Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C."

Transcription

1 Vecteurs (I) Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. B A 1. Indiquez par une phrase le déplacement qu il convient d effectuer pour aller de A à B. 2. On effectue ce même déplacement mais à partir du point C : on arrive à un point D. Placez D sur la figure. 3. Que diriez-vous du quadrilatère ABDC? Exercice 2. On schématise le déplacement qui permet d aller de A vers B par la flèche indiquée sur le dessin ci-dessous, mais cette fois-ci, sans quadrillage. C B A C 1. Comment décririez-vous le déplacement qui permet de joindre A à B? 2. Appliquez ce même déplacement au point C et tracez le point D obtenu. 3. Quelle semble être la nature du quadrilatère ABDC? 1 Notion de vecteur Définitions : Un vecteur est un objet mathématique défini par : 1. une direction ; 2. un sens ; 3. une longueur. Il est généralement noté par une lettre surmontée d une flèche, par exemple u, ce que l on lit vecteur u. La longueur d un vecteur est appelée norme et se note u. Un même vecteur peut être représenté n importe où dans le plan : u u v v 2 de 5 Vecteurs Page 1/10

2 Exercice 3. On suppose que le quadrillage ci-dessus est constitué de carrés dont le côté mesure 1 unité. Déterminer u et v. Vecteur représenté par un couple de points : Soit un vecteur w ; le couple de points (A;B) représente le vecteur w lorsque : 1. La droite (AB) a la même direction que le vecteur w. 2. On va de A vers B dans le même que le vecteur w. 3. AB = w. Le vecteur représenté par le couple de points (A;B) se note AB et on dit que les vecteurs w et AB sont égaux ; on écrit alors w = AB. L égalité w = AB résume donc trois informations en une seule : c est l intérêt de l outil vectoriel. Comparer le sens de deux vecteurs n a un sens que si l on sait déjà que ces vecteurs ont la même direction. Exercice 4. Tracer un carré EF GH de centre O. Dire, sans démonstration, si les vecteurs suivants sont égaux ou non : (a) EF et HG (b) EF et GH (c) EG et FH (d) EO et OG. Vecteur nul : Le vecteur représenté par les couples de points (A;A), (B;B), etc. n indique ni direction ni sens et sa norme vaut 0. On l appelle vecteur nul et on le note 0. Pour tout point M du plan, MM = 0. Théorème : Soit A, B, C, D et I cinq points du plan. AB = CD si, et seulement si, [AD] et [BC] ont le même milieu. En particulier, AI = IB si, et seulement si, I est le même milieu de [AB]. L égalité AB = CD équivaut donc au fait que ABDC est un parallélogramme, éventuellement aplati. Attention à l ordre des points!! Grâce aux vecteurs et aux calculs que nous allons apprendre à effectuer avec eux, nous obtenons une nouvelle façon de prouver qu un quadrilatère est un parallélogramme et q un un point est le milieu d un segment. Exercice 5. MNPQ est un parallélogramme de centre S. Écrire 8 égalités vectorielles à partir de cette information. Exercice 6. Placer sur la grille ci-dessous les points D, E, F tels que : CD = BA ; EC = CB ; FA = DC. A B C 2 de 5 Vecteurs Page 2/10

3 2 Translations Exercice 7. Représenter un vecteur u et un point M. Combien existe-t-il à votre avis de point M tels que u = MM? Théorème [admis] : Soit u un vecteur. Pour tout point M, il existe un unique point M tel que u = MM Définition : On dit que M est l image de M par la translation de vecteur u, ce que l on note : t u : M M et que l on lit : par la translation de vecteur u, M a pour image M prime. Exercice 8. Tracer l image de la figure ci-dessous par la translation de vecteur w. B C D E A w Comparer les dimensions de la figure initiale et de son image. Exercice 9. Soient R et S deux points du plan. Par quelle translation peut-on passer de R à S? de S à R? Exercice 10. Quel est l effet de la translation de vecteur nul sur un point? 3 Addition de deux vecteurs Exercice 11. A u v 1. On applique au pointala translation de vecteur u et on obtient un point B : placer B sur la figure. Compléter : AB = On applique au point B la translation de vecteur v et on obtient un point C : placer C sur la figure. Compléter : BC = Par quelle translation passe-t-on directement de A à C? 2 de 5 Vecteurs Page 3/10

