Cours de Mr Jules v1.1 Classe de Sixième contrat 7 page 1 LES AIRES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Cours de Mr Jules v1.1 Classe de Sixième contrat 7 page 1 LES AIRES"

Transcription

1 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 1 LES IRES «Les Mathématiques ne sont pas une marche prudente sur une voix bien tracée, mais un voyage dans un territoire étrange et sauvage, où les explorateurs se perdent souvent. Il faudrait indiquer à l'historien que les cartes ont été tracées, mais que les vrais explorateurs sont allés ailleurs.» W. S. nglin a I. Unités d aire. 2. hoix de l unité d aire : 2. onversion des unités d aires : 3 1. Tableau de conversion : 3 2. onversions et opérations : 3 3. ires et opérations : 4 II. ire d une surface : 5. Définition : 5 III. 3 Formules d aire pour les figures de base : 6. arré : 6. Rectangle : 6. Triangle rectangle : 6 D. Exercices 7 IV. alcul d aire pour les surfaces complexes. 8. alcul d une aire complexe par addition d aires simples. 9. alcul d une aire complexe par soustraction d aires simples. 9. Exercices récapitulatifs : 10 a NGLIN W.S. Mathemactics : concise history and philosophy 1994.

2 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 2 Introduction : Dans la vie, on est parfois confronté aux problèmes suivants : ombien de dalles en mousse me faut il pour paver la salle de bain en forme de L? ombien va coûter cet appartement rectangulaire sachant que le m 2 est à 2000? Tous ces problèmes demandent de savoir mesurer une surface. omme dans toute mesure, on doit d abord définir une unité, si possible «simple». près coup, mesurer une surface reviendra à savoir combien de fois «on peut mettre» cette unité d aire dans cette surface. Dit autrement, mesurer une surface reviendra à comparer la surface en question avec la «surface de base» ou surface unité. I. UNITES D IRE.. hoix de l unité d aire : Il s agit de choisir une unité simple et pratique! Voici un choix d unité d aire, entourez celle qui vous semble la plus pratique pour mesurer les surfaces usuelles (sols d une maison, terrains, etc.) Evidemment, quoi de plus simple que de prendre comme unité : l aire d un carré de 1 m de côté! ette unité est parfaitement adaptée à notre environnement géométrique (maison, ville etc.). 1m 1m ette unité d aire s écrit 1 m 2 (lire 1 mètre carré). Le m² est l unité que le Système International des Mesures a choisie pour les surfaces. 3 Remarques : Le m² n est pas toujours adapté pour mesurer certaines surfaces. On a donc besoin d unités plus grandes (les multiples) ou plus petites (les sous multiples) dérivées du m². o des multiples : le kilomètre² (km²), l hectomètre² ( ), le décamètre² ( ) etc. Que mesure-t-on habituellement en km²? o des sous multiples : le décimètre² (...), le centimètre² (..), le millimètre² ( ), etc. Dessinez 1 mm² : Que peut-on mesurer en mm²? Il existe d autres unités de surface dans le monde utilisées : o soit par habitude dans un pays : exemple le miles² dans cette île où on roule à gauche alors que le monde entier b roule à droite! L... o soit par habitude dans un secteur d activité comme l agriculture : o selon l époque (cherchez d autres unités d aire utilisées auparavant) :. b Pas tout à fait! En Nouvelle Zélande aussi on roule à gauche.

