3.3.3 Changement de variable
|
|
- Lucienne Bernier
- il y a 6 mois
- Total affichages :
Transcription
1 3. Primitives: Techniques de clcul des rimitives Chngement de vrible Si F est une rimitive de f et si g est une fonction, lors l formule de dérivtion diune fonction comosée donne quel dérivée de F g est égle à (F g)(x)g (x), insi l fonction F g est une rimitive de ( f g)g. L liction rtique de ce résultt à l recherche des rimitives se résente sous deux sects : I) Si f (x) eut se mettre sous l forme f (x) =j[u(x)]u (x) où j est une fonction continue dont F est une rimitive et si u est à dérivée continue, lors : f (x) = j(u)u (x). En osnt du = u (x) on obtient f (x) = j(u)du = F(u(x)) + C EXEMPLE.. Soit à clculer tn(x) = sin(x) cos(x). On ose u(x) =cos(x) dont l différentielle est du = Alors tn(x) =. Soit à clculer x x du sin(x). = u ln u(x) + C = ln cos x + C. On ose u(x) = x donc du = x. On obtient lors x = du» x u = u(x)+c = x + C. 3. Suosons que l on veuille clculer x + x. Nous llons fire un chngement de vrible : sser de l vrible x à l vrible u. Soit u = + x. L différentielle de u est du = x. On écrit udu= x + x = 3 u3/ + C = 3 (x + ) 3/ + C et on vérifie bien que l on obtient x x + en dérivnt cette exression. II) Pour obtenir une exression lus simle de l élément différentiel, il eut être utile d effectuer un chngement de vrible en osnt x = j(t) dont l différentielle est = j (t) dt dns ces conditions : f (x) = f (j(t))j (t) dt = g(t) dt où G est une rimitive de g EXEMPLE.. Soit à clculer = G(t)+C e x. On ose x = ln(t) vec t ], + [, l + ex différentielle s écrit = dt t et + ex = + t. Il s en suit : e x + e x = t ( + t)t dt = uisque t >. Comme x = ln(t), t = e x, Ainsi dt dt = ln( + t )+C = ln( + t)+c + t e x + e x = ln( + ex )+C.
2 3. Primitives: Notion d intégrle (définie) 34. Pour déterminer on ose x = sin t vec t ] x, s écrit = cos tdtet x = cos t = cos t. Il s en suit : cos(t) = x cos(t) dt = dt = t + C. L inverse de l fonction sin est rcsin, d où x = sin(t), t = rcsin(x), Ainsi = rcsin(x)+c. x [, l différentielle REMARQUE L méthode d intégrtion r chngement de vrible n d utre but que de remlcer une intégrle comliquée r une intégrle lus simle. L difficulté mjeure consiste à trouver le chngement de vrible qui convient. Il fut essyer de choisir u égl à une certine fonction qui rit sous le signe d intégrtion et dont l différentielle s y trouve ussi à un fcteur constnt rès. Ce n est s fcile, si le remier choix n est s le bon, en tenter d utres... En rtique on donner le chngement de vrible à effectuer Exercice Pr chngement de vrible, clculer : 3.4 Notion d intégrle (définie) x + x et + x + 5 x DÉFINITION On elle intégrle de à b d une fonction f continue sur un intervlle I, vec et b dns I, l différence F(b) F(), F étnt une rimitive quelconque de f sur I. Cette intégrle est notée f (x) Ainsi, r définition : f (x) = F(b) L écriture F(), ce que l on écrit ussi :On note f (x) =[F(x)] b = F(b) f (x) se lit hh intégrle (ou somme) de à b de f (x)ii REMARQUE. Vérifions que dns l définition de l intégrle ne déend s du choix de l rimitive. Soit G, une utre rimitive de f sur I, lors il existe une constnte C telle que G = F + C. D où G(b) G() =(F(b)+C) (F()+C) =F(b) F() = F(). f (x). Donc l définition de l intégrle est cohérente, elle est indéendnte de l rimitive choisie.. Cs où une borne de l intégrle est vrible Grâce à l définition récédente on ussi : x f (t)dt =[F(t)] x = F(x) F(). Dns ce cs, l intégrle dont une bome est x est une rimitive, en fit c est l rimitive de f qui s nnule en x =. ñ ô t EXEMPLE. (t 3 + t + )dt = t 3 4 dt + tdt + dt = 4 + t + t = /4 + / + = 7/4.
