes Méhodes des comparables Dépend de la base de données; méhode hédonique évenuellemen possible Méhodes de capialisaion Dépend de la base

Plus en détail

Conditions Générales Valant Note d Information. Assurance Vie

Conditions Générales Valant Note d Information. Assurance Vie Condiions Générales Valan Noe d Informaion Assurance Vie DISPOSITIONS ESSENTIELLES DU CONTRAT 1. Epargne évoluion es un conra individuel d assurance sur la vie de ype mulisuppors, exprimé en euros e/ou

Plus en détail

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE Ce aricle es disponible en ligne à l adresse : hp://www.cairn.info/aricle.php?id_revue=ecop&id_numpublie=ecop_149&id_article=ecop_149_0073 Risque associé au conra d assurance-vie pour la compagnie d assurance

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

Groupe Saint Joseph La Salle Centre de Formation

Groupe Saint Joseph La Salle Centre de Formation Groupe Sain Joseph La Salle Cenre de Formaion NOUVEAUTÉ renrée 2016 LICENCE COMMERCE, VENTE & MARKETING Formaion en alernance + d infos sur nore sie : www.sjodijon.com Groupe Scolaire Sain Joseph La Salle

Plus en détail

2.1 Envoi d'un message

2.1 Envoi d'un message MESSAGES Oulook 2013 2.1 Envoi d'un message La messagerie es desinée à l'envoi e à la récepion du courrier élecronique. Six dossiers peuven conenir les messages : les dossiers Boîe de récepion, Brouillons,

Plus en détail

Etude de risque pour un portefeuille d assurance récolte

Etude de risque pour un portefeuille d assurance récolte Eude de risque pour un porefeuille d assurance récole Hervé ODJO GROUPAMA Direcion ACTUARIAT Groupe 2, Bd Malesherbes 75008 Paris Tél : 33 (0 44 56 72 46 herve.odjo@groupama.com Viviane RITZ GROUPAMA Direcion

Plus en détail

Mathématiques Financières

Mathématiques Financières Mathématiques Financières 2 ème partie Marchés financiers en temps discret & instruments financiers classiques Université de de Picardie Jules Verne Amiens Par Par Jean-Paul Jean-Paul FELIX FELIX Cours

Plus en détail

EDSR et EDSPR avec grossissement de filtration, problèmes d asymétrie d information et de couverture sur les marchés financiers

EDSR et EDSPR avec grossissement de filtration, problèmes d asymétrie d information et de couverture sur les marchés financiers UNIVERSITE PAUL SABATIER TOULOUSE III U.F.R Mahémaique Informaique Gesion THÈSE présenée e souenue publiquemen le 7 décembre 25 pour l obenion du Docora de l Universié Paul Sabaier TOULOUSE III mahémaiques

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

Les nouveautés de Word 2013

Les nouveautés de Word 2013 WORD 2013 Office 2013 - Word, Excel, PowerPoin e Oulook Les nouveaués de Word 2013 Aciver/désaciver les repères d'alignemen Les repères d'alignemen permeen, lors du déplacemen ou du redimensionnemen d'un

Plus en détail

Panorama des méthodes de coûtenance

Panorama des méthodes de coûtenance Recherche en Managemen de Proje Panorama des méhodes de coûenance Pour réduire les coûs de vos projes e augmener vos marges, quelle méhode choisir? François GAGNÉ, FGF Consulan Les Renconres 2005 du Managemen

Plus en détail

Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013

Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013 LCD Physique ebc 1 Exercices M1: Cinémaique du poin A) Quesions de compréhension 1) Un voyageur dans un rain en mouvemen à viesse consane laisse omber un obje. Esquisser l allure de la rajecoire : pour

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

Surveillance et maintenance Prévisionnelle

Surveillance et maintenance Prévisionnelle Page Surveillance e mainenance Prévisionnelle Sommaire Page 2 La Prévisionnelle o Terminologie e Normes o Elémens de conexe ( enjeux, mise en œuvre.) Exemples d applicaions réalisées par le Ceim o L approche

Plus en détail

4. Principe de la modélisation des séries temporelles

4. Principe de la modélisation des séries temporelles 4. Principe de la modélisaion des séries emporelles Nous raierons ici, à ire d exemple, la modélisaion des liens enre la polluion amosphérique e les indicaeurs de sané. Mais les méhodes indiquées, comme

Plus en détail

La crise de liquidité a engendré une réponse réglementaire en cours d ajustement qui pousse

La crise de liquidité a engendré une réponse réglementaire en cours d ajustement qui pousse Crise de liquidié Piloage du LCR ou du risque de liquidié? Salwa Fariji / Vincen Boisbourdain Salwa Fariji es consulane chez Opus Finance. Diplômée de L ESEC de Barcelone en analyse financière e gesion

Plus en détail

Les générateurs de scénarios économiques Problématiques et modélisation des indices financiers. Le 29 Mars 2012

Les générateurs de scénarios économiques Problématiques et modélisation des indices financiers. Le 29 Mars 2012 Les généraeurs de scénarios économiques Problémaiques e modélisaion des indices financiers Le 29 Mars 202 Les généraeurs de scénarios économiques Inroducion Un généraeur de scénarios économiques perme

Plus en détail

5.1 La conception d'animation

5.1 La conception d'animation ANIMATIONS Flash CS6 5.1 La concepion d'animaion A- Le concep d'animaion dans Flash Flash perme de créer des animaions. Lorsque vous animez un obje, vous gérez deux espaces : l'espaceemps dans le panneau

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

La prise en compte des événements extrêmes pour la valorisation d options européennes