3 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 3 e cours a la même structure que le cours de 6 ème sur les mesures de longueur. En effet, les méthodes valables pour les Longueurs (dimension 1) vont s étendre aux ires (dimension 2) et même aux Volumes (dimension 3). En particulier, les méthode par addition ou par soustraction pour des calculs de périmètres complexes vont être pratiquement identiques pour les calculs de surfaces complexes (ou de volumes complexes).. onversion des unités d aires : 1. Tableau de conversion : Particularité : Le tableau de conversion des surfaces est un tableau infini à colonnes doubles. quoi correspondent les lettres d et u dans le tableau? d =.. u =.... quoi correspondent les unités ha et a dans le tableau? ha =.. a =.... km 2 hm 2 = ha dam 2 = a m 2 dm 2 cm 2 mm 2 d u d u d u d u d u d u d u Exercice : convertir à l aide du tableau : 0,2 hm² en dm² = 0,5 cm² en dam² = 0,03 hm² en dizaines de mm² = 50,5 m² en ha = 2. onversions et opérations : Pour passer d une unité à l unité immédiatement inférieure à droite (ex : des m 2 au dm 2 ), on doit multiplier la mesure de l aire par 100. Inversement, pour passer d une unité à l unité immédiatement supérieure à gauche (ex : des m 2 au dam 2 ), on doit diviser la mesure de l aire par 100. utrement dit : Pour convertir vers une unité à droite, on «agrandit» la mesure en la multipliant par 100 ou etc (suivant le nombre de doubles colonnes qu on saute). Pour convertir vers une unité à gauche, on «diminue» la mesure en la divisant par 100 ou etc (suivant le nombre de doubles colonnes qu on saute). Les erreurs fréquentes de conversion sont dues au fait que les élèves oublient qu il s agit de doubles colonnes et non de simples colonnes!

4 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 4 2 Exemples : Pour convertir des km 2 aux m 2, il faudra multiplier la mesure de l aire par , ce qui correspond au schéma suivant : km 2 hm 2 dam 2 m 2. Ex : 2 km² = = m². Pour passer des cm² aux m², il faudra diviser la mesure de l aire par , ce qui correspond au schéma suivant : m² dm² cm². Ex : 500 cm² = Exercice : = 0,05 m². Sans utiliser le tableau mais en écrivant une opération, convertir : Méthode : 63 dam 2 en dm² = = dm 2 1,8 km 2 en hm² = 2,325 m 2 en dm² = 0,0254 m 2 en dam² = 2 ha en m² = 3. ires et opérations : Le calcul suivant est il juste? 2 km² + 1 hm² = (2+1) km² = 3 km²... Pourquoi? Refaire le calcul, juste cette fois ci!. ttention : vant d additionner ou de soustraire des aires entre elles, il faut que les aires soient toutes converties dans la même.. Méthode : 2 m² + 3 cm² + 1 dm² = cm² + 3 cm² cm² = cm². Si rien n est précisé, on convertit les aires dans la plus petites des unités présentes. On aurait pu tout convertir en m² ou en dm² mais cela aurait fait apparaître des virgules! Exercice : calculer : 7 hm² 0,04 km² = 5 m² + 5 cm² = 2 cm² mm² = 0,06 dam² + 10 m² 1500 dm² = R = 1 m²

5 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 5 II. IRE D UNE SURFE :. Définition : L aire d une surface est sa mesure dans une unité d aire qui a été choisie au préalable. L aire est donc un nombre positif! Notation : l aire d une figure D sera notée : (D). Exemple : 1 unité d aire..unités d aire Remarque : omme unité d aire, on utilisera généralement les m 2 ou cm 2. Exercice : Trouver l aire de la surface grisée en fonction de l unité d aire donnée. Unité d aire : unité d aire : Unité d aire : unité d aire : Exercice : Sur la figure ci contre, repassez en rose ce qui correspond au périmètre. oloriez en bleu ce qui correspond à l aire. L aire d une telle surface est elle facile à trouver? Pourquoi? Dessinez une bananoïde dont l aire sera difficile à trouver. On se limitera donc, au collège, aux calculs d aire de surfaces simples c-à-d géométriques.

6 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 6 III. 3 FORMULES D IRE POUR LES FIGURES DE SE : ttention : Dans ces 6 formules, les longueurs doivent être exprimées dans la même unité!. arré : Pour un carré de longueur a : a arré) = côté côté = a² (arré) =... Exemple : un carré de longueur 3 cm aura pour périmètre.cm et pour aire cm².. Rectangle : Pour un rectangle de largeur et de Longueur L : L Rectangle) = Longueur largeur =... (Rectangle) = Exemple : un rectangle de Longueur 3 et de largeur 2 aura pour périmètre cm et pour aire. cm² Exercice : Soit un rectangle de 30 cm² d aire et de 3 cm de large. Trouvez sa longueur.. Triangle rectangle : 2 Définitions : On appelle hauteur d un triangle, un segment : qui passe par un sommet, et qui est perpendiculaire à la droite qui supporte le coté opposé (droite appelée alors base). Le pied de la hauteur est le point d intersection de la base et de la hauteur. pplication : Voici 4 triangles, tracer en rouge la hauteur issue du point et appeler H le pied de cette hauteur. ombien de hauteurs possède un triangle?..