3 3. Primitives: Notion d intégrle (définie) Proriétés de l intégrle ) f (x) = f (x) = b f (x). ) Reltion de Chsles Avec, b, et c sur un intervlle I où l fonction f est continue, on f (x) = c f (x) + 3) Linérité de l intégrle : Soient et b des constntes, ( f (x) +bg(x)) = f (x) + b g(x) 4) Positivité de l intégrle et resect des inéglités : Si f (x) le g(x) sur [, b] vec b >, lors c f (x) le f (x) g(x) Ainsi l intégrtion resecte l inéglité, lorsque les bornes sont dns le sens croissnt. En rticulier : () f (x) sur [, b] vec b >, lors (b) f (x) le sur [, b] vec b >, lors EXEMPLE. ) Clculer t sin(t) dt f (x) f (x) le Fisons une intégrtion r rties en osnt u = t et v = sin t, d où u = et v = cos t. t sin tdt =[ t cos t] + cos tdt = cos()+[sin t] = cos() =. ) Clculer t e t dt. Intégrons r rties en osnt u = t et v = e t, d où u = t et v = t e t dt =[ t e t ] + te t dt = e + te t dt. Ce n est s fini : il fut encore fire bisser le degré de l uissnce de t dns l nouvelle intégrle : osons u = t et v = e t, d où u = et v = e t te t dt =[ te t ] + e t dt = [e t ] e = e +. Finlement t e t dt = e + ( e + ) = 5 e. 3) Déterminer une rimitive de l fonction ln sur R + qui s nnule en x =. Cel revient à clculer F(x) = x e t ln tdt. Il s git de l rimitive de ln qui s nnule our x =. Procédons à une intégrtion r rties en osnt u = ln t et v =. On en déduit u = /t et v = t. D où F(x) =[t ln t] x x ln x x +. x dt = x ln x [t] x =
4 3. Primitives: Notion d intégrle (définie) 36 / 4) Pour déterminer on ose x = sin t vec t ] x, [, l différentielle s écrit = cos tdtet x = cos t = cos t. Il s en suit : x = cos(t) cos(t) dt = dt = t + C. Comme x = sin t, les bornes de deviennent our x =, t = et our x = /, t = 6 Ainsi / x = 6 dt = EXEMPLE. de l introduction (suite). En un n l oultion à ugmenté de W() W() = R e.t dt = 3 [e,t ] = REMARQUE. Notion d ire lgébrique Géométriquement, l intégrle de à b de f rerésente l ire lgébrique de l ensemble des oints situés entre l courbe de f et l xe des bscisses dns un reère orthonormé. A l différence de l ire géométrique, toujours ositive, l ire lgébrique eut être ositive ou négtive. Pr définition, ire lgébrique est égle à l intégrle. Voici les qutre cs de figure : f sur [,b] et b > : f (x) = ire géométrique = ire lgébrique f le sur [, b] et b > : f (x) = -ire géométrique = ire lgébrique f sur [,b] et > b : f (x) = -ire géométrique = ire lgébrique f le sur [, b] et > b : f (x) = ire géométrique = ire lgébrique
5 3. Primitives: Notion d intégrle (définie) 37 Conséquence : lorsqu une fonction chnge de signe sur [, b] vec b >, l intégrle est toujours égle à ire lgébrique, et celle-ci est l somme des ires (géométriques) situées u-dessus de l xe des x, diminuée de celle des ires (géométriques) situées u- dessous de l xe des x. f (x) = ire rouge-ire verte. Le symbole fut introduit r Leibniz (686) ( et s elle intégrle ou somme). Il l forme d un S llongé justiffie r le fit qu une intégrle est l limite d une somme : nx f (x) = f (z i )(x i x i ) lim n!+ où x =, x n = b, x i = + i(b )/n (on eut choisir les x i utrement) et z i un oint quelconque de [x i, x i ] (r exemle z i = x i ). Cette somme orte le nom de somme de Riemnn. Si f est ositive, elle corresond à l somme des ires (géométrique) des rectngles de huteur f (z i ) et de lrgeur x i+ x i =(b )/n. i= y y=f(x) f( i ) O =x x x x 3 x n =b x i x i x n x i
CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2
CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................
Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015
Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il
Rappels et compléments sur l intégrale de Riemann
Chpitre Rppels et compléments sur l intégrle de Riemnn Commençons pr un rppel. Théorème.. (Théorème fondmentl du clcul intégrl) Soit f :[, b]! R une fonction continue. Pour tout x 2 [, b], posons F (x)
Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral
Clcul Intégrl christophe.profet@univ-evry.fr http://www.mths.univ-evry.fr/pges_perso/cprofet/ Amphi n 1 Jnvier 214 Objectifs du cours 1 donner une définition de l intégrle f (x)dx qui permet de comprendre
Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels
Chpitre 6 Primitive et Intégrle 6. Primitive 6.. Rppels Définition 6... Si f est une fonction définie sur un intervlle I, une primitive de f sur I est une fonction F telle que pour tout x dns I, F (x)
Primitives Calcul intégral
Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................
Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers
Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus
Cours de Terminale S /Intégration. E. Dostal
Cours de Terminle S /Intégrtion E. Dostl Février 26 Tble des mtières 9 Intégrtion 2 9. Intégrles............................................. 2 9.. Aire sous une courbe...................................
Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23
Clcul intégrl Ctherine Decyeux Ctherine Decyeux () Clcul intégrl 1 / 23 I-Introduction Le clcul intégrl s est développé u XVIIe siècle vec les trvux de Bonvntur Cvlieri, Isc Newton, Leibniz... mis les
Primitives et Calcul d une intégrale
Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à
Intégration Primitives
Intégrtion Primitives Christophe ROSSIGNOL Année scolire 2015/2016 Tble des mtières 1 Rppels et compléments 3 1.1 Rppels de dérivtion.......................................... 3 1.1.1 Dérivtion en un point......................................
Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}
Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et
1. Notion d intégrale Interprétation graphique
Clcul intégrl TS 1. Notion d intégrle Interpréttion grphique Le pln étnt muni du repère orthogonl ( O,I, J ) l unité d ire ( u. ) est l ire du rectngle âti à prtir des points O, I, J. on ppelle domine
Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI
Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de
INTEGRATION. f(x) I F(x) I ) PRIMITIVE. e x R e x + c
INTEGRATION I ) PRIMITIVE Définition : Soient f et F deu fonctions définies sur I. F est une primitive de f sur I si F est dérivle sur I et pour tout de I F () = f () Propriété : Si f continue sur I lors
Cours de remise à niveau Maths 2ème année. Intégrales simples
Cours de remise à niveu Mths 2ème nnée Intégrles simples C. Mugis-Rbusseu GMM Bureu 116 cthy.mugis@ins-toulouse.fr C. Mugis-Rbusseu (INSA) 1 / 47 Pln 1 Définitions 2 Propriétés des fonctions intégrbles
Intégrabilité d une fonction à valeurs réelles ou complexes
Cours de Mthémtiques ntégrtion sur un intervlle quelconque Prtie : Fonctions intégrbles à vleurs complexes Fonctions intégrbles à vleurs complexes Dns ce prgrphe, est un intervlle de R, et K désigne R
( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f
Chpitre 6 : Clcul intégrl I Intégrle d une fonction continue positive 1 Unité d'ire Le pln est muni d un repère orthogonl O;i!,! j!!" "!!! " " En posnt OI = i et OJ = j, l ire du rectngle OIKJ définit
Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1
Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle
CHAPITRE 7. Rappel sur l intégrale simple.
