Finance. Anaïs HAMELIN. Sujet 1

Dimension: px
Commencer à balayer dès la page:

Download "Finance. Anaïs HAMELIN. Sujet 1"

Transcription

1 Maser (AES Exames du er semesre 3/4 Face Aaïs HAMELI Sue urée : 3 H ocume(s auorsé(s : aucu Maérel auorsé : Calcularce auorsée (Mémore vde pour les calcularces graphques

2 Cosges : - Les exercces so dépedas les us des aures. - U ormulare es dspoble à la du sue. - esez à be gérer vore emps. - Les uscaos peuve êre lérares, graphques ou mahémaques. - Les réposes aux quesos dove êre coures e précses. éssez la oo de TI? [.5 po] QUESTIOS [6 pos] Ere deux res A e B, l u peu rsqué, l aure rès rsqué, quels res chosssez-vous s vous souhaez predre le mmum de rsque? [.5 po] 3 Que pesez vous de la phrase suvae «X a a alle parce que ses ras acers s élevae à 3% de so chre d aares»? [ po] 4 ourquo la corbuo de l'ac à la volalé du poreeulle pred e compe la corrélao ere la reablé de l'ac e la reablé du poreeulle, comme l'dque l'équao c-dessous? [,5 pos] Corbuo _ du _ re à la volalé _ du _ poreeulle x { Corr(, { ods _ du _ re _ sque _ oal _ du _ re _ ar _ du _ rsque _ du _ re commue _ avec _ 5 ourquo les drgeas o-ls edace à e pas amer la dee? [ po] 6 Qu'es ce que l'averso au rsque? epréseez graphqueme la suao d'u age eure au rsque e dqua sur vore graphque l'équvale cera (w*, l'espérace de l'ulé e l'ulé de l'espérace. [.5 po] Exercce [ po] EXECICES [6 pos] U poreeulle rappore u aux de reablé de % pour u écar ype de 8%. ous souhaez que l écar ype ombe à 4%. Que devez vous are? Exercce [.5 pos] La socéé Elecroque Idusrelle a esmé ses besos d ue cerae pèce ulsée das ses abrcaos à 7 ués par a, peda les prochaes aées. U sous-raa propose de lu ourr cee pèce au prx de 5 l ué. Elecroque Idusrelle peu abrquer cee pèce das les aelers à u coû de 3 l ué s elle achèe ue ouvelle mache qu coûe 78 e qu pourra servr as e aura alors ue valeur résduelle ulle. L vessseme sera amor léareme. Le aux d mposo de la socéé es de 35%. La socéé requer e gééral ue reablé de % sur ses vesssemes dusrels. La socéé do-elle acceper l ore du sous raa?

3 Exercce 3 [.5 pos] Sacha que l o se rouve das ue suao où les marchés so paras e que les ereprses A e B o le même veau de rsque écoomque, reporez e compléez le ableau c-dessous sur vore cope, e usa vos calculs. Ereprse A Ereprse B aleur de marché des ods propres ee aleur oale ésula d'exploao 4 4 Iérês ( % 5 Bééce Taux de reablé requs sur les ods propres (e % CMC COMMETAIE E OCUMET [3 pos] E vous appuya sur vore cours, commeez les documes c-dessous 3

4 OBLEME [5 pos] AuxFleurs veu ouvrr ue lale e Allemage. Ce proe es auss rsqué que l acvé de l ereprse e Frace. Cela écesse u vessseme de 5 mllos d euros ; l EBE sera de mllos d euros par a à l. Après l vessseme al, les vesssemes ouveaux sero égaux aux amorssemes. Le BF e vare pas. Ava le proe, AuxFleurs a u pass e valeur de marché cosué de 5 mllos d euros de capaux propres ( mllos d acos e de 3 mllos d euros de dee. Le coû du capal de l ereprse o edeée es de % ; la dee es sas rsque e le aux d érê de 4% ; le aux d mpô sur les socéés es de 33%. AuxFleurs propose de acer le proe par émsso d acos. Les acoares e s aedae pas à cee aoce, mas ls parage l aalyse d Aux Fleurs sur les perspecves du proe. Quel sera le prx d ue aco sue à l aoce? [.5 pos] S les acoares pese que l EBE du proe e sera que de 4 mllos d euros, quel sera le prx de l aco après l aoce? Combe d acos l ereprse devra émere? [.5 pos] 3 AuxFleurs décde aleme de s edeer (de maère permaee, la dee se compore comme ue ree perpéuelle pour acer ce proe. Quel es le prx de l aco après l aoce? [ pos] 4