7 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 7 En particulier, dans un triangle rectangle, les deux côtés de l angle droit constitue un couple base-hauteur. b h Puisqu un triangle rectangle est la «moitié» d un rectangle, alors la surface d un triangle rectangle sera la. de celle d un rectangle. Donc : (Triangle rectangle) = base hauteur 2 =.... Exemple : pour un triangle rectangle de base 5 cm et de hauteur 4 cm, l aire sera de. cm² Exercice : Soit un triangle rectangle de 30 cm² d aire et de 3 cm de hauteur. Trouvez la longueur de la base correspondante. D. Exercices Exercice : alculer les aires et le périmètre des surfaces de base suivantes (faites des croquis pour vous aider) : a) D est un rectangle de longueur 8cm et de largeur 4,5cm. b) EFGH est un carré de côté 7m. c) IJK est un triangle rectangle en I dont les côtés de l angle droit mesure 5m et 12 cm.(only l aire!) d) L 5 cm M 40 mm 2 cm 40mm N O

8 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 8 Exercice : O alculer l aire des figures de base suivantes : e) Voici un triangle O tel que I = 3 ; O = 5 ; OI = 4 Prouver que (OI) (). I alculer (O) = IV. LUL D IRE POUR LES SURFES OMPLEXES. Hélas, la plupart des figures ne sont pas des figures simples! On ne peut pas donc appliquer bêtement les 3 formules précédentes du II ] p.6. Définition : On appelle surface complexe toute surface qui n est pas une des 6 surfaces de base. Heureusement, beaucoup de figures complexes sont en fait des assemblages de figures de base. Exemples : Dessiner 2 figures géométriques complexes en faisant apparaître en pointillé leur découpage en figures de base (en rectangle, carré, triangle, losange, parallélogramme, disque etc.).

9 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 9 Lorsqu une surface complexe est un assemblage de surfaces de base, on a 2 méthodes essentielles :. alcul d une aire complexe par addition d aires simples. Exemples : Grâce au découpage intérieur en pointillé, on voit que la figure totale est composée de deux aires simples d où la formule pour l aire de la figure : ( figure totale) = (rectangle ) + (trapèze ) Voici une figure complexe, faites apparaître le découpage intérieur en pointillé puis calculer son aire. 2 ( figure) = 3 La méthode par addition marche bien quand on réalise un découpage intérieur de la surface complexe.. alcul d une aire complexe par soustraction d aires simples. 2 exemples Voici le plan très schématique d une maison dans son terrain. Par soustraction d aires, on peut écrire : 50 (jardin) = (terrain total) (maison) 30 maison = 70 Pour calculer (polygone DE),on a fait apparaître par E D G découpage «extérieur» le rectangle FGE. Par soustraction d aire, on peut écrire : (DE) = (..) (..) (.) = F La méthode par soustraction marche bien quand on réalise un découpage extérieur à la surface complexe.

10 ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 10. Exercices récapitulatifs : Exercice : (contrôle 2004) alculer l aire en cm² de la figure symétrique suivante. (faites bien apparaître le découpage extérieur) 5 cm 3 cm 0,5 cm R = 14 cm² Exercice : (contrôle 2004) Voici une figure avec = 8 D = 5 DE = 1 DG = 6 F = 3 (figure inexacte) D 1) Prouver que D est un rectangle. E G 2) alculer l aire du polygone FGDE. F Exercice : (contrôle 2004) Un terrain rectangulaire de 50 m sur 40 m est vendu à 200 le m². 1) Tracer ce terrain en prenant 1cm pour 10m. Mettre en bleu ce que représente son périmètre et en rouge son aire. 2) alculer le périmètre en m du terrain puis son aire en m². 3) ombien coûte ce terrain? R = 25 unités d aire

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer.

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer. I Aire d une surface A cause du remembrement, la commune de Thérouanne propose à M. Ducheval et à M. Leboeuf d échanger leurs parcelles de terrain qui ont les formes ci-dessous. L échange est-il équitable?

