Daniel ALIBERT. Séries numériques. Séries de fonctions. Séries entières. Séries de Fourier.

Dimension: px
Commencer à balayer dès la page:

Download "Daniel ALIBERT. Séries numériques. Séries de fonctions. Séries entières. Séries de Fourier."

Transcription

1 Daiel ALIBERT Séries umériques Séries de foctios Séries etières Séries de Fourier Objectifs : Savoir détermier la covergece d'ue série umérique Calculer ue valeur approchée ou détermier l'expressio exacte de la somme d'ue série Coaître les otios de covergece poctuelle, covergece uiforme, covergece ormale, d'ue série de foctios Etudier la covergece d'ue série etière ou d'ue série de Fourier, et les propriétés de sa somme Utiliser les séries etières ou de Fourier pour résoudre divers problèmes : calcul d'itégrale, sommatio d'expressios, résolutio d'équatios différetielles, développemet d'ue foctio

2 Orgaisatio, mode d'emploi Cet ouvrage, comme tous ceux de la série, a été coçu e vue d'u usage pratique simple Il s'agit d'u livre d'exercices corrigés, avec rappels de cours Il e se substitue e aucue faço à u cours de mathématiques complet, il doit au cotraire l'accompager e fourissat des exemples illustratifs, et des exercices pour aider à l'assimilatio du cours Ce livre a été écrit pour des étudiats de première et secode aées des Liceces de scieces, das les parcours où les mathématiques tieet ue place importate Il est le fruit de ombreuses aées d'eseigemet auprès de ces étudiats, et de l'observatio des difficultés qu'ils recotret das l'abord des mathématiques au iveau du premier cycle des uiversités : - difficulté à valoriser les ombreuses coaissaces mathématiques dot ils disposet lorsqu'ils quittet le lycée, - difficulté pour compredre u éocé, ue défiitio, dès lors qu'ils mettet e jeu des objets abstraits, alors que c'est la ature même des mathématiques de le faire, - difficulté de coceptio et de rédactio de raisoemets même simples, - maque de méthodes de base de résolutio des problèmes L'ambitio de cet ouvrage est de cotribuer à la résolutio de ces difficultés aux côtés des eseigats Ce livre comporte quatre parties La première, ititulée "A Savoir", rassemble les défiitios et résultats qui sot utilisés das les exercices qui suivet Elle e cotiet i démostratio, i exemple La secode est ititulée "Pour Voir" : so rôle est de préseter des exemples de toutes les défiitios, et de tous les résultats de la partie

3 précédete, e e faisat référece qu'aux coaissaces qu'u étudiat abordat le chapitre cosidéré a écessairemet déjà recotré (souvet des objets et résultats abordés avat le baccalauréat) La moitié eviro de ces exemples sot développés complètemet, pour éclairer la défiitio ou l'éocé correspodat L'autre moitié est formée d'éocés ititulés "exemple à traiter" : il s'agit de questios permettat au lecteur de réfléchir de maière active à d'autres exemples très proches des précédets Ils sot suivis immédiatemet d'explicatios détaillées La troisième partie est ititulée "Pour Compredre et Utiliser" : des éocés d'exercices y sot rassemblés, e référece à des objectifs Ces éocés comportet des revois de trois sortes : ( ) pour obteir des idicatios pour résoudre la questio, () lorsqu'ue méthode plus géérale est décrite, () revoie à ue etrée du lexique Tous les exercices sot corrigés de maière très détaillée das la partie 3 - Au cours de la rédactio, o a souvet proposé au lecteur qui souhaiterait approfodir, ou élargir, sa réflexio, des questios complémetaires (QC), égalemet corrigées de faço détaillée La quatrième partie, "Pour Chercher", rassemble les idicatios, les méthodes, et le lexique Certais livres d'exercices comportet u grad ombre d'exercices assez voisis, privilégiat u aspect "etraîemet" das le travail de l'étudiat e mathématiques Ce 'est pas le choix qui a été fait ici : les exemples à traiter, les exercices et les questios complémetaires proposés abordet des aspects variés d'ue questio du iveau du L L de scieces pour l'éclairer de diverses maières et aisi aider à sa compréhesio Le lecteur est ivité, à propos de chacu d'etre eux, à s'iterroger sur ce qu'il a de gééral (o l'y aide par quelques commetaires) 3

4 Table des matières A Savoir 9 - Séries umériques 9 - Suites et séries de foctios 5-3 Séries etières 9-4 Séries de Fourier 3 Pour Voir 33 - Séries umériques 33 - Suites et séries de foctios 63-3 Séries etières 73-4 Séries de Fourier 79 3 Pour Compredre et Utiliser Éocés des exercices Corrigés des exercices Corrigés des questios complémetaires 45 4 Pour Chercher 5 4- Idicatios pour les exercices 5 4- Méthodes Lexique 57

5 A savoir 5 A Savoir Das cette partie, o rappelle rapidemet les pricipales défiitios et les pricipaux éocés utilisés Vous devrez vous référer à votre cours pour les démostratios Vous trouverez des exemples das la partie *Pour Voir Défiitio - Séries umériques Soit (u ) ue suite réelle ou complexe Pour chaque, soit : S = u 0 + u + + u O dit que la série de terme gééral u, ou la série u, coverge si la suite (S ) coverge Das ce cas, la limite S est appelée la somme de la série de terme gééral u O écrit : S = u =0 Etudier ue série, c'est doc étudier la covergece d'ue suite particulière, (S ), à partir d'hypothèses portat sur (u ) La suite, et la série, peuvet 'être défiies que pour 0 O e chage pas la covergece d'ue série e modifiat u ombre fii de termes Par cotre, e gééral, o modifie la valeur de sa somme si elle existe Si la série coverge, alors (u ) ted vers 0

6 6 A savoir L'esemble des suites termes gééraux de séries covergetes est u sous-espace vectoriel de l'espace des suites L'applicatio qui à ue telle suite associe la somme de la série est ue applicatio liéaire Das le cas d'ue série dot le terme gééral u est complexe, o voit qu'elle coverge si et seulemet si la série de terme gééral Re(u ) et la série de terme gééral Im(u ) coverget toutes deux O étudie doc das la suite seulemet les séries réelles Défiitio Soit (u ) ue suite réelle O dit que la série covergete si la série u est covergete u est absolumet Théorème Toute série réelle absolumet covergete est covergete La réciproque 'est pas vraie Les séries covergetes mais o absolumet covergetes sot appelées semi-covergetes Le théorème justifie l'importace particulière accordée aux séries réelles à termes positifs Ue série de terme gééral u positif est covergete si et seulemet si la suite : S = u u est majorée Das ce cas, la somme de la série est la bore supérieure de l'esemble des valeurs de S Prpositio Soiet (u ) et (v ) des suites réelles positives tedat vers 0 Si ces suites sot équivaletes lorsque ted vers l'ifii, alors la série coverge si et seulemet si la série v coverge u

7 A savoir 7 Das la pratique, pour étudier la covergece d'ue série positive, o peut remplacer so terme gééral par ue suite équivalete Propositio La série, où α est u réel, coverge si et seulemet si α > α Pour qu'ue série positive tel que la suite ( α u ) soit majorée Règles usuelles de covergece Soit (u ) ue suite de ombres réels ou complexes u coverge, il suffit qu'il existe α > Règle de Cauchy : Si la suite u / a ue limite L, alors si L < la série u est absolumet covergete et si L >, la série est divergete Règle de D'Alembert : si la suite u + u a ue limite L, alors si L < la série divergete Défiitio u est absolumet covergete et si L > la série est O appelle série alterée ue série réelle dot le terme gééral est de la forme : ( ) u la suite (u ) état décroissate, et tedat vers 0 Théorème Toute série alterée u est covergete