5 Formulare Ce ormulare sera dspoble avec les sues lors du galop d'essa e de l'exame de ace. Toue ormule o présee das ce ormulare do êre usée ou démorée à parr des ormules dspobles das ce ormulare. Chapre edeme : rdm Arrvée épar épar aleur acuelle : ( + r aleur acuelle d ue séquece de lux : + ( r Iérês smples : ( + Iérês composés : ( + Taux e : p aleur acuelle d ue ree versée e d aée : ( + r ( ( + r ( + r r ( ( + r aleur acuelle d ue ree versée e débu d aée : aleur ale d ue ree versée e d aée : ( ( + r ( + r ( ( + r r ( + r r aleur ale d ue ree versée e débu d aée : ( ( + r ( + r r ( + r ( + r r aleur acuelle d ue ree perpéuelle : A ( r aleur acuelle d ue ree perpéuelle crossae : 5

6 ( A r g Taux margal de subsuo (TMS : TMS Y Y U Lm ( X m X X X U m Y ( Taux margal de subsuo eremporel (TMSI : TMSI du C du C C C Chapre aleur acuelle ee (A : A I + CF + ( r aleur ermale aleurter m ale FCF orma r g Chapre 3 chesse ale : w~ w ~ x + Espérace de l ulé : ( w ~ E U ( x [ ] p U ( x eablé espérée d u ac : E ( p, arace d u ac : [( E( ] p [, E( E ] eablé hsorque d ue aco : v + v eablé moyee d u ac : T ar( T T T ( 6

7 olalé d u ac : edeme d u poreeulle : x p eablé espérée d u poreeulle : E ( p x E( Covarace : Cov(, E[( E[ ]( E[ ]] T Cov(, ( (, T, Corrélao : Cov(, Corr(, Marce de varace-covarace : Cov( x, x Cov( x, x ( r Cov( x, x Cov( x, x arace d u poreeulle composé de acs : ar( Cov( Cov x (, + x ar[ ] + x, ar[ x ar[ ] + x ar[ Cov( x x Cov(, ] + ] + + x Cov(, x Corr(, arace d u poreeulle quelcoque ar( x Cov(, x + x, x xx Cov( + x, + Corr(, xx Cov(, Equao de la droe de l esemble des poreeulles obeus par combaso de l ac sas rsque e d u poreeulle rsqué : S ( r + ( S [ Ex r ] r + [ E( r ] E p ao de Sharpe : E[ ] r ( écomposo du rsque d u ac : ar ( β ar(, M + ar( u,, 7

8 Equao de la droe de marché : E ( ( rxxe + ( r + [ ( Ex r ] x, M m Equao de la droe d évaluao des acs acers : m Cov(, M E( r + [ E( M r ] r + β[ E( M r ] ( M Chapre 4 CMC (marchés paras: C CMC C C + Lever : L C + C + Coû des capaux propres (marchés paras : C Coû des capaux propres (présece d mpôs : CMC (présece d mpôs : CMC CMC + IS C ( CMC ( CMC C IS ( CMC + τ C + ( C C Is( τ IS C + ( C + 8

Finance. Anaïs HAMELIN. Sujet 1

Finance. Anaïs HAMELIN. Sujet 1 Maser AS ames du er semesre 4/5 Face Aaïs HAMLI Sue urée : 3 H ocumes auorsés : aucu Maérel auorsé : Calcularce auorsée Mémore vde pour les calcularces graphques Cosges : - Les eercces so dépedas les us

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Thermographie infrarouge et conduction inverse : estimation d une source surfacique de chauffage par induction.