CHPITRE 7 Rppel sur l intégrle simple. Les prochins chpitres triteront de l intégrtion. Dns un premier temps, nous rppellerons ce qu est l intégrle simple (l intégrtion pour les fonctions d une seule vrible
PRIMITIVES ET INTÉGRALES
Lurent Grcin MPSI Lycée Jen-Bptiste Corot PRIMITIVES ET INTÉGRALES Les fonctions de ce chpitre sont des fonctions d une vrible réelle à vleurs réelles ou complexes. Primitives. Définition Définition. Primitive
COURS TERMINALE S LE CALCUL INTEGRAL
COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l
Le Calcul de Primitives
Le Clcul de Primitives MPSI Prytnée Ntionl Militire Pscl Delhye 25 octobre 27 ϕ(x) f(u) du = f(ϕ(t) )ϕ (t) }{{}}{{} u du Résultts préliminires Définition : Primitives Soit deux fonctions f et F définies
Chapitre 11 : Calcul intégral
Cpitre 11 : Clcul intégrl I Intégrle d une fonction positive I.1 Définition Définition ( 1. Dns un repère ortogonl O; i ; ) j, on ppelle unité d ire l ire du rectngle de côtés [OI] et [OJ]. 2. Soient f
Mémo de cours n 4. Intégrales
Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On
Définition d'une intégrale. Calcul intégral
Définition d'une intégrle Clcul intégrl. Introduction... p2 4. Primitives d'une fonction continue sur un intervlle... 2. Intégrle d'une fonction continue positive sur [;]... p5 p 5. Recherche de primitives...
Résumés de cours : Terminale S.
Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle
Feuille d exercices 2 : Analyse Intégrale
Université Denis Diderot Pris 7 (3-4) TD Mths, Agro www.mth.jussieu.fr/ merle Mthieu Merle : merle@mth.univ-pris-diderot.fr Feuille d eercices : Anlyse Intégrle Eercice Trouver une primitive de f : rccos()
EB - INTEGRALES DEPENDANT D UN PARAMETRE
EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que
Nous admettrons et utiliserons souvent le théorème suivant:
< 20 Intégrtion: fonction réelle d une vrile réelle. Définition 2.5. (Intégrilité u sens de Riemnn) Une fonction réelle f: [, ] R est dite intégrle sur [,], si ǫ > 0, f 1, f 2 : [, ] R fonctions en escliers
Mathématiques Différentielle - Intégrale
Mthémtiques Différentielle - Intégrle F. Richrd 1 1 Institut PPRIME - UPR 3346 CNRS Déprtement Fluides, Thermique, Combustion Frnce Institut des Risques Industriels Assurntiels et Finnciers IRIAF F. Richrd
Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées.
Chpitre 7 Intégrtion Contenus Cpcités ttendues Commentires Intégrtion Définition de l intégrle d une fonction continue et positive sur [;] comme ire sous l coure. Nottion f(x) dx. Théorème : si f est une
Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6
Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.
L1MI - Mathématiques: Analyse
Université de Metz (UFR MIM) Année universitire - Déprtement de Mthémtiques Dérivtion et Dérivée Exercice Clculer l dérivée des fonctions suivntes (x) = x + ln(x + x + ), LMI - Mthémtiques: Anlyse b(x)
M : Zribi 4 ème Sc Fiche. Calcul intégral. Le plan est rapporté à un repère orthogonal (O;i,j).
L.S.Mrs Elridh Clcul intégrl M : Zrii Le pln est rpporté à un repère orthogonl (O;i,j). A) Intégrle d une fonction continue et positive. 1 - Aire et intégrle. Définition Soit f une fonction continue et
LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications.