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1................................................................................................... 305 Je calcule la longueur d un cercle.......................................................................

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

7 / LONGUEURS ET AIRES

7 / LONGUEURS ET AIRES LONGUEURS ET AIRES THÉORIE 7 / LONGUEURS ET AIRES THÉORIE I. FIGURES ET SURFACES 1. FIGURES ET SURFACES PLANES On peut se faire une idée d'un plan en regardant le plateau d'une table et en imaginant ce

Plus en détail

Mathématiques. Géométrie

Mathématiques. Géométrie Mathématiques CE2 Nombres Calcul Géométrie Grandeurs Mesures AVANT-PROPOS Ce livret a été réalisé dans le but de rendre plus lisibles les compétences à acquérir en mathématiques au terme du CE2. Il donne

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.

Plus en détail

Dans cette figure, le rectangle ABCD a pour dimensions : AB = 17 cm et BC = 12 cm. Dans le rectangle ABCD, les points M, R, S et P déterminent trois

Dans cette figure, le rectangle ABCD a pour dimensions : AB = 17 cm et BC = 12 cm. Dans le rectangle ABCD, les points M, R, S et P déterminent trois Dans cette figure, le rectangle BCD a pour dimensions : B = 7 cm et BC = cm. Dans le rectangle BCD, les points M, R, S et P déterminent trois rectangles. Où peut-on placer les points M, R, S et P pour

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Prêt(e) pour le CM2. Un milliard cent Cent mille un. Trois centaines de mille

Prêt(e) pour le CM2. Un milliard cent Cent mille un. Trois centaines de mille Jour Prêt(e) pour le CM2 Tu trouveras dans cette page des révisions du programme de CM. Savoir utiliser la technique opératoire de l addition et de la soustraction avec les grands nombres. Entoure la bonne

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

Agrandissement et réduction de figures

Agrandissement et réduction de figures Agrandissement et réduction de figures Tracer une figure sur papier quadrillé ou pointé à partir d un dessin (avec des indications relatives aux dimensions). 29 Unité Activité 1 Je découvre Dessine la

Plus en détail

GRANDEURS ET MESURES (Partie 1)

GRANDEURS ET MESURES (Partie 1) 1 GRANDEURS ET MESURES (Partie 1) I. Les unités Tableaux interactifs : http://instrumenpoche.sesamath.net/img/tableaux.html 1) Masse a) Exemple La masse d une tablette de chocolat est 100g. La masse est

Plus en détail

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire Représentations et transformations géométriques 2102 Version évaluation formative Livraison de cellulaire Cahier de l adulte Nom de l élève Numéro de fiche Nom de l'enseignant Date de naissance Centre

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP9706 C0106 TABLE DES MATIÈRES 1 EXPLICATION

Plus en détail

UNITÉS ET MESURES AIRES OU SURFACES. Dossier n 4 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

UNITÉS ET MESURES AIRES OU SURFACES. Dossier n 4 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE UNITÉS ET MESURES AIRES OU SURFACES Dossier n 4 Juin 005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C. D. R. UNITÉS

Plus en détail

Les grands nombres (1)

Les grands nombres (1) 4 Objectifs Réactiver les connaissances acquises les années précédentes. Manipuler des grands s dans deux directions essentielles : lire/écrire des grands s et calculer avec des grands s. Connaître la

Plus en détail

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005 UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

Plus en détail

Lire et écrire les nombres jusqu'à 1 000 (2)

Lire et écrire les nombres jusqu'à 1 000 (2) Unité 1 et 5 Lire et écrire les nombres jusqu'à 1 000 () Connaître, savoir écrire et nommer les nombres entiers jusqu au million. 1 En utilisant une, deux ou trois étiquettes ci-contre, écris tous les

Plus en détail

Annales corrigées. Sujet. Question D (0,5 point) Question A (1 point) Question E (1 point) Comment aborder le sujet. Question B (0,5 point)

Annales corrigées. Sujet. Question D (0,5 point) Question A (1 point) Question E (1 point) Comment aborder le sujet. Question B (0,5 point) Difficulté Sujet Durée 25 min CONCOURS AiDE-SOiGNANT, LOiRE, SESSiON 2010 Toutes les étapes du calcul doivent figurer sur vos copies. Question A (1 point) on prépare un buffet pour réunir une grande famille.