8 8 A savoir Posos pour tout : S = u u, la somme S de la série alterée vérifie pour tout m : S m + S S m Propositio Soit f ue foctio réelle, défiie sur [a, [, décroissate et telle que : lim(f(x)) = 0 quad x ted vers l'ifii Alors l'itégrale : et la série Défiitio f () Soit (u ) ue suite telle que la série a f (x)dx coverget ou diverget simultaémet Pour tout etier aturel, posos S = u u O appelle reste d'ordre de la série le ombre : R = S S Majoratio de restes u coverge, et soit S sa somme Das le cas d'ue série alterée, la valeur absolue du reste est iférieure à la valeur absolue du premier terme égligé (u + ) Das le cas d'ue série vérifiat le critère de Cauchy, avec : (u ) / k <, pour > N la valeur absolue du reste d'ordre vérifie : k + R k Das le cas d'ue série vérifiat le critère de d'alembert, avec :

9 A savoir 9 u + u k <, pour > N, la valeur absolue du reste d'ordre vérifie : R k u + Das le cas où o a comparé la série f (x)dx, le reste vérifie les iégalités : a f (x)dx R f (x)dx + f () avec l'itégrale Groupemet de termes Soit φ : N N ue applicatio strictemet croissate Soit u ue série O lui associe la série de terme gééral : v 0 = u u φ(0), v = u φ(-)+ + + u φ() obteue e sommat "par paquets" Si φ( + ) φ() est boré et si u ted vers 0, alors si v coverge, la série u coverge égalemet, et les sommes sot égales Le cas s'applique souvet lorsqu'o regroupe par paquets de même logueur (sauf peut-être le premier)

10 0 A savoir Défiitio - Suites et séries de foctios Soit E u esemble O appelle suite de foctios sur E à valeurs complexes toute applicatio de N das F(E, C) Ue suite de foctios défiit doc pour chaque etier ue foctio, otée par exemple f, de E das C Si, pour tout et tout x de E, f (x) est u ombre réel, o dira que la suite de foctios est réelle Ue suite de foctios peut être défiie à partir d'u etier 0 seulemet, et o à partir de 0 Défiitio Soit E u esemble, et (u ) ue suite de foctios sur E à valeurs complexes O appelle série de foctios de terme gééral u la suite de foctios sur E défiie pour tout par : s = u 0 + u + + u Il se peut que la suite (u ) soit défiie seulemet à partir de 0 Das ce cas, il e est de même pour la série O parle souvet, par abus, de : "la série u " Défiitio Soit F ue partie de E, et (u ) ue suite de foctios sur E O dit que cette suite coverge simplemet (ou poctuellemet) sur F, si pour tout x de F la suite (u (x)) est covergete L'esemble de covergece simple (ou poctuelle) de la suite est : P = {x E (u (x)) est covergete}

11 A savoir La foctio limite de la suite (u ) est la foctio u défiie sur P par : Défiitio u(x) = lim(u (x)) Soit A ue partie de E, et (u ) ue suite de foctios sur E O dit que cette suite coverge uiformémet sur A vers la foctio u, si : ε > 0, N, N IN, x A N u (x) u(x) ε Ici, z désige la orme du complexe z O voit que A est ue partie de l'esemble de covergece poctuelle, et que sur A, u est la limite de la suite Ue série coverge simplemet (ou uiformémet) si la suite otée plus haut (s ) coverge simplemet (ou uiformémet) Pour x apparteat à l'esemble de covergece poctuelle de la série, o peut parler du reste d'ordre, ce qui défiit doc ue suite de foctios sur l'esemble de covergece poctuelle de la série Ue série de foctios s'il existe ue série umérique covergete uls telle que pour tout x de A : u (x) a u coverge ormalemet sur ue partie A a à termes positifs ou Lorsqu'ue série coverge, la limite de (s ) est la somme de la série Cette foctio est otée : u 0 Si ue série coverge simplemet (resp uiformémet), alors so terme gééral coverge simplemet (resp uiformémet) vers 0

12 A savoir Si ue série coverge simplemet sur A, alors elle coverge uiformémet sur A si et seulemet si la suite de ses restes ted vers 0 uiformémet sur A Propositio Avec les otatios utilisées ci-dessus, les éocés suivats sot équivalets : La suite de foctios (u ) coverge uiformémet vers u sur A, La suite réelle positive : sup( u (x) u(x), x A) coverge vers 0, Il existe ue suite de ombres réels positifs, (a ), qui coverge vers 0, u etier N, tels que pour N, et x A, o ait : u (x) u(x) a Théorème Si ue série coverge ormalemet sur ue partie A, alors elle coverge uiformémet sur A La somme et le produit de suites de foctios qui coverget simplemet sot des suites de foctios covergetes, et : lim(u + v ) = lim(u ) + lim(v ) lim(u v ) = lim(u ) lim(v ) Ces éocés sot ecore vrais pour la covergece uiforme si de plus les foctios limites sot borées sur la partie cosidérée Théorème Soit I ue partie de R Soit (u ) ue suite de foctios réelles sur I Soit A ue partie de I O suppose que les propriétés suivates sot vérifiées : Pour tout, la foctio u est cotiue sur A, La suite coverge uiformémet sur A Alors la foctio limite est cotiue sur A

13 A savoir 3 La somme d'ue série uiformémet covergete de foctios cotiues est ue foctio cotiue Théorème Soit I = [a, b] u itervalle de R Soit (u ) ue suite de foctios cotiues sur I, uiformémet covergete sur I, de limite u O a : b b lim u (x)dx a = u(x)dx a Si u est ue série uiformémet covergete de foctios cotiues sur I = [a, b], alors : b b u (x)dx = u a ( ) dx a Théorème Soit I u itervalle de R Soit (u ) ue suite de foctios de classe C sur I, covergete e au mois u poit de I, de limite u O suppose que la suite des dérivées (u' ) coverge uiformémet sur tout itervalle fermé boré coteu das I, et que sa limite est v Alors la suite (u ) coverge uiformémet sur tout itervalle fermé boré coteu das I Sa limite u est dérivable, et : u' = v Ue série u de foctios de classe C qui coverge simplemet e au mois u poit, et dot la série des dérivées u' coverge uiformémet sur tout itervalle fermé boré, coverge uiformémet sur tout itervalle fermé boré, vers ue foctio dérivable, et : u ( ) = u'

14 4 A savoir Défiitio -3 Séries etières O appelle série etière ue série de foctios dot le terme gééral est de la forme : u (x) = a x Les ombres (réels ou complexes) a sot appelés les coefficiets de la série etière O étudie les séries etières das le cadre d'ue variable complexe Propositio Soit z 0 u complexe tel que la suite (a z 0 ) soit borée Alors pour tout complexe z tel que z < z 0, la série a z est absolumet covergete Pour tout réel k vérifiat 0 k <, la série est ormalemet covergete sur l'esemble (disque fermé) des complexes z vérifiat : z k z 0 Le ombre z 0 peut être tel que a z coverge 0 Défiitio Le rayo de covergece de la série etière a z est la bore supérieure de l'esemble des réels positifs r tels que la suite (a r ) soit borée Si l'esemble des réels r 'est pas majoré, o dit que le rayo de covergece est