LEÇON N 76 : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité de l moyenne. Applictions. Pré-requis : Si f est une fonction numérique dérivble sur
Intégrales et primitives
Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte
Primitives et intégrales
Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,
Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1
ntégrtion Licence de mthémtiques, 4 e semestre Université Ai-Mrseille J-Y. Briend Fscicule de résultts ntégrbilité, intégrle Définition.. Soit = [,b] un intervlle compct. Une subdivision pointée P de est
BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S
BACCALAURÉAT GÉNÉRAL Session Pondichéry vril ) MATHÉMATIQUES obligtoire) Correction Série : S Durée de l épreuve : 4 heures Coefficient : 7 EXERCICE PARTIE A Soient et b deux réels tels que < b. Soient
Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1
Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................
Chapitre 9. Calcul intégral. 9.1 Intégrale d une fonction continue Définition, exemples et propriétés
Chpitre 9 Clcul intégrl L notion de clcul intégrle est une notion ssez importnte dns bons nombres de domines de l science. Ce cours pour but d introduire ldite notion. On utilise le clcul intégrl :. pour
Fiche Intégration MOSE Octobre 2014
Fiche Intégrtion MOSE 13 9 Octore 14 Tle des mtières Propriétés de l intégrle 1 Théorème fondmentl du clcul intégrl................................ Intégrle d une fonction de signe quelconque...............................
Calcul intégral. I Intégrale d une fonction 2
T le STIGE Clcul intégrl 8-9 Clcul intégrl Tble des mtières I Intégrle d une fonction II Interpréttion grphique : clcul d ire II. Aire d un fonction positive...................................... II. Aire
Analyse 2 - Résumé du Cours
UFR de Mthémtiques Université de Lille Licence sciences et technologies A - S MASS Anlyse - Résumé du Cours Tble des mtières Prtie I : Intégrtion. Introduction : Premières remrques sur les primitives et
Intégration des fonctions continues par morceaux
Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f
Lycée Stendhl (Grenole) Niveu : Titre Cours : Terminle S Année : Chpitre 09 : Les Intégrles 204-205 826-866 874-94 Cittion du moment : «Le seul enseignement qu un professeur peut donner, à mon vis, est
Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB).
Vdouine Terminle S Cpitre 4 Intégrtion Définition Soit f une fonction continue et positive sur un intervlle I contennt et deu nomres tels que. L représenttion grpique est trcée dns un repère ortogonl O;;
Intégrale 4 ème math B.H.Hammouda Fethi
Intégrle 4 ème mth BHHmmoud Fethi Intégrle d une onction continue et positive : Déinition : Le pln est muni d un repère orthogonl Soit une onction continue et positive sur un intervlle, et F une primitive
Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions.
Fiches de cours nlyse 4 ème Sciences epérimentles Limites et continuité Limites et comprison de fonctions. L et L ' sont des réels. désigne soit un réel, soit +, soit Premier théorème de comprison Soit
Calcul Intégral - Equations Différentielles M211-1
/46 Clcul Intégrl - Equtions Différentielles M11-1 Michel Fournié michel.fournie@iut-tlse3.fr http://www.mth.univ-toulouse.fr/ fournie/ /46 Introduction Tble des mtières 1 Introduction Préliminires, Rppels
MAT 1720 A : Calcul différentiel et intégral I
MAT 1720 A : et intégrl I Pul-Eugène Prent Déprtement de mthémtiques et de sttistique Université d Ottw le 14 octobre 2015 Au menu ujourd hui 1 2 3 4 Le théorème de Stokes Voici le contenu d un peu plus
Développements limités. Généralités. Définitions usuelles
Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples
CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES
Clcul d intégrles - Intégrtion pr prties Cours CHAPITRE 7 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Dns ce cours, nous disposons de trois techniques de clcul d intégrles : ) primitivtion pr lecture
INTÉGRATION. Table des matières
INTÉGRATION Tble des mtières. Primitives et intégrles indéfinis. Régles d intégrtion 3 3. Intégrtion de fonctions rtionnelles 5 3.. Première étpe : contrôle du degré 6 3.. Deuxième étpe : fctoristion de
LEÇON N 67 : Formules de Taylor. Applications.
LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge
Chapitre 8 : Intégrales
Terminle S 2014/2015 Chpitre 8 : Intégrles Cours 1 Intégrle et ire Définition 1 Dns le pln muni d un repère orthogonl, on ppelle unité d ire, que l on note u.., l ire du rectngle OIKJ où OI = ı, OJ = j
Intégration et primitives
TS 202-203 Intégrtion et primitives Intégrle d une fonction continue et positive. Notion d ire sous une coure Etnt donné une fonction f continue et positive sur un intervlle [; ] vec, on note C s représenttion
Etude de suites récurrentes
[http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)
Calculs de primitives et d intégrales
Clculs de primitives et d intégrles Dns ce chpitre, on borde exclusivement les clculs de primitives ou d intégrles comme le prévoit le progrmme officiel L théorie de l intégrtion est repoussée u deuxième
Techniques Mathématiques de Base UCBL L1 PCSI UE TMB. Programme du cours. Partie I : Algèbre linéaire et géométrie cartesienne
UCBL L PCSI UE Techniques Mthémtiques de Bse Alessndr Frbetti Institut Cmille Jordn, Déprtement de Mthémtiques http://mth.univ-lyon.fr/ frbetti// Progrmme du cours Prtie I : Algèbre linéire et géométrie
CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.
CHAPITRE : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.. Fonction népérien (logrithme d une fonction composée). Théorème Si u est une fonction strictement positive et dérivble sur un intervlle I ouvert,
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries
Le but du calcul intégral, que nous ne développerons pas ici, est d identifier cette quantité b
Clcul de Primitives Pré-requis : svoir reconnître des formes (somme, produit, composée) connître sns hésittion les formules sur les dérivées (y compris celles introduites u chpitre précédent) svoir clculer
Remise en forme. Chapitre 1
Chpitre 1 Remise en forme 1) Trigonométrie L fonction exponentielle est l réciproque de l fonction logrithme. Elle trnsforme une somme en un produit, lors que le logrithme trnsforme un produit en une somme
Atelier 7 : Calcul Intégral
Atelier 7 : Clcul Intégrl Wlid ZGHAL 11 jnvier 6 1 Intégrle indéfinie Définition 1.1 Une fonction F est ppelée primitive d une fonction f si F (x) = f(x). Exemple 1 F (x) = x + sec(x) + 1 est une primitive
Chapitre 8 Le calcul intégral
Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Chpitre 8 Le clcul intégrl A) Intégrle d une fonction dérivle sur un intervlle 1) Définition Soit f une fonction dérivle sur un intervlle
C f. 1 u.a. B x 1 A' E4 E2. 1 u.a. a. OJ = et K le point tel que OIKJ. OI = i, J le point tel que
CLCULS 'IRES. INTEGRLES. PRIMITIVES ) Intégrle d'une fonction. Soit f une fonction définie sur [ ; ] et C s coure représenttive dns un repère orthogonl ( ; j ). Si I est le point tel que I i, J le point
Calcul différentiel et intégral 2 (M-1.1)
Clcul différentiel et intégrl (M-.) Cdre : dns l suite on considère une fonction numérique f définie sur un intervlle I et un réel I I. Dérivée d'une fonction Définition du nomre dérivé : l fonction f
Les intégrales. C f. A = aire sous la courbe sur [0 ; 1] A = 1 3. II. Deux points de vue. 1 ) 1 er aspect : avec les suites