4 Définition : Le vecteur AC représente la somme des vecteurs u et v. On note : Ce que l on écrit aussi : AC = u + v AC = AB + BC Cette égalité, vraie quels que soient les points A, B et C, porte le nom de relation de Chasles. Exercice 12. Sur la figure de l exercice 11, placer le point D, image de A par la translation de vecteur v puis le point E, image de D par la translation de vecteur u. Que constate-t-on? Qu en déduit-on pour les sommes u + v et v + u? Propriétés : Quels que soient les vecteurs u et v, 1. u + v = v + u : on dit que l addition des vecteurs est commutative. 2. u + 0 = u : on dit que 0 est élément neutre pour l addition des vecteurs. Théorème [Règle du parallélogramme] : Soient A, B, C et D quatre points du plans. 4 Différence de deux vecteurs 4.1 Opposé d un vecteur AC = AB + AD ABCD est un parallélogramme. Exercice 13. Représenter un vecteur u quelconque. Représenter maintenant un vecteur v tel que u et v aient la même direction, la même norme mais des sens opposés. Que dire de la somme u + v? Théorème et définition : Soit u un vecteur. Il existe un unique vecteur v tel que u + v = 0. Ce vecteur est l opposé du vecteur u et se note u. Plus précisément, si u = 0, alors u = 0. Si u 0, alors u est le vecteur ayant même direction et même norme que u mais un sens opposé. L opposé du vecteur AB est le vecteur... : AB = Différence de deux vecteurs Définition : Soient u et v deux vecteurs : la différence u v désigne le vecteur qu il faut ajouter à v pour obtenir u. Cette différence s obtient aussi comme étant la somme de u et de l opposé de v : u v = u +( v ). Exercice 14. v Placer sur la figure la différence t v. t Exercice 15. Montrer que quels que soient les points O, A et B : OB OA = AB. 2 de 5 Vecteurs Page 4/10

5 5 Produit d un vecteur par un nombre réel 5.1 Vecteurs colinéaires Définition : Soit u et v deux vecteurs. On dit que ces vecteurs sont colinéaires si l on se trouve dans l un des cas suivants : u = 0 ou v = 0. u 0 et v 0 et u et v ont la même direction. Le vecteur 0 est colinéaire à tout autre vecteur : c est le seul qui possède cette propriété. Exercice 16. Représenter ci-dessous deux vecteurs a et b non nuls colinéaires de même sens, puis un vecteur non nul c colinéaire à a mais de sens contraire. Exercice 17. Les implications suivantes sont-elle vraies ou fausses? 1. Si u et v sont égaux, alors u et v sont colinéaires. 2. Si deux vecteurs ont la même norme, alors ces vecteurs sont colinéaires. 3. Si pour tout vecteur u, v est colinéaire à u, alors v est le vecteur nul. 4. Si deux vecteurs sont opposés, alors ils sont colinéaires. 5. Si deux vecteurs sont colinéaires, alors ils sont égaux. Traduction de quelques situations géométriques à l aide de la colinéarité : 1. Soit A un point du plan et u un vecteur non nul : il existe une unique droite d passant par A et ayant la même direction que u. On dit que c est LA droite passant par A et dirigée par le vecteur u et que u est UN vecteur directeur de d. En particulier, si B est un point distinct de A, la droite (AB) est dirigée par le vecteur Les points A, B et C sont alignés si, et seulement si, les vecteurs... et... sont... Le point M appartient à la droite passant par A et dirigée par u si, et seulement si, les vecteurs... et... sont La droite d dirigée par un vecteur u est parallèle à la droite d dirigée par un vecteur u si, et seulement si, les vecteurs... et... sont... En particulier, les droites (AB) et (CD) (avec A B et C D) sont parallèles si, et seulement si, les vecteurs... et... sont... Une droite possède une infinité de vecteurs directeurs. Par définition, un vecteur directeur n est jamais nul. 2 de 5 Vecteurs Page 5/10