15 A savoir 5 Théorème Soit R (fii ou ifii) le rayo de covergece de la série etière a z Si R = 0, la série e coverge que pour z = 0 Si R 0 est u réel, la série est absolumet covergete pour z < R, divergete pour z > R, et elle coverge ormalemet sur tout disque fermé z r < R Si R est ifii, la série est absolumet covergete pour tout z, et coverge ormalemet sur toute partie borée de C Si R 0, le disque ouvert défii par z < R est appelé le disque de covergece de la série etière L'itervalle ouvert de IR, ] R, R[ est appelé l'itervalle de covergece O détermie souvet le rayo de covergece e remarquat que si le quotiet : a + a a pour limite L, alors le rayo de covergece est, avec la covetio L que si L = 0, le rayo est ifii, et si L est ifiie, le rayo est 0 Attetio, la réciproque de cet éocé 'est pas vraie Propositio La somme d'ue série etière est cotiue sur so itervalle (ou so disque) de covergece La somme d'ue série etière a z est dérivable sur so disque de covergece, et sa dérivée est la somme de la série a z Les séries a z et a z ot le même rayo de covergece

16 6 A savoir Das le cas complexe, o dit qu'ue foctio f est dérivable e z 0 si le quotiet : f (z) f (z 0 ) z z 0 a ue limite quad z ted vers z 0 E gééralisat, o voit que la somme d'ue série etière est idéfiimet dérivable, et que toutes les dérivées ot le même rayo de covergece que la série Défiitio Soit I u itervalle ouvert coteat l'origie, et f ue foctio défiie sur I, à valeurs das R O dit que f est développable e série etière sur I s'il existe ue suite réelle (a ) telle que pour tout x de I o ait : f (x) = a x = 0 S'ils existet, les coefficiets a sot doés par : E particulier, ils sot uiques a =! f () (0)

17 A savoir 7 Défiitio -4 Séries de Fourier O appelle série trigoométrique ue série de foctios dot le terme gééral est de la forme : u (x) = a cos(x) + b si(x), si > 0, u 0 (x) = a 0 /, b 0 = 0, où (a ) et (b ) désiget des suites de ombres réels (ou complexes) défiies pour 0 Lorsqu'ue série trigoométrique coverge, sa somme s'écrit : a 0 + ( a cos(x) + b si(x) ) = O utilise égalemet ue écriture complexe des séries trigoométriques E posat : o obtiet : a 0 c = a ib, c = a + ib, 0 N N + ( a cos(x) + b si(x) ) = c e ix = = N Notos que si la série trigoométrique est réelle, alors : c = c L'esemble de covergece poctuelle d'ue série trigoométrique est ivariat par ue traslatio de π, et sa somme est π-périodique La somme d'ue série trigoométrique est cotiue sur tout itervalle où la série coverge uiformémet

18 8 A savoir Si a et b sot covergetes, la série trigoométrique est uiformémet covergete sur R La somme de cette série est ue foctio cotiue sur R Si a x est ue série etière de rayo de covergece o ul R, de somme u(x), alors pour tout r vérifiat 0 < r < R, la série trigoométrique : a r e ix est ormalemet covergete sur R, et sa somme est u(re ix ) Propositio Si les suites (a ) et (b ) sot des suites réelles décroissates tedat vers 0, alors la série trigoométrique coverge e tout poit x tel que x kπ, k etier relatif, et coverge uiformémet sur tout itervalle fermé boré coteu das IR πz Théorème Si la série trigoométrique a 0 + ( a cos(x) + b si(x) ) coverge uiformémet sur R et si o ote s sa somme, alors les coefficiets vérifiet les relatios suivates pour tout réel x 0 : a = x π s(x)cos(x)dx 0 +π, x 0 b = x π s(x)si(x)dx 0 + π, x 0 c = x 0 + π s(x)e ix dx π x 0

19 A savoir 9 Défiitio Soit f ue foctio π-périodique, cotiue par morceaux sur R (à valeurs réelles ou complexes) O appelle coefficiets de Fourier de f les ombres suivats (réels ou complexes selo les valeurs de f), idépedats de x 0 : a = x π s(x)cos(x)dx 0 +π, La série trigoométrique : a 0 + x 0 b = x π s(x)si(x)dx 0 + π, x 0 c = x 0 + π s(x)e ix dx π x 0 ( a cos(x) + b si(x) ) s'appelle la série de Fourier de f O peut choisir x 0 pour redre le calcul plus facile pour ue foctio particulière : o voit aisi que si f est paire, alors b = 0 pour tout, et si f est impaire alors a = 0 pour tout Théorème Soit f ue foctio π-périodique, et C par morceaux La série de Fourier de f a les propriétés suivates : Elle coverge poctuellemet sur R, vers : f (x + 0) + f (x 0) Elle coverge uiformémet sur tout itervalle fermé boré coteu das u itervalle ouvert où f est cotiue

20 0 A savoir

21 Pour voir Pour Voir Das cette partie, o présete des exemples simples des otios ou résultats abordés das la partie précédete Ils sot suivis de questios très élémetaires pour vérifier votre compréhesio - Séries umériques "Soit (u ) ue suite réelle ou complexe O dit que la série de terme gééral u, ou la série u, coverge si la suite (S ) coverge " exemple Posos u = (0,) La série de terme gééral u coverge, e effet : S = + 0, + + (0,) ( )+ S = 0, 0, doc S a bie ue limite fiie quad ted vers l'ifii, qui vaut,5 exemple (à traiter) La série de terme gééral u = coverge-t-elle? # répose No, bie etedu, S ted vers l'ifii : = ( +)

22 Pour voir Etudier ue série, c'est doc étudier la covergece d'ue suite particulière, (S ), à partir d'hypothèses portat sur (u ) exemple 3 E effet, gééralemet, o e sait pas expliciter la valeur de S e foctio de comme das les deux premiers exemples Ces exemples peuvet cepedat servir de séries de comparaiso Aisi la série de terme gééral : v = ( + cos()) diverge car v, doc la somme S correspodate est supérieure à celle de l'exemple, qui ted vers l'ifii exemple 4 (à traiter) La série de terme gééral : est-elle covergete? w = (0, ) + # répose Oui, car o a les iégalités pour tout : (0, ) w = + (0,) w w + + (0,),5 doc la somme w w est ue suite croissate majorée par,5 La suite, et la série, peuvet 'être défiies que pour 0 exemple 5 La série de terme gééral :

23 Pour voir 3 ( ) 'est défiie qu'à partir de = exemple 6 (à traiter) A partir de quelle valeur de est défiie la série de terme gééral : # répose Il faut chercher si l'expressio au déomiateur s'aule O trouve facilemet que les racies sot et 5 La série est défiie pour 6 O e chage pas la covergece d'ue série e modifiat u ombre fii de termes Par cotre, e gééral, o modifie la valeur de sa somme si elle existe exemple 7 La série de terme gééral x doé par : x 0 = 0, x = (0,) coverge d'après l'exemple exemple 8 (à traiter) Quelle est la somme de cette série? # répose Seul le premier terme est modifié, la somme est doc dimiuée de Sa valeur est doc 0,5

24 4 Pour voir Si la série coverge, alors (u ) ted vers 0 exemple 9 C'est effectivemet ce qu'o costate pour l'exemple Ce résultat permet de motrer, par cotrapositio, qu'ue série e coverge pas exemple 0 (à traiter) Repredre l'exemple 3 pour vérifier que la série e coverge pas # répose O voit facilemet que le terme gééral : v = ( + cos()) e ted pas vers 0, doc la série diverge L'esemble des suites termes gééraux de séries covergetes est u sous-espace vectoriel de l'espace des suites exemple Pour motrer qu'ue série, somme de plusieurs séries, coverge, il suffit de motrer que chacue est covergete La série de terme gééral : u = + 3 coverge pour cette raiso exemple (à traiter) La somme de deux séries divergetes est-elle toujours divergete? # répose