Plus en détail

Leçons de mathématiques

Leçons de mathématiques Leçons de mathématiques Voici ton cahier de leçons de mathématiques. Tu pourras l utiliser à chaque fois que tu voudras compléter tes connaissances en mathématiques. Ce cahier regroupe des leçons de :

Plus en détail

Activité 1 : Du rectangle au parallélogramme

Activité 1 : Du rectangle au parallélogramme ctivités ctivité 1 : u rectangle au parallélogramme a. onstruis, sur une feuille, un rectangle de 10 cm de long sur 4 cm de large. Repasse en rouge les longueurs et en vert les largeurs. alcule l'aire

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

14 Proportionnalité. et géométrie. Avant de démarrer OMPÉTENCES

14 Proportionnalité. et géométrie. Avant de démarrer OMPÉTENCES 14 Proportionnalité et géométrie OMPÉTNS 1. grandir ou réduire une figure avec un facteur donné 2. grandir ou réduire une figure sans connaître le facteur 3. grandir ou réduire une figure en utilisant

Plus en détail

COMMENT INDIQUER VOTRE RÉPONSE? Quelques exemples

COMMENT INDIQUER VOTRE RÉPONSE? Quelques exemples COMMENT INDIQUER VOTRE RÉPONSE? Écrivez au stylo noir. Quelques exemples Exemple : le VRAI / FAUX Deux réponses vous sont proposées pour chaque question : VRAI ou FAUX (ou OUI / NON). Vous devez cocher

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

UN TOURNOI A GAGNER ENSEMBLE

UN TOURNOI A GAGNER ENSEMBLE UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir

Plus en détail

Dispositif d évaluation. Mathématiques. Livret de l élève

Dispositif d évaluation. Mathématiques. Livret de l élève Dispositif d évaluation 6 ème EGPA Mathématiques Livret de l élève NOM : Prénom : Date de naissance :.... Année scolaire :. Etablissement :.... Etablissement :.... Académie de Lille - 2015 Sommaire Passation

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

Maths cycle 3 NUMÉRATION... 3. Les nombres entiers...5 Écrire les nombres entiers...6 Lire les nombres entiers...7 Comparer les nombres entiers 2...

Maths cycle 3 NUMÉRATION... 3. Les nombres entiers...5 Écrire les nombres entiers...6 Lire les nombres entiers...7 Comparer les nombres entiers 2... Maths cycle NUMÉRATION... NU. NU. NU. NU. NU. NU. NU. NU. NU. NU. NU. Les nombres entiers... Écrire les nombres entiers... Lire les nombres entiers... Comparer les nombres entiers... Comparer les nombres

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

Mathématiques 1er Grade aperçu du programme (exemple)

Mathématiques 1er Grade aperçu du programme (exemple) 1er Grade aperçu du programme (exemple) Unité 1 Unité 2 Unité 3 Unité 4 Unité 5 Unité 6 Addition et Soustraction des nombres jusqu à 10 et fluence Position et valeurs, Comparaison, Addition et Soustraction

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x Développer et réduire 3 Chasse aux bulles 1 Vrai ou faux? x 2 3x 2x 2 4 7x Justifie tes réponses. x 2 est toujours égal à 2x. Faux, par exemple, si x = 3, alors x² = 9, mais 2x = 6 (5x) 2 est toujours

Plus en détail

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 4 ET CORRIGÉ

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 4 ET CORRIGÉ FORMATION INTERMÉDIAIRE MAT 031 ET CORRIGÉ TABLE DES MATIÈRES I 1.0 UNITÉS D'AIRE... 1 1.1 Donner la différence entre l'aire et la surface... 1 1. Énumérer les principales unités d'aire... 3 1.3 Convertir

Plus en détail

ÉPREUVE EXTERNE COMMUNE CE1D 2010

ÉPREUVE EXTERNE COMMUNE CE1D 2010 NOM : Prénom : Classe : MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Pour cette première partie : la calculatrice est interdite tu auras besoin de ton

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Pour écrire et lire les nombres entiers