Thermographie infrarouge et conduction inverse : estimation d une source surfacique de chauffage par induction. hemogaphe faouge e coduco vese : esmao d ue souce sufacue de chauffage pa duco Aboubaca OUAAA, Des MAILLE, Mchel GADECK, Mchel LEBOUCHE Objecf : - fluece composo flude flude dus # eau du éseau efodsseme

Plus en détail

Rentabilité et financement d un investissement

Rentabilité et financement d un investissement REFI01 : Reabilié e fiaceme COURS Jui 2000 Reabilié e fiaceme d u ivesisseme 1 OBJECTIFS O cherche : à assurer la compéiivié de l ereprise sur plusieurs aées ; après avoir examié l opporuié d u ivesisseme

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Le modèle linéaire général simple à deux variables

Le modèle linéaire général simple à deux variables L3 Mahémaique e Saisique Les esimaeurs des MCO M Le modèle liéaire gééral simple à deu variables Iroduio géérale U modèle es ue représeaio simplifiée, mais la plus ehausive possible, d ue eié éoomique

Plus en détail

Produit scalaire. Chap. 11 : cours complet. 1. Produit scalaire réel.

Produit scalaire. Chap. 11 : cours complet. 1. Produit scalaire réel. Produ scalare Chap : cours comple Produ scalare réel Défo : produ scalare sur u -espace vecorel, espace préhlbere réel Théorème : eemples classques Théorème : égalé de Cauchy-Schwarz Défo : forme bléare

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i)

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i) Esaces vecorels eucldes Groue orhogoal ESPACES VECTORIELS EUCLIDIENS GROUPE ORTHOGONAL Produ scalare Défo O aelle esace euclde ou coule ( E, φ, où E es u esace vecorel réel de dmeso fe e φ ue forme bléare

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris Geson de producon cour erme en conee nceran EDF R&D École enrale Pars Geson de producon à cour erme Encadrans ndusrels : Gérald Vgnal - Jérôme Quenu Encadran académque : Yves Dallery-Mchel Mnou Snda Ben

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

Analyse de la méthode de calcul des charges de gros entretien et d'amortissement technique du matériel de la construction

Analyse de la méthode de calcul des charges de gros entretien et d'amortissement technique du matériel de la construction DEEGAION DU MAERIE Aalyse de la méhode de calcul des charges de gros ereie e d'amorisseme echique du maériel de la cosrucio Fédéraio Naioale des ravaux Publics - Méhode de déermiaio des charges d emploi

Plus en détail

Energie et puissance électrique

Energie et puissance électrique - 1 - Energe e pussance élecrque 1 Tes de saor : Valeur effcace a) So un sgnal () pérodque de pérode T. Défnr sa aleur effcace en radusan «R.M.S». Pus défnr sa aleur effcace sous forme d une négrale. b)

Plus en détail

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S IREM Secto Matque Goupe Lycée QCM pou la classe de Temale S QCM : Calculatce o autosée Pou chaque questo, seules ou popostos sot vaes. Recope la ou les popostos vaes. Sot f la focto défe su IR pa f ( )

Plus en détail

Lycée Fénelon Sainte-Marie. Mardi 19 Mars 2013 Durée : 3 heures DTL N 4

Lycée Fénelon Sainte-Marie. Mardi 19 Mars 2013 Durée : 3 heures DTL N 4 Lycée Féelo Saie-Marie Termiale ES Aée 0-0 Mahémaiques Mardi 9 Mars 0 Durée : heures DTL N La calcularice es auorisée. Le suje compore u oal de exercices. Le barème es fouri à ire idicaif. EXERCICE (6

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

CAPES SÉRIE DOCUMENTS DE TRAVAIL DT CAPES N 2005 26

CAPES SÉRIE DOCUMENTS DE TRAVAIL DT CAPES N 2005 26 CAPES SÉRIE DOCUMENTS DE TRAVAIL DT CAPES N 5 6 STATISTIQUE. (Deuxème are.) Les dsrbuos à deux caracères. Quelques alcaos à l'écoome burabè. Novembre 5 Seglaro Abel SOME seglaro.some@uv ouaga.bf / seglaro@ecourrer.com