25 Pour voir 5 Evidemmet, o O peut predre comme exemple ue série divergete et so opposé, dot la somme, costate égale à 0, coverge L'applicatio qui à ue telle suite associe la somme de la série est ue applicatio liéaire exemple 3 Pour calculer la somme de la série de l'exemple, o ajoute les sommes des séries de termes gééraux respectifs, et O obtiet doc : 3 + = +,5 = 3,5 3 exemple 4 (à traiter) Quelle est la somme de la série de terme gééral : u = + # répose Cette série est le produit par 0,5 de la série de terme gééral La somme de cette derière série est, doc : = 0 +

26 6 Pour voir Das le cas d'ue série dot le terme gééral u est complexe, o voit qu'elle coverge si et seulemet si la série de terme gééral Re(u ) et la série de terme gééral Im(u ) coverget toutes deux exemple 5 La série de terme gééral ( ) : + i z = 3 coverge E effet sa partie réelle est d'ue série covergete, et sa partie imagiaire est 3 3, iférieure à, terme gééral 3 exemple 6 (à traiter) La série de terme gééral : coverge-t-elle? w = + i 3 # répose La partie réelle est 3, et la partie imagiaire est 3 Das les deux cas, le raisoemet utilisé pour l'exemple s'applique puisque le ombre élevé à la puissace est iférieur à Cette série coverge bie

27 Pour voir 7 Soit (u ) ue suite réelle O dit que la série série u est covergete u est absolumet covergete si la exemple 7 Aisi la série de terme gééral : ( ) k est absolumet covergete pour tout réel k de [0, [ exemple 8 (à traiter) Vérifier que la série de terme gééral : cos( ) 3 est absolumet covergete # répose E effet, o peut écrire : cos() 3 3 La série majorate état covergete, la série de terme gééral cos() 3 est bie absolumet covergete Toute série réelle absolumet covergete est covergete exemple 9 Par exemple la série de l'exemple précédet est covergete O otera que ce résultat s'obtiet sas savoir écrire l'expressio des sommes partielles de cette série e foctio de

28 8 Pour voir exemple 0 (à traiter) Motrer que la série de terme gééral : si() + est covergete # répose Cette série 'est pas positive Cherchos si elle est absolumet covergete O peut écrire : si() + + = La série de terme gééral valeur absolue de la précédete est doc covergete Soiet (u ) et (v ) des suites réelles positives tedat vers 0 Si ces suites sot équivaletes lorsque ted vers l'ifii, alors la série u coverge si et seulemet si la série v coverge exemple Soit u ue série positive divergete, et v = u Cette série est + u divergete E effet, si v e ted pas vers 0, la série v ted vers 0, alors u = v v ted vers 0, et le quotiet : v u = + u ted vers, doc les séries sot équivaletes et v v diverge, et si diverge ecore

29 Pour voir 9 exemple (à traiter) E cherchat u équivalet, étudier la covergece de la série de terme gééral : # répose Le calcul est le suivat : Log + + = Log + = Log + Log = + Log + = + = + + ε + + = e + +ε = e e D'où u équivalet du terme gééral de la suite : + ~ e e Comme e >, cette série coverge + ε e ε ε

30 30 Pour voir Das la pratique, pour étudier la covergece d'ue série positive, o peut remplacer so terme gééral par ue suite équivalete exemple 3 La série de terme gééral : u = cos est positive Cherchos u équivalet de so terme gééral Les calculs doet : Log ( u ) = Log cos = Log + ε Log ( u ) = + ε = + ε O obtiet doc u équivalet de u : u ~ e ce qui motre que le terme gééral de la série e ted pas vers 0, doc la série diverge exemple 4 (à traiter) Par la même méthode, étudier la covergece de la série dot le terme gééral est : u = ch 3 # répose Les calculs sot les suivats :

31 Pour voir 3 Log u ( ) = 3 Log + + ε = 3 Log + 4 Log u ( ) = Log u ( ) = + + ε + ε 4 4 D'où u équivalet pour u : u ~ e O e déduit que la série coverge, puisque e > + ε 4 La série, où α est u ombre réel quelcoque, coverge si et seulemet si α > exemple 5 α Si P et Q sot des polyômes, la série de terme gééral : P() Q() coverge si et seulemet si deg(q) deg(p) + E effet, P(), comme Q(), est, pour assez grad, du sige de so terme domiat, et équivalet à celui-ci Le terme gééral de la série est doc de sige fixe pour assez grad, et o peut examier sa covergece par comparaiso avec u équivalet Si ax k (resp bx p ) est le terme domiat de P(x) (resp Q(x)) alors o a : P() Q() ~ a b p k

32 3 Pour voir La série coverge doc si et seulemet si p k >, soit, puisque ce sot des etiers, p k exemple 6 (à traiter) Examier la covergece de la série de terme gééral : w = # répose C'est ue série positive, o peut e chercher u développemet limité pour obteir u équivalet Les calculs sot les suivats : = = ε = + ε O voit que le terme gééral de la série est équivalet à Cette série est doc divergete Pour qu'ue série positive suite (αu ) soit majorée u coverge, il suffit qu'il existe u réel α > tel que la exemple 7 O cherchera doc à exprimer ue telle expressio e foctio de Aisi, soit la série de terme gééral : a = Log() 3 /

33 Pour voir 33 O écrit α a : α a = Log() 3/ α il suffit doc de choisir α strictemet compris etre et,5 pour que α a tede vers 0 Par exemple pour α =,5 Cette série coverge exemple 8 (à traiter) Vérifier que la série de terme gééral : v = cos() α coverge pour α > # répose E effet, o a : α v = cos() doc cette série est absolumet covergete, doc covergete ( u ) a ue limite (fiie ou ifiie) L, alors si L < la Règle de Cauchy : Si la suite série u est absolumet covergete et si L >, la série est divergete exemple 9 La série de terme gééral : coverge puisque : u = ( Log() ) ( u ) / = ( Log() )

34 34 Pour voir ted vers 0 exemple 30 (à traiter) La série de terme gééral : est-elle covergete? # répose π w = cos 4 + Le critère de Cauchy coduit aux calculs suivats : ( ) / = cos w lim w ( ) / = cos π 4 doc la série est bie covergete Règle de D'Alembert : si la suite π 4 + = est absolumet covergete et si L > la série est divergete u + a ue limite L, alors si L < la série u u exemple 3 La série de terme gééral u = ( + + )e vérifie : u + = ( )e = u ( + +)e + + doc la limite est e - La série est covergete ( ) ( ) e

35 Pour voir 35 exemple 3 (à traiter) Etudier par le critère de D'Alembert la covergece de la série de terme gééral : v =! # répose Les calculs sot les suivats : v + ( + )! = ( )!( + ) = + + doc : La série v v Log + est covergete = Log + = Log + ~ + lim v + = e v O appelle série alterée ue série réelle dot le terme gééral est de la forme ( )u, la suite (u ) état décroissate, et tedat vers 0 exemple 33 U exemple simple est la série ( )

36 36 Pour voir exemple 34 (à traiter) La série de terme gééral : est-elle ue série alterée? x = si π + + # répose O écrit : + + = + +, si π + π = si π( ) = ( ) si π + Pour assez grad, si π est ue foctio positive et décroissate, + doc o peut coclure que la série x est bie ue série alterée Toute série alterée est covergete exemple 35 O déduit de cet éocé que la série de l'exemple 33 est ue série semicovergete