Pour écrire et lire les nombres entiers Pour écrire et lire les nombres entiers Les nombres s écrivent avec des chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Les nombres s écrivent avec des mots : un, deux dix, onze, vingt, trente cent, mille, million,

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

PRODUCTION DU SERVICE DES RESSOURCES ÉDUCATIVES AU PRÉSCOLAIRE ET AU PRIMAIRE Mai 2008

PRODUCTION DU SERVICE DES RESSOURCES ÉDUCATIVES AU PRÉSCOLAIRE ET AU PRIMAIRE Mai 2008 # Mon aide-mémoire mathématique au 1 er cycle École : Nom : PRODUCTION DU SERVICE DES RESSOURCES ÉDUCATIVES AU PRÉSCOLAIRE ET AU PRIMAIRE Mai 2008 Ouvrages de référence qui ont servi à la fabrication de

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2011 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie au surveillant à la fin de l épreuve Nature de

Plus en détail

GEOGEBRA : Les indispensables

GEOGEBRA : Les indispensables Préambule GeoGebra est un logiciel de géométrie dynamique dans le plan qui permet de créer des figures dans lesquelles il sera possible de déplacer des objets afin de vérifier si certaines conjectures

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Les problèmes de la finale du 21éme RMT

Les problèmes de la finale du 21éme RMT 21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

Activités de généralisation pour l aire

Activités de généralisation pour l aire Activités de généralisation pour l aire L aire du rectangle et du carré But Cette activité permet de développer la formule pour calculer l aire de la surface du rectangle et celle du carré. Matériel Rectangles

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Quels polygones sont formés par les milieux des côtés d un autre polygone?

Quels polygones sont formés par les milieux des côtés d un autre polygone? La recherche à l'école page 13 Quels polygones sont formés par les milieux des côtés d un autre polygone? par d es co llèg es n dré o ucet de Nanterre et Victor ugo de Noisy-le-rand enseignants : Martine

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE PROPORTIONNALITÉ LES ÉCHELLES 0 000 000 Dossier n 2 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C.D.R. AGRIMEDIA

Plus en détail

Triangle : milieux et parallèles

Triangle : milieux et parallèles 10 riangle : milieux et parallèles ÉUV ans un triangle : la propriété d une droite passant par les milieux de deux de ses côtés ; la propriété d un segment d extrémités les milieux de deux de ses côtés

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

Evaluation bilan de 4 ème 2 ème trimestre

Evaluation bilan de 4 ème 2 ème trimestre Evaluation bilan de 4 ème 2 ème trimestre Durée : 1 heure Toutes les réponses devront être justifiées et tous les calculs doivent apparaitre, sauf indication contraire. Exercice I (4 points) Clara veut

Plus en détail

Course au trésor (jeu de piste)

Course au trésor (jeu de piste) Course au trésor (jeu de piste) Objectif : conversion de mesures (mathématiques) suivre une consigne, une injonction à l'infinitif. Prise de note : savoir recopier une leçon (dictée à l'oral) Reprise d'un

Plus en détail

Brevet des collèges Amérique du Nord 7 juin 2011

Brevet des collèges Amérique du Nord 7 juin 2011 Durée : 2 heures Brevet des collèges Amérique du Nord 7 juin 2011 Correction ACTIVITÉS NUMÉRIQUES Exercice 1 12 points Le professeur choisit trois nombres entiers relatifs consécutifs rangés dans l ordre

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

Le jeu-concours international Le kangourou des mathématiques Canada, 2007

Le jeu-concours international Le kangourou des mathématiques Canada, 2007 Le jeu-concours international Le kangourou des mathématiques Canada, 007 9 e et 10 e année Partie A: Chaque réponse correcte vaut 3 points. 1. Anh, Ben et Chen ont ensemble 30 balles. Si Ben donne 5 balles

Plus en détail

Ecriture décimale d un nombre : A/ Ecriture d un nombre en chiffres :

Ecriture décimale d un nombre : A/ Ecriture d un nombre en chiffres : Chapitre 1 Nombres entiers et décimaux 6 ème Ecriture décimale d un nombre : A/ Ecriture d un nombre en chiffres :. Définition : Dans un nombre décimal, on appelle : Exemple :.. Partie entière Partie décimale

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

Livret de formules. Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP

Livret de formules. Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP Version 2: 13.11.2014 Livret de formules Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP Economie d entreprise Boulangère-Pâtissière-Confiseuse CFC Boulanger-Pâtissier-Confiseur

Plus en détail

CRPE 2011-2012 derniers réglages avant l écrit (2).

CRPE 2011-2012 derniers réglages avant l écrit (2). CRPE 2011-2012 derniers réglages avant l écrit (2). Problème 1 OAB et OAC sont deux triangles distincts, tous les deux isocèles en O et tels que AOB = AOC. D est le symétrique de B par rapport à O. Démontrer

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Fiches Nouveau Lettris, 1 2 principe de bijection CE/PE Nombres de 0 à 19 Fiche 1 doc 1

Fiches Nouveau Lettris, 1 2 principe de bijection CE/PE Nombres de 0 à 19 Fiche 1 doc 1 Module : Numératie Fiche N 1 - Donner des informations chiffrées sur soi même - Compter de 0 à 19 Ordonner PO Tour de table / donner une information chiffrée sur soi même PO Introduction aux nombres /sensibilisation

Plus en détail

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France

Plus en détail

MATHÉMATIQUES ET SOCLE COMMUN STAGES 2011-12

MATHÉMATIQUES ET SOCLE COMMUN STAGES 2011-12 MATHÉMATIQUES ET SOCLE COMMUN STAGES 2011-12 Atelier 2 Faire évoluer des activités «traditionnelles» Ce document comporte trois parties : 1. Activités de formation (6 pages) 2. A : généralités (1 page)

Plus en détail

REFERENTIEL DE COMPETENCES CALCULER APPREHENDER L ESPACE

REFERENTIEL DE COMPETENCES CALCULER APPREHENDER L ESPACE REFERENTIEL DE COMPETENCES CALCULER APPREHENDER L ESPACE Sous-domaines Utiliser les différentes formes d un nombre Appréhender l espace Utiliser les grandeurs et mesures et résoudre des problèmes liés

Plus en détail

Projections et outils Guide pour SU6+ (Gratuit et Pro) D. Bur, Juin 2009

Projections et outils Guide pour SU6+ (Gratuit et Pro) D. Bur, Juin 2009 Projections et outils Guide pour SU6+ (Gratuit et Pro) D. Bur, Juin 2009 Cet ensemble d outils vise à fournir plusieurs outils guide et projection pour faciliter vos processus de dessin. Non testé sur

Plus en détail

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Ce document a été réalisé avec la version 3.02 de la calculatrice TI-Nspire CX CAS. Il peut être traité en une ou plusieurs séances (la procédure

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07 Thierry JFFRED ØØÔ»»ÛÛÛºÑØÓÒÙØ ºÖ Mémo DN Première partie : calcul, fonctions nnée 006-07 CLCUL SUR LES FRCTINS Fractions égales n obtient une fraction égale en multipliant (ou en divisant) numérateur

Plus en détail

Brevet des collèges, correction, Métropole, 28 juin 2011

Brevet des collèges, correction, Métropole, 28 juin 2011 Brevet des collèges, correction, Métropole, 28 juin 2011 Activités numériques 12 points Exercice 1 Un dé cubique a 6 faces peintes : une en bleu, une en rouge, une en jaune, une en vert et deux en noir.

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Programme de Mathématique (1 e à 5 e année) cycle primaire

Programme de Mathématique (1 e à 5 e année) cycle primaire Écoles Européennes Bureau du Secrétaire général du Conseil Supérieur Unité pédagogique Réf.: 1998-D-710 Orig.: DE Version: FR Programme de Mathématique (1 e à 5 e année) cycle primaire Approuvé par le

Plus en détail

SPECIALITE : LOGISTIQUE ET SECURITE À LIRE ATTENTIVEMENT AVANT DE TRAITER LE SUJET

SPECIALITE : LOGISTIQUE ET SECURITE À LIRE ATTENTIVEMENT AVANT DE TRAITER LE SUJET Centre Interdépartemental de Gestion de la Grande Couronne de la Région d Île-de-France AGENT DE MAÎTRISE TERRITORIAL Concours interne et de 3 ème voie SESSION 2015 Epreuve écrite d admissibilité Vérification