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Obligation (à caractère optionnel) 2006-2015 de Crédit Agricole SA Professeur Didier MAILLARD Juin 2006

Obligation (à caractère optionnel) 2006-2015 de Crédit Agricole SA Professeur Didier MAILLARD Juin 2006 Coservaore aoal es Ars e Méers Chare e BAQUE Docume e recherche 7 GP-AP Aalyse e rous armoaux Oblgao à caracère ooel 6-5 e Cré Agrcole A Professeur Der MAILLARD Ju 6 Aversseme La chare e Baque u Coservaore

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

La Cible Sommaire F o c u s

La Cible Sommaire F o c u s La Cible Sommaire F o c u s F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!.

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!. PROBABILITÉS E 654, Blaise Pascal (63 ; 66) etretiet avec Pierre de Fermat (60 ; 665) des correspodaces sur le thème des jeux de hasard et d'espérace de gai qui les mèet à exposer ue théorie ouvelle :

Plus en détail

Amplification Linéaire à Transistor Bipolaire

Amplification Linéaire à Transistor Bipolaire UFM Préparaon APT Géne lerque Amplfaon néare à Transsor polare Sruure énérale d un ru d amplfaon : Snal à amplfer (as neau) X X Amplfaeur are (Hau neau) Soure de pussane (Fourne par ) X amplfaon ne onerne

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

CORRIGÉ PARTIE I I. FIBRES OPTIQUES ET OPTIQUE GÉOMÉTRIQUE

CORRIGÉ PARTIE I I. FIBRES OPTIQUES ET OPTIQUE GÉOMÉTRIQUE Corrgé CORRIGÉ PARTIE I I FIBRES OPTIQUES ET OPTIQUE GÉOMÉTRIQUE IA IA IA Los de Sell-Desares Los de la réfleo ère lo : le rayo de e le rayo réfléh so oeus das le pla d dee ème lo : le rayo réfléh es symérque

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

Concours des Grandes Ecoles INTEGRALES-Correction. PARTIE A. SUJET INTEGRAL Année universitaire 2009/2010

Concours des Grandes Ecoles INTEGRALES-Correction. PARTIE A. SUJET INTEGRAL Année universitaire 2009/2010 SUJET NTEGRAL Aée uiversiaire 9/ PARTE A. Cocours des Grades Ecoles NTEGRALES-Correcio..La focio f défiie par f : f ( ) ( )cos( ) es bie coiue sur l iervalle fermé boré [ ; ]. Les focios si( ) so de classe

Plus en détail

Conseil économique et social

Conseil économique et social Na t i ons U ni e s E / C N. 1 7 / 20 0 1 / PC / 1 7 Conseil économique et social D i s t r. gé n é r a l e 2 ma r s 20 0 1 F r a n ç a i s O r ig i n a l: a n gl a i s C o m m i s s io n d u d é v el

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Prénom e nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Exercice n 1 Un ouvrier dispose de plaques de méal de 110 cm de longueur e de 88 cm de largeur. Il a reçu la consigne suivane : «Découpe dans

Plus en détail

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation ère S Lmtes de foctos () Approche tutve ; tes des foctos de référece II. La focto carrée ) Tableau de varato Das ce chaptre, o lasse provsoremet de côté les dérvées. I. Itroducto ) Rappel Déà vu : oto

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

UNIVERSITE DE PARIS X Année universitaire UFR SEGMI L2 ECONOMIE & GESTION

UNIVERSITE DE PARIS X Année universitaire UFR SEGMI L2 ECONOMIE & GESTION UNIVERSITE DE PARIS X Aée uversare 8-9 UFR SEGMI L ECONOMIE & GESTION Travaux drgés Sasques Ecoomques Fasccule N CHEZE e D ABECASSIS Exercces rers ou adaés de G NEUBERG MOYENNES, CROISSANCE, INDICES Raels

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16 ÉO TUIT FOULS TUILLS SU TT Probbé ouo 3 dfféré4 ee gère be à ere échu 5 ee gère be à ere échu ueur fo d ée 6 ee gère à ere be d ce7 ee gère à ere be d ce ueur fo d ée8 urce décè 9 urce décè à c rbe cro