37 Pour voir 37 exemple 36 (à traiter) E calculat sa différece avec la série de la série de terme gééral : # répose a = ( ) + ( ) Calculos la différece idiquée : ( ) + ( ) ( ) = ( ) = ( ), étudier la covergece + ( ) ( ) ( ) ( ) + ( ) = + ( ) ( ) O voit que cette série différece est de sige costat (égatif), et équivalete à, terme gééral d'ue série covergete La série étudiée est doc la somme de deux séries covergetes Elle coverge

38 38 Pour voir Posos pour tout, S = u u, la somme S de la série alterée vérifie pour tout m, S m + S S m exemple 37 Cherchos à partir de quel rag les sommes partielles de la série de l'exemple 34 : x = si π + + doet ue valeur approchée de la somme de la série avec ue erreur de mois de 0,00 Il suffit de voir quad le terme gééral deviet iférieur à cette valeur, e valeur absolue : si π + < 0,00 O trouve : + > 000π 644 o voit que cette série coverge assez letemet vers sa somme exemple 38 (à traiter) Après avoir vérifié que la série de terme gééral : ( ) y = si π + est alterée, calculer ue valeur approchée de sa somme à 0 - près

39 Pour voir 39 # répose O peut écrire : si( π +)= si π + = si π + = si π + π + π ε = ( ) si π + π ε + ε Pour assez grad, l'argumet de si est compris etre 0, et π, ce qui motre bie que les termes chaget de sige avec la parité de Pour étudier le ses de variatio de la valeur absolue de y, o remarque que d'après les calculs précédets, elle est égale à : si( π + π) La dérivée de la foctio : xa si( π x + xπ) est égative, doc la foctio est bie décroissate Les valeurs de y sot : y S 0 0-0, , , , , , , , , , , , ,4585-0,

40 40 Pour voir 8 0, , ,7309-0, , , ,404-0, , , , , ,865-0, ,0443-0, , ,594 Le premier terme dot la valeur absolue est iférieure à 0, est y 6 Ue valeur approchée à 0, près de la somme est doc 0,6 Soit f ue foctio réelle, défiie sur [a, [, décroissate et telle que lim(f(x)) = 0 quad x ted vers l'ifii Alors l'itégrale f (x)dx et la série f () coverget a ou diverget simultaémet exemple 39 Aisi, o voit que la série de terme gééral :, coverge, puisque l'éocé précédet s'applique avec a = : exemple 40 (à traiter), dx = x 0, x 0, = 0 Etudier la covergece de la série de terme gééral : u = Log()

41 Pour voir 4 # répose Posos : pour x La dérivée de f est : f (x) = f ' (x) = xlog(x) Log(x) + xlog(x) ( ), elle est doc égative pour x, doc f décroit, et ted évidemmet vers 0 si x ted vers Or, o a : xlog(x) dx = [ Log(Log(x)) ] = doc l'itégrale, et, par coséquet, la série, diverget Das le cas d'ue série alterée, la valeur absolue du reste est iférieure à la valeur absolue du premier terme égligé (u + ) exemple 4 Revoir l'exemple 38 Le reste doe la valeur de l'erreur faite e remplaçat la somme de la série (gééralemet icoue) par ue somme partielle U majorat du reste doe doc u majorat de l'erreur exemple 4 (à traiter) Doer ue valeur de la somme de la série de terme gééral : ( ) à mois de 0-5 près # répose

42 4 Pour voir La série est clairemet alterée Pour que le reste R soit iférieur à la précisio souhaitée, il suffit que le terme d'ordre + soit e valeur absolue iférieur à cette précisio : u S 0,5,5 3 0, , , , ,0003,9639 6,4335E-05,9847 7,47E-06,98593 doc + = 7, et la valeur cherchée est celle de S 6, soit,98 O otera la différece de "vitesse de covergece" avec l'exemple 37 Das le cas d'ue série vérifiat le critère de Cauchy, avec : (u )/ k <, pour > N la valeur absolue du reste d'ordre vérifie : k + R k exemple 43 Repreos l'exemple 30 : pour lequel o a vu que w Le reste d'ordre est majoré par : π w = cos 4 + ( ) / est au plus égal à k = cos π 5

43 Pour voir 43 Avec les valeurs : O voit par exemple que : cos π 5 si π 5 cos π 5 si π 5 + 0,655 0,345 R 5 0,005 Ue valeur approchée de la somme S est doc doée par :,353 S 5 < S <,358 exemple 44 (à traiter) Doer u majorat de R 0 das le cas de la série de l'exemple 9 # répose O doit doer u majorat de : ( u ) / = ( Log() ) pour > 0 Numériquemet :,30 < Log(0) <,303 doc : Log() ( ) < 0,435 pour > 0 U majorat de R 0 est doc :

44 44 Pour voir 0, 435 R 0 < ( ) 0,435 0,000 Das le cas d'ue série vérifiat le critère de d'alembert, avec : u + u k <, pour > N, la valeur absolue du reste d'ordre vérifie : R k u + exemple 45 Appliquos ce résultat à l'exemple 3 : v + = v + La limite est e Cherchos à partir de quelle valeur de la majoratio : v + < v,5 = 0,4 est vérifiée O remarque que la foctio : a Log + est décroissate (calcul de dérivée) Il suffit doc de trouver ue valeur de pour laquelle la majoratio est vérifiée Quelques essais umériques coduiset à > 5 exemple 46 (à traiter) Doer ue valeur approchée à 0-0 près de la somme de la série de l'exemple 3 :

45 Pour voir 45 # répose u = ( + + )e La limite obteue e appliquat le critère de D'Alembert est e - D'après : u + ( = ) u + + ( ) e cette limite est obteue e décroissat Cherchos à partir de quelle valeur de le quotiet est iférieur à 0,4 : + < 0,4 e < 0, soit : 0,0874( + +) > 0 ce qui est vrai à partir de = 3 Pour 3, o a doc la majoratio du reste : ( )+ R < 0, 4 0,6 Il suffit doc de redre le secod membre iférieur à la précisio souhaitée, soit ici 0-0 : ( 0,4) + <0 0 0,6 O voit qu'il suffit de predre 5 La valeur approchée de la somme de la série est alors : 3,

46 46 Pour voir Das le cas où o a comparé la série avec vérifie les iégalités f () f (x)dx R f (x)dx + l'itégrale f (x)dx, le reste a exemple 47 Cherchos à quelle vitesse coverge la série de terme gééral reste d'ordre vérifie l'ecadremet : x dx R + x dx Le R x + x + R Il faut doc de l'ordre de 000 termes pour que la valeur d'ue somme partielle approche la valeur de la somme de la série à 0-3 près : c'est ue covergece lete exemple 48 (à traiter) Doer ue valeur approchée à 0 - près de la somme de la série de terme gééral : v = ( +)e # répose O peut étudier la covergece de cette série e comparat avec ue itégrale : (x +)e x dx 0 E effet, o peut calculer cette itégrale et vérifier qu'elle coverge :

47 Pour voir 47 (x +)e x dx = (x + )e x 0 0 [ ] + e x dx 0 = + = Le reste d'ordre vérifie doc : (x +)e x dx R (x +)e x dx + [ (x +)e x x ] + + [ e ] + R (x +)e x ( + 3)e R ( + )e x [ ] + [ e ] U simple calcul umérique motre que R 7 est iférieur à la précisio demadée La valeur approchée de la somme correspodate est :,49 Soit φ : N -- N ue applicatio strictemet croissate Soit u ue série O lui associe la série de terme gééral : v 0 = u u φ(0), v = u φ(- )+ + + u φ() obteue e sommat "par paquets" Si φ( + ) φ() est boré et si u ted vers 0, alors si v coverge, la série u coverge égalemet, et les sommes sot égales exemple 49 Etudios la série de terme gééral : ( ) v = ( ) Ce 'est pas ue série alterée puisque la parité de l'exposat du umérateur K() est la suivate : = 4p, K() = p(4p ) est pair = 4p +, K() = (4p + )(p), pair