TS I Introduction ) Prolème Les intégrles II eu points de vue ) er spect : vec les suites Méthode des rectngles (Pscl iemnn) f est une fonction définie, continue et positive sur un intervlle [, ] ( ) n
NOTIONS DE CALCUL DIFFERENTIEL ET INTEGRAL EN PHYSIQUE
NOTIONS D CALCUL DIFFNTIL T INTGAL N PHYSIQU 1) Dérivée d une fonction Soit une fonction F : x F(x) D F(x + ) F(x ) ΔF x x + ( +Δ ) ( ) Δ F F x x F x Le tux de vrition = L limite de ce tux de vrition lorsque
Intégrale de Riemann et Intégrale de Lebesgue INTEGRALE DE RIEMANN
Intégrle de Riemnn et Intégrle de Lebesgue Jen Gounon http://dm.ens.fr/culturemth Définitions INTEGRALE DE RIEMANN Dns tout le chpître, b et f est une fonction réelle bornée sur [,b] = I Définition. Un
Primitives et intégrales
Primitives et intégrles Je donne ici des éléments pour triter l exposé de CAPES 76 (liste 2007) : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité
Variables aléatoires à densité
Vribles létoires à densité Rppels : Une vrible létoire réelle (VAR) est une ppliction X : Ω R où (Ω,A,P) est un espce probbilisé. Lorsque X(Ω) est un ensemble discret on dit que X est une VAR discrète.
CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN
CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN 1. Fonctions en esclier. Le but de l construction de l intégrle d une fonction f : [, b] R étit, initilement, de définir rigoureusement l ire de l figure
Convergence dominée et conséquences.
Chpitre 3 Convergence dominée et conséquences.. nterversion ite-intégrle............................................................2 / Le cs d une CU sur un segment..................................................
La formule de Simpson avec reste intégral Jean-François Burnol, septembre 2016
L formule de Simpson vec reste intégrl Jen-Frnçois Burnol, septembre 1 On cherche à pprocher l intégrle b f (t)dt pr une combinison linéire λf () + µf ( + b ) + νf (b) On v tout d bord prendre = et b =
Outils Mathématiques 4
Université de Rennes1 Année 5/6 1 Courbes prmétrées Outils Mthémtiques 4 Intégrtion résumé éfinition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont des fonctions continues sur
EILCO : Analyse Numérique Chapitre 2 : Quadrature H. Sadok
Introduction Construction de formules élémentires Formules Composites Méthode de Guss EILCO : Anlyse Numérique Chpitre : Qudrture H. Sdok Introduction Construction de formules élémentires Formules Composites
Chapitre 2 Limites et asymptotes
Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.
Intégrale de Riemann cours et exercices de Licence, L1, PC, S2
Intégrle de Riemnn cours et exercices de Licence, L1, PC, S2 H. Le Ferrnd Jnury 29, 2010 Contents 1 Des premières méthodes 2 2 Sommes de Drboux 2 3 Fonction intégrble u sens de Riemnn 3 3.1 Qu est-ce qu
Chapitre 19 Intégration sur un segment
Chpitre 19 ntégrtion sur un segment Dns tout ce chpitre, suf mention contrire,, b désignent deux réels tels que < b et un intervlle de R contennt u moins deux points. - Construction de l'intégrle.1 - Continuité
TS 2, Correction Bac Blanc n o 2
TS, Correction Bc Blnc n o Exercice Nouvelle-Clédonie, mrs extrit) points Restitution Orgnisée de Connissnces On utiliser le résultt suivnt : les solutions de l éqution différentielle E ) y = y où R sont