Plus en détail

Aire sous une courbe et calcul de primitives

Aire sous une courbe et calcul de primitives Aire sous une courbe et calcul de primitives Le calcul de primitives d une fonction et celui de l aire de la surface bordée par le graphique de cette fonction sont intimement liés. Les exemples qui suivent

Plus en détail

AIDE-MÉMOIRE MATHÉMATIQUE. 3 e CYCLE

AIDE-MÉMOIRE MATHÉMATIQUE. 3 e CYCLE AIDE-MÉMOIRE MATHÉMATIQUE 3 e CYCLE Chers enseignants, PRODUCTION DU SERVICE DES RESSOURCES ÉDUCATIVES C est avec plaisir et fierté AU PRÉSCOLAIRE que nous vous offrons ET AU le PRIMAIRE lexique mathématique

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

EVALUATIONS FIN CM1. Mathématiques. Livret élève

EVALUATIONS FIN CM1. Mathématiques. Livret élève Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les

Plus en détail

Programme de Mathématiques Années 1-3 du Secondaire

Programme de Mathématiques Années 1-3 du Secondaire Schola Europaea Bureau du Secrétaire Général Ref. : 2007-D-3310-fr-3 Orig. : EN Programme de Mathématiques Années 1-3 du Secondaire APPROUVE PAR LE CONSEIL SUPERIEUR DES ECOLES EUROPÉENNES DES 22 ET 23

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

4G2. Triangles et parallèles

4G2. Triangles et parallèles 4G2 Triangles et parallèles ST- QU TU T SOUVINS? 1) On te donne une droite (d) et un point n'appartenant pas à cette droite. vec une équerre et une règle non graduée, sais-tu construire la parallèle à

Plus en détail

FRLT Page 1 27/07/2014 http://frlt.pagesperso-orange.fr/

FRLT Page 1 27/07/2014 http://frlt.pagesperso-orange.fr/ PROGRAMMES / NOMBRES 1C Je choisis un nombre ; je le multiplie par ; puis je divise le produit obtenu par ; je trouve ainsi,9. Quel nombre ai-je choisi? C Un nombre est le double d un autre. Le produit

Plus en détail

LA RÉSOLUTION DE PROBLÈME

LA RÉSOLUTION DE PROBLÈME 1 LA RÉSOLUTION DE PROBLÈME CYCLES 2 ET 3 Circonscription de Grenoble 4 Evelyne TOUCHARD conseillère pédagogique Mots clé Démarche d enseignement - catégories de problèmes (typologie)- problème du jour-

Plus en détail

Octobre 2008. Mathématiques. La Chine. Durée de l épreuve 2 périodes (90 minutes)

Octobre 2008. Mathématiques. La Chine. Durée de l épreuve 2 périodes (90 minutes) ÉPREUVE CANTONALE DE RÉFÉRENCE CYT 6 Octobre 2008 Mathématiques Nom: Établissement: Prénom: Classe: La Chine www.flickr.com Durée de l épreuve 2 périodes (90 minutes) Matériel à disposition Aide-mémoire

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

LES LENTILLES MINCES

LES LENTILLES MINCES LES LENTILLES MINCES I. GÉNÉRALITÉS Une lentille est un milieu transparent, homogène et isotrope limité par deux dioptres sphériques ou un dioptre sphérique et un dioptre plan. n distingue deux types de

Plus en détail

LA FORME ET L ESPACE

LA FORME ET L ESPACE LA FORME ET L ESPACE Une rampe de course Résultat d apprentissage Description Matériel 8 e année, La forme et l espace, n 1 Développer et appliquer le théorème de Pythagore pour résoudre des problèmes.

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

Au japon, les SANGAKU étaient des figures géométriques gravées sur des tablettes de bois, figures suggérant des propriétés

Au japon, les SANGAKU étaient des figures géométriques gravées sur des tablettes de bois, figures suggérant des propriétés Juin 2015 : MathC2+ Les SANGAKU : des maths et des dessins IREM Grenoble : M. Althuser, Cité Scolaire Jean Prévost, Villard de Lans C. Kazantsev, B. Lacolle, Université Joseph Fourier et pour la visite

Plus en détail