48 48 Pour voir = 4p +, K() = (p + )(4p + ), impair = 4p + 3, K() = (4p + 3) ( p + ), impair Regroupos les termes deux par deux : v p = u 4p + u 4p+ v p+ = u 4p+ + u 4p+3 Il est clair que c'est ue série alterée, doc covergete : la série coverge égalemet exemple 50 (à traiter) Etablir la covergece de la série de terme gééral : a = ( ) + ( ) # répose u Cette série 'est pas absolumet covergete Ce 'est pas o plus ue série alterée car la différece a + a 'est pas de sige costat Groupos les termes par deux O obtiet la série de terme gééral : p + p = p + ( )( p ) dot le sige est fixe, et qui coverge, puisqu'elle est équivalete à p Comme a ted vers 0, o coclut que a coverge égalemet

49 Pour voir 49 - Suites et séries de foctios Soit E u esemble, et (u ) ue suite de foctios sur E à valeurs complexes O appelle série de foctios de terme gééral u la suite de foctios sur E défiie pour tout par : s = u 0 + u + + u exemple 5 Ue suite de foctios 'est rie d'autre que la doée, pour chaque, d'ue foctio défiie sur E, par exemple si(x), ou x O peut lui associer ue série, comme par exemple : x exemple 5 (à traiter) Expliciter la suite s das le cas précédet # répose O écrit : s (x) = + x + + x + x = x+ x Soit F ue partie de E, et (u ) ue suite de foctios sur E O dit que la série coverge simplemet (ou poctuellemet) sur F, si pour tout x de F la suite (s (x)) est covergete exemple 53 La série de l'exemple 5 coverge poctuellemet sur ], [

50 50 Pour voir exemple 54 (à traiter) Quel est l'esemble de covergece poctuelle de la série de foctios de terme gééral : a (x) = + x # répose Il s'agit d'ue série de Riema, doc elle coverge si et seulemet si o a l'iégalité : + x <, doc l'esemble de covergece poctuelle est ], [ La foctio somme de la série de terme gééral (u ) est la foctio s défiie sur l'esemble de covergece poctuelle par s(x) = lim(s (x)) exemple 55 Pour l'exemple 53, la somme est doée par : s(x) = x exemple 56 (à traiter) Soit la suite de foctios : u p (x) = x p u p+ (x) = 0 Défiir l'esemble de covergece poctuelle de la série associée, et sa somme

51 Pour voir 5 # répose Il suffit de remarquer que cette série 'est autre que celle de l'exemple 53, composée avec la foctio x x Autremet dit l'esemble de covergece poctuelle est ], [, et la somme : s(x) = x Soit A ue partie de E, et (u ) ue suite de foctios sur E O dit que cette suite coverge uiformémet sur A vers la foctio u, si ε > 0, N, N IN, x A, N u (x) u(x) ε exemple 57 Aisi, la suite de foctios sur [0, ] défiie par u (x) = x, coverge poctuellemet vers la foctio u défiie par : u(x) = 0, si x < u() = Toutefois cette covergece 'est pas uiforme Il suffit par exemple de remarquer que : u = e exemple 58 (à traiter) Motrer que la suite de foctios défiie par : f (x) = ( + x) est uiformémet covergete, de limite 0, sur [, [ # répose O remarque :

52 5 Pour voir ( + x) pour tout x de l'itervalle cosidéré Comme ted vers 0 il e résulte que f (x) ted vers 0 pour tout x La limite poctuelle est doc la foctio ulle De plus : doc : ε > 0, N, N ε ε > 0, N, N, x f (x) ε la covergece est doc bie uiforme Ue série de foctios u coverge ormalemet sur ue partie A s'il existe ue série umérique covergete a à termes positifs ou uls telle que pour tout x de A u (x) a exemple 59 si(x) La série coverge ormalemet sur R puisque pour tout x :! si(x)!! et que! coverge exemple 60 (à traiter) Vérifier que la série de terme gééral :

53 Pour voir 53 ( + x) coverge ormalemet sur [, [ # répose E effet, o a remarqué la majoratio : ( + x) et o sait que la série coverge Si ue série coverge ormalemet sur ue partie A, alors elle coverge uiformémet sur A exemple 6 C'est le raisoemet utilisé das l'exemple 58 exemple 6 (à traiter) E cherchat le maximum de la foctio u, motrer que la série de terme gééral : u (x) = Log + x coverge uiformémet sur [, [ # répose Cette foctio est clairemet décroissate (o peut aussi vérifier par u calcul de dérivée), doc le maximum est u () : u () = Log +

54 54 Pour voir et o a : Log + ~ doc la série des maximum est covergete Il e résulte que Log + x est ormalemet covergete Soit (u ) ue suite de foctios réelles sur I Soit A ue partie de I telle que pour tout, la foctio u soit cotiue sur A, et que la suite coverge uiformémet sur A Alors la foctio limite est cotiue sur A exemple 63 La foctio zéta de Riema est la somme (quad elle existe) de la série de terme gééral u (x) = -x Cette foctio est cotiue sur ], [ E effet, soit a >, et ε tel que < a ε < a Sur l'itervalle [a ε, [, la foctio u a pour maximum u (a ε) Or la série umérique : a ε coverge, puisque < a ε La série est doc ormalemet x covergete sur [a ε, [, doc sa somme y est cotiue, e particulier e a exemple 64 (à traiter) Utiliser ce résultat pour motrer que das l'exemple 57 la covergece 'est pas uiforme # répose E effet la limite de cette suite de foctios cotiues 'est pas cotiue

55 Pour voir 55 Soit I = [a, b] u itervalle de R Soit (u ) ue suite de foctios cotiues sur I, uiformémet covergete sur I, de limite u O a lim a b b u (x)dx = u(x)dx a exemple 65 Repreos l'exemple 57 L'itégrale de u est, doc sa limite est 0 + De même l'itégrale de la foctio u, limite de la suite, est 0 Pourtat cette suite e coverge pas uiformémet Reteir que l'éocé précédet 'admet pas de réciproque exemple 66 (à traiter) Soit la suite de foctios : g (x) = x si 0 x g (x) = si < x < g () = 0 Etudier la covergece de cette suite et la validité de l'égalité de l'éocé # répose Pour tout x de [0, [, pour assez grad, o a : x < doc la limite poctuelle de la suite est la foctio 0, d'itégrale ulle, bie etedu L'itégrale de g s'écrit :

56 56 Pour voir g (x)dx = x dx = + et cette suite d'itégrales ted vers La covergece 'est doc pas uiforme u de Ue série foctios de classe C qui coverge simplemet e au mois u poit, et dot la série des dérivées u' coverge uiformémet sur tout itervalle fermé boré, coverge uiformémet sur tout itervalle fermé boré, vers ue foctio u dérivable, et ( )' = u' exemple 67 dx Cosidéros la série de foctios de terme gééral : u (x) = cos(x) 3 qui coverge poctuellemet e 0 O ote s la somme de cette série La dérivée est : u si(x) (x) = terme gééral d'ue série absolumet covergete sur R O peut doc dériver s terme à terme : si(x) s' (x) = + +

57 Pour voir 57 exemple 68 (à traiter) Das l'exemple précédet, la dérivée secode est : cos(x) Peut-o e déduire s"(0)? # répose La série des dérivées secodes e coverge pas e 0 Le résultat e s'applique doc pas ici