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

G r o u p e t h e r m i q u e g a z à c o n d e n s at i o n

G r o u p e t h e r m i q u e g a z à c o n d e n s at i o n G r o u p e h e r m q u e g a z à c o e s a o C é r m -4 * 6% p ô L o e 2 S E c a f CONDENSATION VENTOUSE DCB 1 UN CŒUR EN ACIER INOXYDABLE DES ÉCONOMIES RÉELLES DE L EAU CHAUDE A VOLONTÉ RENDEMENT : 16,7

Plus en détail

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T

Plus en détail

Université de Picardie Jules Verne 2013-2014 UFR des Sciences

Université de Picardie Jules Verne 2013-2014 UFR des Sciences Uiversié de Picardie Jles Vere 13-14 UFR des Scieces Licece meio Mahémaiqes - Semesre 3 Saisiqe Exame de ldi 7 javier 14 Drée h To docme ierdi - Calclarices aorisées Exercice 1 1) Das e poplaio doée, o

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Exercice 1: Déterminer si les intégrales suivantes sont convergentes, et le cas échéant calculer leur valeur :

Exercice 1: Déterminer si les intégrales suivantes sont convergentes, et le cas échéant calculer leur valeur : Eercice : Eercices : Iégrales gééralisées Déermier si les iégrales suivaes so covergees, e le cas échéa calculer leur valeur :.. d (+ ) d 3. 4. e d d 5. 6. 3 d e d Eercice : Déermier si les iégrales suivaes

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

PERFORMANCE CONTACT vous présente son LOGICIEL de PRISE de RENDEZ-VOUS

PERFORMANCE CONTACT vous présente son LOGICIEL de PRISE de RENDEZ-VOUS PERFORMANCE CONTACT vous présete so LOGICIEL de PRISE de RENDEZ-VOUS OBTENEZ sas effort LES RENDEZ-VOUS que vous SOUHAITEZ SIMPLICITÉ ET EFFICACITÉ Spécialisée das la prise de redez-vous depuis de ombreuses

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Leçon 7. Ajouter les lettres de l alphabet déjà apprises. 1 Trouver le son commun à toutes ces images. Le crabe est un drôle d animal.

Leçon 7. Ajouter les lettres de l alphabet déjà apprises. 1 Trouver le son commun à toutes ces images. Le crabe est un drôle d animal. Le crae est un drôle d animal. Ajouter les lettres de l alphaet déjà apprises. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 1 Trouver le son commun à toutes ces images. 141 2 Encercler les 11 images

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

Août 2016 (1 heure et 45 minutes) b) Quel lien y a-t-il entre le rang d'une matrice et son nombre de lignes et de colonnes? Ne pas (2.5 pts.

Août 2016 (1 heure et 45 minutes) b) Quel lien y a-t-il entre le rang d'une matrice et son nombre de lignes et de colonnes? Ne pas (2.5 pts. 1 a) Défiir: marice écheloée lige réduie rag d'ue marice Aoû 016 (1 heure e 45 miues) (1 p) b) Quel lie a--il ere le rag d'ue marice e so ombre de liges e de coloes? Ne pas démorer (05 p) c) Discuer, selo

Plus en détail

Méthodes «volumes finis»

Méthodes «volumes finis» Méhodes «volmes s» ArGECo MS²F Hydrologe, Hydrodymqe Applqée e Cosrcos Hydrlqes (HACH) Méhodes «volmes s» : rodco Déreces es Dscréso des éqos sr grd srcré crése Méhode smple e rpde Fclé de clcl des dérvées

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

MÉTHODES STATISTIQUES EXAMEN FINAL HIVER 2007 Date : Dimanche 29 avril de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN FINAL HIVER 2007 Date : Dimanche 29 avril de 14h00 à 17h00 MAT 080 MÉTHODES STATISTIQUES EXAME IAL HIVER 007 Date : Dimache 9 avril de 14h00 à 17h00 ISTRUCTIOS Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om, votre code permaet