La prise en compte des événements extrêmes pour la valorisation d options européennes La prise en compe des événemens exrêmes pour la valorisaion d opions européennes JULIEN IDIER CAROLINE JARDET GAËLLE LE FOL Banque de France, Banque de France Banque de France, Universié Paris I Universié

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

Les Générateurs de Scénarios Économiques : quelle utilisation en assurance? 1

Les Générateurs de Scénarios Économiques : quelle utilisation en assurance? 1 Les Généraeurs de Scénarios Économiques : quelle uilisaion en assurance? 1 Alaeddine FALEH 2 Frédéric PLANCHET 3 Didier RULLIERE 4 ISFA- Universié Lyon I 5 Caisse des Dépôs e Consignaions 6 RÉSUMÉ Dans

Plus en détail

Production d un son par les instruments de musique

Production d un son par les instruments de musique Producion d un son par les insrumens de musique ACTIVITÉ 1 : Recherche documenaire : Les foncions d un insrumen de musique Objecif : découvrir commen les insrumens de musique acousique peuven remplir leurs

Plus en détail

N d ordre Année 2008 THESE. présentée. devant l UNIVERSITE CLAUDE BERNARD - LYON 1. pour l obtention. du DIPLOME DE DOCTORAT. (arrêté du 7 août 2006)

N d ordre Année 2008 THESE. présentée. devant l UNIVERSITE CLAUDE BERNARD - LYON 1. pour l obtention. du DIPLOME DE DOCTORAT. (arrêté du 7 août 2006) N d ordre Année 28 HESE présenée devan l UNIVERSIE CLAUDE BERNARD - LYON pour l obenion du DILOME DE DOCORA (arrêé du 7 aoû 26) présenée e souenue publiquemen le par M. Mohamed HOUKARI IRE : Mesure du

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

( ) et est alors représenté par le graphe ci-

( ) et est alors représenté par le graphe ci- LE SIGNAL SINUSOIDAL : PRODUCTION ET OBSERVATION Le bu de ce premier TP es d une par la prise en main du maériel nécessaire pour l observaion des ondes lors de la prochaine séance (uilisaion de l oscilloscope),

Plus en détail

Evaluation stochastique des contrats d épargne : agrégation des trajectoires de l actif & mesure de l erreur liée à l agrégation

Evaluation stochastique des contrats d épargne : agrégation des trajectoires de l actif & mesure de l erreur liée à l agrégation Evaluaion sochasique des conras d éargne : agrégaion des raecoires de l acif & mesure de l erreur liée à l agrégaion - Oberlain NEUKAM-EUGUIA (Winer & Associés) - Frédéric PLANCHE (Universié Lyon Laboraoire

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002 Universié Paris IX Dauphine UFR Economie Appliquée Maîrise Economie Appliquée ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 00 Noes de Cours Auorisées, Calcularices sans Mémoire Auorisées Durée :

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore : Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S

Plus en détail

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA Un modèle de proecion pour des conras de reraie dans le cadre de l ORSA - François Bonnin (Hiram Finance) - Floren Combes (MNRA) - Frédéric lanche (Universié Lyon 1, Laboraoire SAF) - Monassar Tammar (rim

Plus en détail

Surface de Volatilité et Introduction au Risque de Crédit

Surface de Volatilité et Introduction au Risque de Crédit Modèles de Taux, Surface de Volailié e Inroducion au Risque de Crédi Alexis Fauh Universié Lille I Maser 2 Mahémaiques e Finance Spécialiés Mahémaiques du Risque & Finance Compuaionelle 214/215 spread

Plus en détail

Méthodologie de l Indice Ethical Europe Equity. (Ethical Europe Equity Index)

Méthodologie de l Indice Ethical Europe Equity. (Ethical Europe Equity Index) Méhodologie de l Indice Ehical Europe Equiy (Ehical Europe Equiy Inde) Version 1.3 en dae du 19 Mars 2014 1 Sommaire Inroducion 1. Descripion de l Indice 1.1. Tickers e ISIN 1.2. Valeur iniiale 1.3. Disribuion

Plus en détail

Sur les Obligations Convertibles à Option Retardée de Remboursement Anticipé au Gré de l Émetteur 1

Sur les Obligations Convertibles à Option Retardée de Remboursement Anticipé au Gré de l Émetteur 1 ur les Obligaions Converibles à Opion Reardée de Remboursemen Anicipé au Gré de l Émeeur F. ANDRE-LE POGAMP F. MORAUX florence.andre@univ-rennes.fr franck.moraux@univ-rennes.fr Universié de Rennes I-IGR

Plus en détail

Plan : : Les méthodes de codage numérique en

Plan : : Les méthodes de codage numérique en Plan : : Les méhodes de codage numérique en 3.1 Inroducion 3.2 Codages binaires 3.2.1 Codage NRZ (Non Reour à Zéro) 3.2.2 Codage biphasé ou (Mancheser) 3.2.3 Codage CMI (Code Mark Inversion) 3.3 Codages

Plus en détail

UN MODÈLE D ÉVALUATION DES COÛTS AGRÉGÉS LIÉS AUX ASSURANCES POUR LES PROFESSIONNELS DE LA SANTÉ

UN MODÈLE D ÉVALUATION DES COÛTS AGRÉGÉS LIÉS AUX ASSURANCES POUR LES PROFESSIONNELS DE LA SANTÉ UN MODÈLE D ÉVALUATION DES COÛTS AGRÉGÉS LIÉS AUX ASSURANCES POUR LES PROFESSIONNELS DE LA SANTÉ Mémoire Emmanuel Hamel Maîrise en acuaria Maîres ès sciences (M.Sc.) Québec, Canada Emmanuel Hamel, 03 Résumé

Plus en détail