58 58 Pour voir -3 Séries etières O appelle série etière ue série de foctios dot le terme gééral est de la forme u (x) = a x exemple 69 O coaît la série expoetielle : dot la somme est (par défiitio) e x exemple 70 (à traiter) La série de foctios sur [0, [, de terme gééral : v (x) = + x x est-elle ue série covergete? est-elle ue série etière? # répose x! Par le critère de D'Alembert, o voit que : v + (x) v (x) = x + x + + x x doc cette série coverge pour x < Elle diverge pour x Ce 'est pas ue série etière Le rayo de covergece de la série etière a z est la bore supérieure de l'esemble des réels positifs r tels que la suite (a r) soit borée exemple 7 Pour la série etière suivate :

59 Pour voir 59 x + + r le rayo de covergece est E effet, si 0 r, la suite + + coverge vers 0, doc est borée Par cotre si r >, cette suite ted vers l'ifii, elle 'est pas borée exemple 7 (à traiter) Quel est le rayo de covergece pour : x!+ + # répose Pour r positif, le terme gééral est équivalet à r! Or cette expressio ted vers 0 quad ted vers l'ifii, quel que soit r Rappelos pourquoi : soit r > 0, et N = E(r) + Pour > N : u = r u < r N u < r N u N N r Comme N <, o voit que u x ted vers 0 L'expressio!+ + est doc borée pour tout r : le rayo de covergece est ifii Si R 0, la série est absolumet covergete pour z < R, divergete pour z > R, et elle coverge ormalemet sur tout disque fermé z r < R exemple 73 Das l'exemple précédet, la série est absolumet covergete pour tout x, et ormalemet covergete sur tout itervalle fermé et boré de R

60 60 Pour voir exemple 74 (à traiter) Vérifier que la série etière : a pour rayo de covergece Est-elle ormalemet covergete sur l'itervalle fermé boré [, ]? # répose O voit facilemet que r ted vers 0 si r, et vers si r > Le rayo de covergece est O e déduit que la série est ormalemet covergete sur tout itervalle fermé boré coteu das l'itervalle ouvert ], [ Mais la série 'est pas ormalemet covergete sur l'itervalle fermé [, ], puisqu'elle 'est pas covergete e x Si le quotiet a + a a pour limite L, alors le rayo de covergece est, avec la L covetio que si L = 0, le rayo est ifii, et si L est ifiie, le rayo est 0 exemple 75 O le vérifie sur l'exemple 74 : exemple 76 (à traiter) + Retrouver le rayo de covergece de l'exemple 7 # répose O écrit :

61 Pour voir 6!+ + ( +)!+ + ~! ( +)! = + 0 doc le rayo de covergece est ifii Soit I u itervalle ouvert coteat l'origie, et f ue foctio défiie sur I, à valeurs das R O dit que f est développable e série etière sur I s'il existe ue suite réelle (a ) telle que pour tout x de I o ait exemple 77 f (x) = a x = 0 Soit I = ], [, et f défiie par : f (x) = x Cette foctio est développable e série etière : f (x) = x exemple 78 (à traiter) La foctio défiie sur ], [ par : g(x) = est-elle développable e série etière sur I? # répose No, car cette foctio 'est pas dérivable e 0 Or la somme d'ue série etière le serait 0 x

62 6 Pour voir S'ils existet, les coefficiets a sot doés par a =! f () (0) E particulier, ils sot uiques exemple 79 Il faut doc pouvoir calculer f () (0) pour tout Si f est la foctio défiie par : f (x) = e x, pour x 0 f (0) = 0, o voit (par récurrece) que, pour tout, f () (0) = 0 Il suffit de voir que quel que soit l'etier k : quad x ted vers 0 e x x k 0 exemple 80 (à traiter) Mais il e suffit pas de calculer ces dérivées Il faut égalemet que la série coverge, et que sa somme soit bie f Est-ce le cas das l'exemple précédet? # répose No, bie etedu, puisque la série est ulle et la foctio o ulle

63 Pour voir 63-4 Séries de Fourier O appelle série trigoométrique ue série de foctios dot le terme gééral est de la forme : u (x) = a cos(x) + b si(x), si > 0, u 0 (x) = a 0 /, b 0 = 0; exemple 8 La série : est ue série trigoométrique si(x) exemple 8 (à traiter) La série de terme gééral : si(x + a)! où a est u réel, est-elle ue série trigoométrique? Si c'est le cas, expliciter les coefficiets # répose Effectivemet, c'est ue série trigoométrique, puisque : si(x + a) = si(x)cos(a) + cos(x)si(a) Les coefficiets sot : a 0 = si(a), et pour p > 0 a p = si(a) p! b p = cos(a) p!

64 64 Pour voir O utilise égalemet ue écriture complexe des séries trigoométriques E posat c = a ib, c = a + ib, 0 o obtiet N N + ( a cos(x) + b si(x) ) = c e ix a 0 = = N exemple 83 Ci-dessus : avec les coefficiets : si(x + a) = c e ix c = c = si(a) i cos(a), si(a) + i cos(a) exemple 84 (à traiter) Ecrire sous forme complexe la série trigoométrique de l'exemple 8 # répose O obtiet : c = i, c = i, > 0 Notos que si la série trigoométrique est réelle, alors c = c exemple 85 C'est ce qu'o vérifie das les deux cas précédets

65 Pour voir 65 exemple 86 (à traiter) Mettre sous forme ormale la série : e ix + i # répose Z O écrit : e ix + i = cos(x) + i + + isi(x) + i + i + i Z doc : e ix + i = i cos(x) Z + + si(x) + Si a et b sot covergetes, la série trigoométrique est uiformémet covergete sur R La somme de cette série est ue foctio cotiue sur R exemple 87 Ce sera le cas par exemple pour : cos(x) exemple 88 (à traiter) Doer des cas où la série : k si(x) coverge uiformémet sur R

66 66 Pour voir # répose D'après l'éocé rappelé, il suffit que k < Si les suites (a ) et (b ) sot des suites réelles décroissates tedat vers 0, alors la série trigoométrique coverge e tout poit x tel que x kπ, k etier relatif, et coverge uiformémet sur tout itervalle fermé boré coteu das R πz exemple 89 La série : cos(x) + + si(x) coverge d'après l'éocé Remarquer que la coditio de covergece de l'éocé précédet e s'applique pas exemple 90 (à traiter) Sous les hypothèses de cet éocé, la série trigoométrique peut-elle coverger e x = kπ? # répose Bie etedu, c'est possible, e particulier si les séries coverget, comme o l'a vu plus haut a, et b Soit f ue foctio π-périodique, cotiue par morceaux sur R (à valeurs réelles ou complexes) O appelle coefficiets de Fourier de f les ombres suivats exemple 9 Supposos que f soit défiie par : f(x) = 0 si π x < 0, f(x) = si 0 x < π Les coefficiets de Fourier sot :

67 Pour voir 67 doc : exemple 9 (à traiter) a 0 = π f (x)dx = π π π π dx = π 0 π = a = π f (x) cos(x)dx = π π π π cos(x)dx = 0 π [ si(x) ] π = 0 0 b = π f (x)si(x)dx = π π π π si(x)dx = 0 π [ cos(x) ] π 0 = ( ) π b p = 0, b p + = ( p +)π Calculer les coefficiets de Fourier de la foctio π périodique défiie sur l'itervalle [ π, π[ par f(x) = x # répose Les calculs sot les suivats : a 0 = π xdx π = x π π a = π b = π π π = 0 x cos(x)dx = x π π π π x si(x)dx = π x π si(x) + cos(x) cos(x) + si(x) π π π π = 0 = ( )