1. Intégrale de Riemann des fonctions réglées.
Agrégtion de Mthémtiques 2012-2013 CMI Université d Aix-Mrseille Résumé du cours d Intégrtion 1. Intégrle de Riemnn des fonctions réglées. Fonctions réglées. f : [, b] C est dite réglée si et seulement
CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts
Ch7 : Clcul intégrl-ts CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION Activité n : Trcer dns un repère orthonorml l représenttion grphique de l fonction f définie pr : f(x) = 5. Hchurer l'ire du domine pln
CONCOURS DE RECRUTEMENT D ELEVES PILOTE DE LIGNE
CONCOURS DE RECRUTEMENT D ELEVES PILOTE DE LIGNE ANNEE 009 EPREUVE DE MATHEMATIQUES Exercice 1. Question 1 : Exliction 1 : ) Les lictions de R dns R non bijectives, comme l liction nulle r exemle, n ont
ROC: Restitution Organisée des Connaissances
ROC: Restitution Orgnisée des Connissnces Terminle S Septembre 2005 Tble des mtières 1 Anlyse 2 1.1 Limites et ordre........................... 2 1.2 Bijection............................... 3 1.3 Fonction
Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.
Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions
W - METHODES DE CALCUL APPROCHE DES INTEGRALES
W - METHODES DE CALCUL APPROCHE DES INTEGRALES Le bt de ces méthodes et de clcler ne vler pprochée d ne intégrle b ft)dt où f est ne fonction contine sffismment réglière sr [, b]. L idée de bse est de
Calcul intégral. II Intégrale d une fonction 4
BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................
Clamaths.fr - Les Roc en Terminale S
Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc
Chapitre 6 - Intégration
TES Chpitre 6 - Intégrtion 1-13 Chpitre 6 - Intégrtion I Intégrle d une fonction positive TD1 : Des clculs d ire Définition 1 Dns un repère orthogonl (O, I, J), on ppelle unité d ire l ire du rectngle
Pavage d un rectangle avec des carrés
Mth en Jens 006-007 Pvge d un rectngle vec des crrés Lycée Sud-Medoc / Lycée Montigne Guillume Cmelot, Luc Drné, Antoine Crof, Budouin Auzou, Rémy Ptin, Elodie Mrtin, Hélène Mrtin, Aurélie Verdon en prtenrit
APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE
APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE Définition. Soit I R un intervlle ouvert et soit f : I R une fonction. () Si f est continue, on dit que f est de clsse C 0. (2) Si f est
Intégrale de fonction positive
Chpitre Intégrles et primitives I Eercices Intégrle de fonction positive. Évluer pproimtivement l ire de l prtie du pln comprise entre l courbe C f ci-dessous, l e des bscisses, et l droite d éqution.
(b). Calculons les dérivées partielles de f. Nous obtenons f x (x, y) = 2x(1 + x2 + y 2 ) 4x(x 2 + y 2 ) (1 + x 2 + y 2 ) 3 4x 2
CORRECTION DU MODÈLE D EXAMEN 2 Exercice 1 (). L fonction f est un quotient de deux fonctions polynomiles et le dénominteur ne s nnulle ps sur R 2, donc f est de clsse C et en prticulier de clsse C 2.
Chapitre 10 Intégration
Chpitre Intégrtion I. Intégrle d'une fonction continue et positive Définition : Dns un repère orthogonl (O ; OI, OJ), l'unité d'ire (notée u..) est l'ire du rectngle OIKJ où K est le point de coordonnées
Les fonctions usuelles. Connaître les fonctions usuelles. Savoir se ramener à ces fonctions par transformations simples.
Chitre Les fonctions usuelles > > Modules Objectifs Ce chitre trite le module suivnt : Fonction d une vrible réelle : - Fonctions usuelles. Connître les fonctions usuelles. Svoir se rmener à ces fonctions
Ch.6 Intégration. k, k IR x ln x x ex x eu(x), u dérivable. x e) x 3 2 x6 x 2. f) x ex x.
T le ES - progrmme mthémtiques ch6 chier élève Pge sur 7 Rppels : Dérivées des fonctions usuelles Ch6 Intégrtion Fonction n, n Z k, k IR ln e eu(), u dérivble Dérivée nn e u' () eu() Rppels : Dérivées
Limite d une fonction à l infini
CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L