6 Exercice 18. Sur la figure ci-dessous, tracer la droite passant par C et dirigée par le vecteur s. C s 5.2 Produit d un vecteur par un réel Exercice 19. Sur le schéma ci-dessous, représenter le vecteur v tel que u et v soient colinéaires, de même sens et tels que v = 3 2 u. Représenter ensuite le vecteur w, colinéaire à u, de sens contraire, et tel que w = 2 u. u Définition : Soit u un vecteur et k R. Le produit du réel k par le vecteur u est LE vecteur noté k u et défini comme suit : Si u = 0 ou k = 0, alors k u =... Si u 0 et k 0, alors : (a) k u et u sont colinéaires ; (b) k u et u sont de même sens si k > 0 et de sens contraire si k < 0 ; (c) k u = k u. La multiplication d un vecteur par un réel est prioritaire sur l addition et la soustraction de deux vecteurs. Il faudra donc pour modifier cette priorité penser à l utilisation de parenthèses. Par exemple, 1. Pour représenter le vecteur w égal à 2 u + v, on représente d abord le vecteur 2 u puis on ajoute au résultat le vecteur v. 2. Pour représenter le vecteur x égal à 2( u + v ), on cherche d abord la somme u + v puis on multiplie cette somme par deux. Les vecteurs u et k u sont colinéaires, quels que soient k et u. Plus précisément : Propriétés : Deux vecteurs non nuls u et u sont colinéaires si, et seulement si, l un est le produit de l autre par un réel. 2 de 5 Vecteurs Page 6/10

7 Exercice 20. Soient e et f deux vecteurs tels que 2 e = 3 f. Montrer que e et f sont colinéaires. On suppose que la norme de f vaut 6. Que vaut celle de e? Exercice 21. Représenter sur le schéma ci-dessous les vecteurs u = 3 i ; v = 3 i +2 j ; w = 2 i +4 j. j i Propriétés : Soient u et v deux vecteurs ; k et l deux nombres réels. (a) 1 u =... (b) ( 1) u =... (c) u + u =... (d) k( u + v ) =... (e) k u +l u =... Application au milieu d un segment : Soit A et B deux points du plan. Les proposition suivantes sont équivalentes : 1. I est le milieu du segment [AB] 2. AI =... AB 3. pour tout point M du plan, 2 MI = MA + MB Exercice 22. (Théorème des milieux) Soit EFG un triangle quelconque ; I est le milieu de [EF] et J est le milieu de [EG]. Prouver que IJ = 1 FG. 2 2 de 5 Vecteurs Page 7/10

8 6 Vecteurs et repères 6.1 Généralités Schéma : les droites représentées en pointillé constituent un réseau de droites parallèes à (OI) et à (OJ). P N J O I Q R Exercice 23. Placer sur le schéma ci-dessus le point A de l axe tel que OA = 3 OI. Placer le point B tel que OB = 2 OJ. Placer dans le plan le point C tel que OC = 3 OI 2OJ. Quelle est la nature du quadrilatère OACB? Propriétés : A tout point point M du plan peut être associé un unique couple (x M ;y M ) de nombres réels, précisant sa position dans le plan, relativement au repère (O;I;J) en ce sens que OM = x MOI +ymoj. x M est l abscisse de M ; y M est l ordonnée de M. 2 de 5 Vecteurs Page 8/10

9 6.2 Coordonnées d un vecteur On considère le repère (O;I;J) ci-dessous. J O I Exercice 24. Placer dans le repère ci-dessus le point A(2;1) et le point B( 1;3). Pour aller de O vers A, on avance de 2 unités selon l axe des x et on monte de 1 unité selon l axe des y. On dit que les coordonnées du vecteur ( 2 OA sont. (On les note verticalement). 1) Quelles sont les coordonnées du vecteur OB? du vecteur AB? Représenter dans le plan le vecteur ( ) 2 u de coordonnées. 3 Propriétés : Dans un repère (O;I;J), tout vecteur u se décompose de façon unique sous la forme : u = xoi +yoj On dit que le vecteur ( x u a pour coordonnées. y) On trouve aussi les notations u (x;y) ou u x y. Exercice 25. On pose i = OI et j = OJ. Quelles sont les coordonnées des vecteurs i, j, i + j et i j? Autre notation pour un repère : Soit (O;I;J) un repère du plan. Les points O, I et J n étant pas alignés, les vecteurs i = OI et j = OJ ne sont pas.... Le repère (O;I;J) se note alors (O; i, j ). L axe des abscisses est la droite passant par O et dirigée par le vecteur... L axe des ordonnées est la droite passant par O et dirigée par le vecteur Applications Propriétés (Vecteurs et coordonnées) : Soit u 1. u = v x = x et y = y. 2. u + v a pour coordonnées ( ) Quel que soit k R, k u a pour coordonnées ( x et y) v ( ) ( x y ) deux vecteurs. 4. Soit A(x A ;y A ) et B(x B ;y B ) deux points du plan. AB a pour coordonnées 5. Si de plus le repère (O; i, j ) est orthonormé, alors u = ( ) de 5 Vecteurs Page 9/10

10 Exercice 26. Soit dans un repère orthonormé les points A(1;2), B( 1; 2) et C(5;0). Trouver les coordonnées de D tel que ABCD soit un parallélogramme. Propriétés [Caractérisation de la colinéarité] : Soit u ( x et y) v u et v sont colinéaires xy yx = 0 ( x y ) deux vecteurs. Le réel xy yx est appelé déterminant du couple de vecteurs ( u ; v ) et se note det( u ; v ) Exercice 27. Soit L(2; 1), M( 1; 3) et N(4; y). Trouver y de sorte que N (LM). 2 de 5 Vecteurs Page 10/10

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

Géométrie dans l Espace

Géométrie dans l Espace Géométrie dans l Espace Année scolaire 006/007 Table des matières 1 Vecteurs de l Espace 1.1 Extension de la notion de vecteur à l Espace............................. 1. Calcul vectoriel dans l Espace......................................

Plus en détail

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB Chapitre 3 La notion de vecteurs CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Vecteurs Définition de la translation qui transforme un point A du plan en un point B. Vecteur AB associé. Égalité de deux vecteurs

Plus en détail

Repérage et vecteurs

Repérage et vecteurs Repérage et ecters Chapitre 10 page 241 Introdction : Rappels por démarrer : Page 241 I-Egalité de ecters 1- Détermination d'n ecter. Un ecter non nl est déterminé par : - sa direction ; - son sens ; -

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Géométrie vectorielle plane, cours, première S

Géométrie vectorielle plane, cours, première S Géométrie vectorielle plane, cours, première S F.Gaudon 25 septembre 2015 Table des matières 1 Géométrie vectorielle dans un repère 2 1.1 Compléments sur la colinéarité.................................

Plus en détail

VECTEURS-TRANSLATIONS. «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction, orientation «Aller en sens contraire» Petit Larousse

VECTEURS-TRANSLATIONS. «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction, orientation «Aller en sens contraire» Petit Larousse THEME : VECTEURS-TRANSLATIONS DEfinitions - Proprietes Notion de direction et de sens : Direction ( n.f. ) Orientation vers un point donné «La direction de l aiguille aimantée» Sens : ( n.m. ) Direction,

Plus en détail

Géométrie vectorielle et analytique dans l'espace, cours, terminale S

Géométrie vectorielle et analytique dans l'espace, cours, terminale S Géométrie vectorielle et analytique dans l'espace, cours, terminale S F.Gaudon 21 mars 2013 Table des matières 1 Vecteurs de l'espace 2 1.1 Extension de la notion de vecteur à l'espace.........................

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

Cours de mathématiques. Thomas Rey

Cours de mathématiques. Thomas Rey Cours de mathématiques Thomas Rey Classe de seconde le 29 août 2010 «Ce qui est affirmé sans preuve peut être nié sans preuve.» EUCLIDE D ALEXANDRIE Table des matières 1 Fonctions numériques 5 1.1 Notion

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercice Exercices sur les vecteurs ABCD est un parallélogramme et ses diagonales se coupent en O () Compléter par un vecteur égal : a) AB = b) BC = c) DO = d) OA = e) CD = () Dire si les affirmations

Plus en détail

Repérage et configurations du plan

Repérage et configurations du plan I Repères et coordonnées a) Repères Définition : (O ;I,J) est un repère du plan. Il est constitué d un triplet de points non alignés. O est appelé origine du repère La droite graduée (O ;I) est l axe des

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 4 : QUADRILATERES 1. IDENTIFIER UN QUADRILATERE ABCD est une figure géométrique formée de 4 côtés et de 4 sommets : c est un quadrilatère Le segment

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Vecteurs dans le plan

Vecteurs dans le plan Vecters dans le plan 1. Définition d n vecter : (classe de seconde) Soient A et B dex points d plan. La translation transformant A en B est la transformation qi transforme tot point M en n point M tel

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Un point pondéré est un couple ( A, a ) formé d un point A et d un coefficient réel a.

Un point pondéré est un couple ( A, a ) formé d un point A et d un coefficient réel a. Cours 2 BARYCENTRES Définition Un point pondéré est un couple ( A, a ) formé d un point A et d un coefficient réel a 2 Barycentre d un système de plusieurs points pondérés On se place par exemple dans

Plus en détail

CHAPITRE III VECTEURS

CHAPITRE III VECTEURS CHAPITRE III VECTEURS EXERCICES 1) Recopiez le point A et le vecteur u sur le quadrillage de votre feuille : 4 e Chapitre III Vecteurs a) Construisez le point B tel que AB = u. b) Construisez le point

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Nombres complexes et géométrie euclidienne

Nombres complexes et géométrie euclidienne 19 Nombres complexes et géométrie euclidienne Le corps C des nombres complexes est supposé construit voir le chapitre 7. On rappelle que C est un corps commutatif et un R-espace vectoriel de dimension,

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

DEVOIR MAISON 4 : LES VECTEURS

DEVOIR MAISON 4 : LES VECTEURS DEVOIR MAISON 4 : LES VECTEURS Ce devoir maison de révisions, de préparation au DS4 comporte deux pages. Vous traiterez au choix au moins la première ou la deuxième page. Exercice 1. Le plan est muni d

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

CHAPITRE III VECTEURS

CHAPITRE III VECTEURS CHAPITRE III VECTEURS COURS 1) Exemple : force exercée par un aimant. p 2 2) Définitions et notations. p 3 3) Egalité de deux vecteurs... p 5 4) Multiplication d un vecteur par un nombre réel... p 6 5)

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

vs Christia 1 n Poisson

vs Christia 1 n Poisson vs Christian 1 Poisson Cet ouvrage contient une sélection d'études d'echecs composées par ordinateur, plus précisément par l'analyse de tables de finales, en l'occurrence ici la table, à l'aide de WinChloe

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Première S : Les contrôles et corrigés

Première S : Les contrôles et corrigés Première S : Les contrôles et corrigés O. Lader Table des matières Devoir maison : Polynômes du second degré et droites................... 4 Devoir maison : Polynômes du second degré et droites (corrigé)..............

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

Géométrie Vectorielle

Géométrie Vectorielle Géométrie Vectorielle M Renf Jean-Philippe Javet Sources : http://www.josleys.com Table des matières Vecteurs, composantes - points, coordonnées. Les vecteurs..........................................

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Mathématiques Secondes

Mathématiques Secondes Mathématiques Secondes 2 Table des matières 0 Algorithmique 5 1 Repérage 9 2 Équations et Inéquations du premier degré 13 3 Géométrie dans l espace 17 4 Généralités sur les fonctions 19 5 Statistiques

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8 CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2

Plus en détail

Barycentre. I. Barycentre de 2 points pondérés. Sommaire

Barycentre. I. Barycentre de 2 points pondérés. Sommaire Barycentre Introduction : approche possible Le barycentre est un point qui résume d'autres points, de la même façon d'une moyenne est un nombre qui résume d'autre nombres, éventuellement affectés de coefficient.

Plus en détail

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%.

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%. 3 ème REVISIONS BREVET EXERCICE 1 : Soit P = (x 2) (2x + 1) (2x + 1)² 1. Développer et réduire P. 2. Factoriser P. 3. Résoudre l équation (2x + 1) (x + 3) = 0 4. Pour x = 3, écrire P sous forme fractionnaire.

Plus en détail

CHAPITRE 2 CALCULS ALGEBRIQUES

CHAPITRE 2 CALCULS ALGEBRIQUES Classe de Troisième CHAPITRE CALCULS ALGEBRIQUES UTILISER DES LETTRES... 34 EXPRESSIONS EQUIVALENTES... 36 VOCABULAIRE DU CALCUL LITTERAL... 37 REDUCTIONS D'ECRITURES... 39 DEVELOPPER UN PRODUIT... 40

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

TRIGONOMETRIE - EXERCICES CORRIGES

TRIGONOMETRIE - EXERCICES CORRIGES Cours et eercices de mathématiques TRIGONOMETRIE - EXERCICES CORRIGES Trigonométrie rectangle Eercice n. Compléter les égalités en respectant bien les notations de l énoncé cos ABC = sin ABC = tan ABC

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

A. Déterminant d une matrice carrée

A. Déterminant d une matrice carrée IUT ORSAY Mesures Physiques Déterminants Initiation à la diagonalisation de matrice Cours du ème Semestre A Déterminant d une matrice carrée A-I Définitions élémentaires Si A est la matrice ( a ) on appelle

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Mathématiques. Première S. Rédaction : Philippe Bardy Sébastien Cario Isabelle Tenaud. Coordination : Jean-Michel Le Laouénan

Mathématiques. Première S. Rédaction : Philippe Bardy Sébastien Cario Isabelle Tenaud. Coordination : Jean-Michel Le Laouénan Mathématiques Première S Rédaction : Philippe Bardy Sébastien Cario Isabelle Tenaud Coordination : Jean-Michel Le Laouénan Ce cours est la propriété du Cned Les images et textes intégrés à ce cours sont

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier maths Seconde Cours de mathématiques 2010-2011 F.Lagrave - Lycée Beaussier cours de mathématiques cours avec exercices T A B L E D E S M A T I È R E S 1 Généralités sur les fonctions 7 1.1 Notion de

Plus en détail

PRODUIT SCALAIRE DANS L'ESPACE

PRODUIT SCALAIRE DANS L'ESPACE PRODUIT SCLIRE DNS L'ESPCE Dans tout ce chapitre, les bases ou repères considérés sont orthonormés. Pour des révisions sur le produit scalaire dans le plan, voir le cours de première. 1. Définition du

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Olympiades Françaises de Mathématiques 2012-2013. Test du mercredi 9 janvier Corrigé

Olympiades Françaises de Mathématiques 2012-2013. Test du mercredi 9 janvier Corrigé Olympiades Françaises de Mathématiques 202-203 Test du mercredi 9 janvier Corrigé Exercice. Soit ABC un triangle isocèle en A. On note O le centre de son cercle circonscrit. Soit D un point de [BC]. La

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Séquence 7. 1 ère partie : 2 e partie : Problèmes. Produit scalaire (2) : applications. Séquence 7 MA12. Cned - Académie en ligne

Séquence 7. 1 ère partie : 2 e partie : Problèmes. Produit scalaire (2) : applications. Séquence 7 MA12. Cned - Académie en ligne Séquence 7 1 ère partie : Produit scalaire () : applications e partie : Problèmes Séquence 7 MA1 1 1ère partie Produit scalaire () : applications Sommaire 1/ Pré-requis Calculs de distances, d angles 3

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0)

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0) Fonction affine I Définition Étant donné deux nombres m et p, on définit une fonction affine f lorsque, à tout nombre x, on associe le nombre f(x) = mx+p. On note f : x mx+p cette fonction. Remarque :

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures Mathématiques Contrôle commun de Seconde Mardi 01 mars 011 Durée de l épreuve : heures L usage de la calculatrice est autorisé. Aucun prêt de matériel n est toléré. La qualité de la rédaction et le soin

Plus en détail

Solutions du Concours Fryer 2003

Solutions du Concours Fryer 2003 Concours canadien de mathématiques Une activité du Centre en mathématiques et en Université de Waterloo, Waterloo, Ontario Solutions du Concours Fryer 2003 (9 e année) (Secondaire III au Québec) pour les

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Notes de cours de mathématiques en Seconde générale O. Lader

Notes de cours de mathématiques en Seconde générale O. Lader Seconde générale Lycée Georges Imbert 05/06 Notes de cours de mathématiques en Seconde générale O. Lader Table des matières Développer factoriser pour résoudre (S). Calcul algébrique.................................................

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Université Joseph Fourier Année 2005-2006 LST Mathématiques. Géométrie

Université Joseph Fourier Année 2005-2006 LST Mathématiques. Géométrie Université Joseph Fourier Année 2005-2006 LST Mathématiques KMAT367 Géométrie version du 5 avril 2006 Table des matières Introduction 1 1 Espaces affines 3 1.1 Définition....................................

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Géométrie (barycentre et produit scalaire dans l espace)

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Géométrie (barycentre et produit scalaire dans l espace) Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Géométrie barycentre et produit scalaire dans l espace) Frédéric Demoulin 1 Dernière révision : 24 avril 2011 1. frederic.demoulin

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

Mathématiques en Première S. David ROBERT

Mathématiques en Première S. David ROBERT Mathématiques en Première S David ROBERT 007 008 Sommaire Progression 1 Devoir maison n 1 : Lieux de points 3 1 Généralités sur les fonctions 5 1.1 Activités..........................................................

Plus en détail

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48 1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles

Plus en détail

CHAPITRE 3 Repères, points et droites

CHAPITRE 3 Repères, points et droites CHAPITRE 3 Repères, points et droites A) Repères et coordonnées des points 1) Repères Pour représenter le plan en géométrie analytique, on a besoin de définir deux axes, qu'on appelle axe des abscisses

Plus en détail

MATHEMATIQUES 1 partie. Activités numériques

MATHEMATIQUES 1 partie. Activités numériques NOM : Classe : Prénom : MATHEMATIQUES partie Les réponses seront justifiées. Le détail des calculs figurera sur la copie. Activités numériques Quel est le PGCD des nombres 185 et 444? 2 Un chef d orchestre

Plus en détail

2 Nombres complexes. et trigonométrie CHAPITRE

2 Nombres complexes. et trigonométrie CHAPITRE CHAPITRE Nombres complexes et trigonométrie A Les nombres complexes 66 B Représentation géométrique Affixe Module Argument 67 1 Image d un complexe Affixe d un point, d un vecteur 67 Module 68 3 Nombres

Plus en détail

CH VI Notion de fonctions : les fonctions linéaires et affines.

CH VI Notion de fonctions : les fonctions linéaires et affines. CH VI Notion de fonctions : les fonctions linéaires et affines. I) Activités : Activité 1 : Relier les points correspondants. [- ; 3] Ensemble des réels x tels que x [ ; + [ Ensemble des réels x tels que

Plus en détail

Corrections preparation BB 2012

Corrections preparation BB 2012 Corrections preparation BB 2012 Brevet 2007 - Solution Activités numériques 1 Les explications ne sont pas demandées mais nous vous les fournissons tout de même. 1) la bonne réponse est 9x 2 + 30x + 25

Plus en détail

Cours de mathématiques Seconde

Cours de mathématiques Seconde Cours de mathématiques Seconde Chapitre Vecteurs et translations...4 I Définitions et premières propriétés...4 a) Rappels sur le parallélogramme...4 b) Translation...4 c) Vecteur...5 d) Vecteurs égaux...5

Plus en détail