68 68 Pour voir O peut choisir x 0 pour redre le calcul plus facile pour ue foctio particulière : o voit aisi que si f est paire, alors b = 0 pour tout, et si f est impaire alors a = 0 pour tout exemple 93 C'est ce qu'o a costaté das l'exemple 9 exemple 94 (à traiter) Vérifier ce résultat pour la foctio défiie par f(x) = x sur [ π, π[ # répose Les coefficiets b sot doés par : b = π π x si(x)dx = π π = x π cos(x) si(x) = π π cos(π) 0 π 0 xsi(x)dx + π π π cos(π) + π x = 0 π 0 x si(x)dx cos(x) + si(x) π 0

69 Pour compredre et utiliser - éocés des exercices 69 3 Pour Compredre et Utiliser 3- Éocés des exercices Savoir détermier la covergece d'ue série umérique Calculer ue valeur approchée ou détermier l'expressio exacte de la somme d'ue série exercice Sur le quotiet u + u ) Soiet u et O suppose que : v des séries à termes () positifs à partir d'u certai rag v u + u v + v Démotrer que si coverge, alors u coverge ( )()() ) Soit u ue série à termes positifs O suppose que u + a pour limite, et qu'il existe u réel α et ue foctio tedat vers 0 à l'ifii ε, tels que : u + = + α u + ε() u idicatios pour résoudre - méthode - lexique

70 70 Pour compredre et utiliser - éocés des exercices Discuter, selo la valeur de α, la covergece de u ( )() 3) Das le cas précédet, o suppose que α =, et qu'il existe u réel β tel que : u + u = + β + ε() Etudier la covergece de u ( ) 4) Soit u ue série à termes positifs O suppose que u + limite, et o écrit : u + =, u + v u a pour (v ) état ue suite de réels tedat vers 0 Démotrer que s'il existe u réel k tel que pour assez grad : v k >, alors la série alors la série u coverge, et que si pour assez grad : u diverge ( ) v 5) Soit u ue série telle que u u + < 0 O écrit : u + u = + v, démotrer que si, pour assez grad : < v 0 la série u diverge, et que si il existe u réel k tel que : 0 < k v

71 Pour compredre et utiliser - éocés des exercices 7 pour assez grad, alors u coverge ( ) exercice Autour de u Soit u ue série à termes positifs ) O suppose qu'il existe u réel α, de ]0, [, tel que : u α Démotrer que la série u est covergete ( ) ) Plus gééralemet, supposos que u ted vers par valeurs iférieures Soit f ue applicatio telle que, pour assez grad : u f (), avec lim f () = 0 Démotrer que pour que u coverge, il suffit qu'il existe u réel k f () positif k < tel que e coverge exercice 3 Echelles de Riema et de Bertrad ) Soit u ue série à termes positifs O suppose qu'il existe u réel α tel que le produit : α u idicatios pour résoudre - méthode - lexique

72 7 Pour compredre et utiliser - éocés des exercices ait ue limite fiie L Discuter selo la valeur de α la covergece de la série u ( ) ) Etudier, selo la valeur de β, la covergece de la série ( ) : ( Log() ) β Soit u ue série à termes () positifs O suppose qu'il existe β tel que le produit : ait ue limite fiie () ( Log() ) β u Discuter selo la valeur de β la covergece () de exercice 4 u ( ) Développemets limités, équivalets ()() ) Soit f ue foctio tedat vers à l'ifii O suppose qu'elle admet u développemet limité de la forme : f () = + a + b + c + ε() 3 3 Discuter, selo les valeurs de α, la covergece de la série de terme gééral ( ) : ( f ()) α O examiera successivemet les cas : a 0, a = 0 et b 0, a = b = 0 et c 0 Applicatio à la covergece des séries :

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1 UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. remy.garadel@utbm.fr ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Chaînes de Markov. Arthur Charpentier

Chaînes de Markov. Arthur Charpentier Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

Régulation analogique industrielle ESTF- G.Thermique

Régulation analogique industrielle ESTF- G.Thermique Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Gérer les applications

Gérer les applications Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces

Plus en détail

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

Principes et Méthodes Statistiques

Principes et Méthodes Statistiques Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............

Plus en détail

La maladie rénale chronique

La maladie rénale chronique La maladie réale chroique Qu est-ce que cela veut dire pour moi? Natioal Kidey Disease Educatio Program La maladie réale chroique: l essetiel Vous avez été iformé(e) que vous êtes atteit(e) de la maladie

Plus en détail

Statistique Numérique et Analyse des Données

Statistique Numérique et Analyse des Données Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques

Plus en détail

Télé OPTIK. Plus spectaculaire que jamais.

Télé OPTIK. Plus spectaculaire que jamais. Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise

Plus en détail

Les algorithmes de tri

Les algorithmes de tri CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

Contribution à la théorie des entiers friables

Contribution à la théorie des entiers friables UFR STMIA École Doctorale IAE + M Uiversité Heri Poicaré - Nacy I DFD Mathématiques THÈSE présetée pour l obtetio du titre de Docteur de l Uiversité Heri Poicaré, Nacy-I e Mathématiques par Bruo MARTIN

Plus en détail

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier

Plus en détail

Initiation à l analyse factorielle des correspondances

Initiation à l analyse factorielle des correspondances Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014 Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,

Plus en détail

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Intégrales dépendant d un paramètre

Intégrales dépendant d un paramètre [hp://mp.cpgedupuydelome.fr] édié le 3 avril 5 Eocés Iégrales dépeda d u paramère Covergece domiée Exercice [ 9 ] [correcio] Calculer les limies des suies do les ermes gééraux so les suivas : a) u = π/4

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos

Plus en détail

One Office Voice Pack Vos appels fixes et mobiles en un seul pack

One Office Voice Pack Vos appels fixes et mobiles en un seul pack Uique! Exteded Fleet Appels illimités vers les uméros Mobistar et les liges fixes! Oe Office Voice Pack Vos appels fixes et mobiles e u seul pack Commuiquez et travaillez e toute liberté Mobistar offre

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction A ew adaptive operator of fusio par Fraçois DELMOTTE LAMIH, Uiversité de Valeciees et du Haiaut-Cambrésis, Le Mot Houy, BP 3, 5933 Valeciees CEDEX 9 fdelmott@flore.uiv-valeciees.fr résumé et mots clés

Plus en détail

Mécanique non linéaire

Mécanique non linéaire M MN9 Mécaique o liéaire Zhi-Qiag FENG UFR Sciece et Techologies Uiversité d Evry Val d Essoe TABLES DES MATIERES INTRODUCTION Chapitre : CONCEPTS ELEMENTAIRES. Pricipales propriétés des matériaux. Coaissace

Plus en détail

STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO

STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO Des résultats du Programme de réductio des risques STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO 1. Cotexte La puaise tere Lygus lieolaris (figure 1) est

Plus en détail

Le chef d entreprise développe les services funéraires de l entreprise, en

Le chef d entreprise développe les services funéraires de l entreprise, en Le chef d etreprise développe les services fuéraires de l etreprise, e assurat lui-même tout ou partie des activités de vete et e ecadrat directemet le persoel techique et commercial et d exploitatio.

Plus en détail

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012 Mobile Busiess Commuiquez efficacemet avec vos relatios commerciales 9040412 09/2012 U choix capital pour mes affaires Pour gérer efficacemet ses affaires, il y a pas de secret : il faut savoir predre

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

?,i- ' ^/mmmmmm. CACU ^..""'V ii\teimmies EîiiEsmmii ''?A y? K 1^ 1 - r Par le Moyede Formules Algébriques ) v-^' ET A 'AIDE DES OGARITHMES.../v:?i.'?Xi:: F, X, BURQUE, Ptr. Professeur de MatJu'matiques,

Plus en détail