Plus en détail

Chapitre 2 LES EMPRUNTS INDIVIS

Chapitre 2 LES EMPRUNTS INDIVIS Chptre LES EMPRUNTS INDIVIS.1 Actulsto de flux Actvté.1.1 : O dspose de chffres cocert l évoluto du chffre d ffres de l socété FLORIS depus 1985. E 1985, le Chffre d ffres étt de 1 Mllo de Frcs, e 1990

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVRSITÉ D SFAX École Supéreure de Commerce Aée Uversare 003 / 004 Audore : Trosème Aée Éudes Supéreures Commercales & Sceces Compables DÉCISIONS FINANCIÈRS Noe de cours N 4 Premère Pare : La décso d

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

Nous pouvons représenter cette situation par le système d équations suivant:

Nous pouvons représenter cette situation par le système d équations suivant: dré Ross lgèbre liéaire e géomérie vecoriel Mise e siuaio 1 lice e Beoî vo au magasi Ils achèe 2 ypes d aricles: Le premier aricle coûe x dollars e le secod aricle coûe y dollars. lice achèe 2 fois le

Plus en détail

MOYENNES. Moyenne arithmétique simple x de n éléments n

MOYENNES. Moyenne arithmétique simple x de n éléments n MOYENNES. Moyees : premières formules Moyee arithmétique simple de élémets + +... + +,,...,, Moyee arithmétique podérée de élémets,,...,, muis des coefficiets p, p,..., p, p p + p +... + p + p p+ p+...

Plus en détail

Analyse Statistique des Données de Lifetest

Analyse Statistique des Données de Lifetest Aalyse Statstque des Doées de Lfetest Evas Gouo Laboratore de Statstque Applquée de l Uversté de Bretage-Sud Pla Gééraltés Les modèles paramétrques Essas accélérés : modèle d accélérato Exemple Step-Stress

Plus en détail

Chapitre 4 Les arbres généraux

Chapitre 4 Les arbres généraux Chapre 4 Les arbres gééraux. Iroduco U arbre es ue colleco o vde de oeud e d'arêes posséda ceraes propréés. U oeud es u obje smple. Ue arêe es u le ere deux oeuds. Ue brache de l'arbre es ue sue de oeuds

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

L hebdo Finance de la MACS

L hebdo Finance de la MACS - DU 2 AU 9 OCTOBRE 2006 - Numéro DÉFINITION DE LA SEMAINE : Stock otio Idice boursier DOSSIER DE LA SEMAINE : Simulatio d u rêt immobilier 2 LES COURS DU JOUR Le jeudi 2 octobre 7 L hebdo Fiace de la

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

Chapitre 1.1a Les oscillations

Chapitre 1.1a Les oscillations Chapre 1.1a Les oscllaons La cnémaque La cnémaque es l éue u mouvemen un obje en foncon u emps. Pour ce fare, nous avons recours au conceps e poson, vesse e accéléraon : Poson : ( uné : m Vesse : v ( uné

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Rappels sur les signaux

Rappels sur les signaux CHAPIRE Rappels sur les sigaux. - Iroducio U sigal élecrique es oujours associé à deux ypes de gradeurs : le sigal qui coie l'iformaio ormaleme uile : le brui qui gééraleme es cosidéré comme u parasie

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

3) Calculer le pourcentage de personnes ayant entre 30 et 50 ans.

3) Calculer le pourcentage de personnes ayant entre 30 et 50 ans. http://maths-scences.fr EXERCICES SUR LES STATISTIQUES Exercce 1 Un concessonnare automoble étude l âge des acheteurs de votures de son garage. Deux documents ncomplets (un tableau et un hstogramme) rendent

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Le libre-service à la médiathèque de Calais. Médiathèque de Calais

Le libre-service à la médiathèque de Calais. Médiathèque de Calais Le libre-service à la médiathèque de Calais 1 Eléments déclencheurs 1. La r énov at i on de l a médi at hèque c ent r al e 2. La r ec her c he d' une nouv el l e r el at i on av ec l e publ i c 3. L' oppor

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail