INFO-F-302 Informatique Fondamentale Logique du premier ordre

Dimension: px
Commencer à balayer dès la page:

Download "INFO-F-302 Informatique Fondamentale Logique du premier ordre"

Transcription

1 INFO-F-302 Informatique Fondamentale Logique du premier ordre Prof. Emmanuel Filiot Exercice 1 1. Soit un langage L = (p, q, r, s, t, f, g) où p, q sont des prédicats unaires, r, s, t sont des prédicats binaires, et f, g sont des fonctions unaires. Modélisez en logique du premier ordre les propriétés suivantes : (a) La relation r modélise une fonction. (b) le prédicat s contient le produit cartésien de p et q. (c) le prédicat t est égal au produit cartésien de q et p. (d) La fonction f est surjective. (e) La fonction g est injective. 2. Soit un langage L = (S, ) où S est un prédicat unaire et un prédicat binaire ( (x, y) s écrit x y en notation infixe). Modélisez en logique du premier ordre les propriétés suivantes : (a) Le prédicat est une relation d ordre partiel (réflexive et transitive et antisymétrique). (b) x est la plus grande borne inférieure de y et z. (c) x est plus grande borne inférieure de S. (d) S est fermé par le bas pour. 3. Soit un langage L = (p, f, g) oú p est un prédicat binaire, f, g sont des fonctions binaires, et soit une formule ϕ de L telle que ϕ y z = f(x, y). La formule ϕ est-elle vraie dans la structure M, en utilisant la valuation V? (a) M = (D N, p, f +, g ) et V (x 5, z 3) (b) M = (D Z, p, f +, g ) et V (x 5, z 3) (c) M = (D N, p, f, g +) et V (x 5, z 3) (d) M = (D Z, p, f, g +) et V (x 5, z 3) (e) M = (D Z 6, p, f, g +) et V (x 5, z 3) (f) M = (D N, p, f, g +) et V (x 2, z 4) (g) M = (D Z, p, f, g +) et V (x 2, z 4) 4. Soit un langage L, une structure M, trouvez un modèle pour la formule ϕ oú : 1

2 Francois Madeleine George Sylvie Léon Alphonse Jean Yves Germaine Marco FIGURE 1 la famille Dupond (a) L = (p, f, g, c, d) oú p est un prédicat binaire, f, g sont des fonctions binaires, c, d sont des constantes, avec M = (D N, p, f +, g, c 0, d 1) et oú ϕ g(x, x) = f(g(y, y), g(z, z)) p(x, g(f(d, d), f(f(d, c), f(d, d)))) (b) L = (p, c, d, e, f, g, h, i, j, k, l) oú p est une prédicat binaire, c, d, e, f, g, h, i, j, k, l, sont des constantes, avec M = (D La famille Dupond, p cousin, c F rancois, d M adeleine, e Sylvie, f George, g Leon, h Alphonse, i Jean, j Germaine, k Marco, l Y ves) (la figure 1 présente l arbre de la famille Dupond) et ( (p(t, x) p(t, y) p(t, z) x y y z x z) ϕ x y z ( w p(t, w) (w = x w = y w = z)) 5. Soit un langage L = (t), oú t est un prédicat binaire. (a) Modélisez en logique du premier ordre que t est une relation transitive (ϕ 1 ) et totale (ϕ 2 ). (b) Soit un graphe non-dirigé G, et M G la structure définie par G oú le domaine est l ensemble des nœuds de G et t la présence d un chemin entre deux nœuds. Est-ce que M G est un modèle pour la propriété de transitivité sur t? Sinon donnez un contre-exemple. (c) Est-ce qu on a M G = ϕ 2? Sinon donnez un contre-exemple. (d) Soit un graphe non-dirigé G tel que M G = ( ϕ 1 ϕ 2 ), que pouvez-vous dire de G? Exercice 2 Soit le langage L = (e,, ) où e est une constante, est une fonction à deux arguments et est un prédicat à deux arguments également. Pour la lisibilité, nous utiliserons la notion infixée : (t 1 t 2 ) (t t) Nous utiliserons le langage L avec en tête l interprétation suivante. Le domaine des valeurs est constitué de l ensemble des mots sur l alphabet {0, 1} en ce compris le mot vide ε. La constant e est interprétée comme le mot vide. La fonction comme la concaténation et le prédicat comme la relation est un sous-mot de". Voici quelques exemples : 0001 M 1000 est égale à (11101, ) M (00111, 00111) M (ε, 001) M (ε, ε) M ) 2

3 Suivant cette interprétation, modélisez grâce à des formules du premier ordre les énoncés suivants : 1. Chaque mot est un sous-mot de lui-même concaténé avec le mot vide et inversément 2. Il existe un mot qui est un sous-mot de tous les autres mots. Dans l interprétation fixée ci-dessus, que signifie la formule suivante : x y z u : ((x y) (z u)) (x z y u) Exercice 3 Soit le langage L = (p), où p est un prédicat binaire. Ecrire une formule ϕ tel que M = ϕ ssi le domaine de M est infini. Exercice 4 M G = ϕ. Soit le langage L = (E), où E est un prédicat binaire. Construire ϕ sur L telle que 1. Ssi G possède un élément qui est un successeur de tous les autres nœds. 2. Ssi G possède une clique de taille k. Exercice 5 Représentation des mots par des structures Soit Σ un alphabet. Un mot sur Σ peut être représenté par une structure fini sur le langage du premier ordre L Σ = {s σ σ Σ} { } où les s σ sont des symboles de prédicats unaires et est un symbole de prédicat binaire. Soit w un mot sur Σ de longueur n. On le représente par la structure M w de domaine D w = {1, 2,..., n}, avec l interprétation i s Mw σ pour tout i D w si et seulement si la position i de w contient la lettre σ, et est interprété par inférieur ou égale sur les entiers. Par exemple, pour Σ = {a, b} et w 2 = abbba on obtient la structure de domaine D w2 = {1, 2, 3, 4, 5}, avec s M 2 a = {1, 5}, s M 2 b = {2, 3, 4}. 1. Etant donné un alphabet Σ, exprimer par une formule du premier ordre sur L Σ que toute position dans un mot contient exactement un et un seul symbole. 2. Etant donné un alphabet Σ = {a, b, c}, exprimer par une formule du premier ordre sur L Σ {=} qu un mot a pour sous-mot abc. 3

4 1 Solutions Exercice 1 1. (a) x y z (r(x, y) r(x, z)) y = z (b) x y (p(x) q(y)) s(x, y) (c) x y t(x, y) (q(x) p(y)) (d) y x f(x) = y (e) x y (x y) (f(x) = f(y)) 2. (a) ( a a a) ( a b c (a b b c) a c) ( a b (a b b a) a = b) réflexive transitive antisymétrique (b) x y x z ( x (x y x z) x x) (c) ( y S(y) x y) ( x ( y S(y) x y) x x) (d) x y (S(x) y x) S(y) 3. (a) y 3 = 5 + y est faux dans N (b) y 3 = 5 + y est vrai dans Z (on prend y = 2) (c) y 3 = 5 y est faux dans N (d) y 3 = 5 y est faux dans Z (e) y 3 = 5 y est vrai dans Z 6 (on prend y = 3) (f) y 4 = 2 y est vrai dans N (on prend y = 2) (g) y 4 = 2 y est vrai dans Z (on prend y = 2) 4. (a) ϕ peut se réécrire : x 2 = y 2 + z 2 x > (1 + 1) ((0 + 1) + (1 + 1)) = 6, et on peut donc prendre pour valuation, par exemple, x = 50, y = 40, z = 30 car = = 2500 = 50 2, et 50 > 6 (b) ϕ peut se traduire par : "t a exactement 3 cousins". Les valuations possibles pour t sont donc Léon, Alphonse et Jean. 5. (a) ϕ 1 a b c (t(a, b) t(b, c)) t(a, c) (t est transitive). ϕ 2 a b a b (t(a, b) t(b, a)) (t est totale). (b) t est transitive : considérons un graphe non-dirigé G quelconque, pour tout chemin entre les sommets a, b et b, c dans G on a un chemin entre a et c. (c) t n est en général pas totale : contre-exemple, G = (V, E), V = {1, 2}, E =. (d) M G = ( ϕ 1 ϕ 2 ) ssi M G = ( ϕ 1 ϕ 2 ) ssi par sémantique de M G = (ϕ 1 ϕ 2 ) par la loi de De Morgan Par la sémantique de on obtient que M G = ϕ 1 et M G = ϕ 2. On a que t est totale et transitive sur M G. Finalement on conclut que G est connexe. 4

5 Exercice 2 1. x, x x ε x ε x 2. x y, x y. Exercice 3 p est une relation d ordre strict et x y p(x, y). Exercice 4 1. x 0 x E(x, x 0 ) 2. x 1... x k i j x i x j 1 i,j k E(x i, x j ). Exercice 5 1. ( x s σ (x)) x σ Σ σ,σ Σ,σ σ s σ (x) s σ (x) 2. x 1 x 2 x 3 x 1 < x 2 x 2 < x 3 s a (x 1 ) s b (x 2 ) s c (x 3 ) où x < y x y x y. 5

Logique informatique 2013-2014. Examen

Logique informatique 2013-2014. Examen Logique informatique 2013-2014. Examen 30 mai 2013. Durée 3h. Tous les documents sont autorisés. Seuls les résultats du cours peuvent être utilisés sans démonstration. Le barême et la longueur des solutions

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT

INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT Prof. Emmanuel Filiot Exercice 1 Modélisation autour des mots Dans ce problème, on va travailler sur les mots, vus de manière générale

Plus en détail

(3.22) Interchangeabilité mutuelle : p q r p q r

(3.22) Interchangeabilité mutuelle : p q r p q r Préséance (priorité) des opérateurs (1) [x := e] (substitution textuelle) (prioritéélevée) (2). (application de fonction) (3) + P (opérateurs unaires préfixes) (4) / mod pgcd (5) + (opérateurs binaires)

Plus en détail

Mathématiques pour l informatique 1 notes de cours sur la première partie

Mathématiques pour l informatique 1 notes de cours sur la première partie 1 Mathématiques pour l informatique 1 notes de cours sur la première partie L1 Université Paris-Est, Marne-la-Vallée Cyril Nicaud Organisation Ce demi-cours est composé de 6 séances de cours et 6 séances

Plus en détail

Emmanuel Filiot Département d Informatique Faculté des Sciences Université Libre de Bruxelles. Année académique 2014-2015

Emmanuel Filiot Département d Informatique Faculté des Sciences Université Libre de Bruxelles. Année académique 2014-2015 INFO-F-302, Cours d Informatique Fondamentale Emmanuel Filiot Département d Informatique Faculté des Sciences Université Libre de Bruxelles Année académique 2014-2015 Problèmes Indécidables : Définition

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Logique L2, phs / DS 2

Logique L2, phs / DS 2 Logique L2, phs / DS 2 Le 16 avril 2012 1. Pour chacun des énoncés suivants, donnez une analyse aussi complète que possible en termes de logique des prédicats ; c est-à-dire, spécifiez une clé de traduction

Plus en détail

Fondamentaux pour les Mathématiques et l Informatique :

Fondamentaux pour les Mathématiques et l Informatique : Université Bordeaux 1 Licence de Sciences, Technologies, Santé Mathématiques, Informatique, Sciences de la Matière et Ingénierie M1MI1002 Fondamentaux pour les Mathématiques et l Informatique Fondamentaux

Plus en détail

INFO-F-302 Informatique Fondamentale Projet : Logique du Premier Ordre et Utilisation de l Outil Z3

INFO-F-302 Informatique Fondamentale Projet : Logique du Premier Ordre et Utilisation de l Outil Z3 UNIVERSITÉ LIBRE DE BRUXELLES (corrected version 20120416) INFO-F-302 Informatique Fondamentale Projet : Logique du Premier Ordre et Utilisation de l Outil Z3 L objectif de ce projet est de modéliser des

Plus en détail

Définitions. Si E = F on dit. (x, y) / G R signifie que x n est pas en relation avec y. 32/137. Exemple

Définitions. Si E = F on dit. (x, y) / G R signifie que x n est pas en relation avec y. 32/137. Exemple I Introduction II Wims Cours de Mathématiques IUT Orsay DUT INFORMATIQUE 1A - Semestre 1 III Calcul ensembliste IV Relations binaires, applications V Logique VI Raisonnement par récurrence, suites récurrentes

Plus en détail

Fondements de l informatique: Examen Durée: 3h

Fondements de l informatique: Examen Durée: 3h École polytechnique X2013 INF412 Fondements de l informatique Fondements de l informatique: Examen Durée: 3h Sujet proposé par Olivier Bournez Version 3 (corrigé) L énoncé comporte 4 parties (sections),

Plus en détail

Relations Binaires Relations d équivalence sur un ensemble

Relations Binaires Relations d équivalence sur un ensemble Relations Binaires Relations d équivalence sur un ensemble MPSI 2 1 Généralités Soit E un ensemble non vide. Définition 1..1 On appelle relation binaire sur E le couple (E, G où G est un graphe de E dans

Plus en détail

Relations binaires sur un ensemble.

Relations binaires sur un ensemble. Math122 Relations binaires sur un ensemble. TABLE DES MATIÈRES Relations binaires sur un ensemble. Relations d équivalence, relation d ordre. Table des matières 0.1 Définition et exemples...................................

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Relation binaire. 2. Relations, fonctions et ordres. Exemples. Représentation d une relation binaire. Un couple est une paire ordonnée d éléments.

Relation binaire. 2. Relations, fonctions et ordres. Exemples. Représentation d une relation binaire. Un couple est une paire ordonnée d éléments. Relation binaire Un couple est une paire ordonnée d éléments. ex: les points (x,y) du plan de IN 2 ou de IR 2, les nom et prix d un produit, les instances d un objet en Java (à 2 attributs). 2. Relations,

Plus en détail

Notes de cours. Cours introductif sur la théorie des domaines. Modèles des langages de programmation Master Parisien de Recherche en Informatique

Notes de cours. Cours introductif sur la théorie des domaines. Modèles des langages de programmation Master Parisien de Recherche en Informatique Notes de cours Cours introductif sur la théorie des domaines Paul-André Melliès Modèles des langages de programmation Master Parisien de Recherche en Informatique 1 Ensembles ordonnés Definition 1.1 (ensemble

Plus en détail

Chapitre-4 Logique du 1er ordre - Syntaxe -

Chapitre-4 Logique du 1er ordre - Syntaxe - Chapitre-4 Logique du 1er ordre - Syntaxe - Plan 1- Introduction 2- Alphabet 3-Termes d'un langage 4- Formule de la logique du 1er ordre 5-Sous-formule d'une formule du 1er ordre 6- Arbre de décomposition

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Logique : ENSIIE 1A - contrôle final

Logique : ENSIIE 1A - contrôle final 1 Logique : ENSIIE 1A - contrôle final - CORRIGÉ Mardi 11 mai 2010 - Sans documents - Sans calculatrice ni ordinateur Durée : 1h30 Les exercices sont indépendants. Exercice 1 (Logique du premier ordre

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

2010/2011. Espaces vectoriels

2010/2011. Espaces vectoriels Université Paris-Est Marne-la-Vallée 010/011 M1 enseignement CD/Préparation au CAPES Espaces vectoriels Dans toute la suite on considèrera des espaces vectoriels sur un corps commutatif K de caractéristique

Plus en détail

Programme du Math1. Chapitre 1. 22/09/2013 بالتوفيق. Math1 L1 Semestre 1 SM ST. Bibliographie: 1. Notions de Logique. 2. Ensembles

Programme du Math1. Chapitre 1. 22/09/2013 بالتوفيق. Math1 L1 Semestre 1 SM ST. Bibliographie: 1. Notions de Logique. 2. Ensembles /09/013 Programme du Math1 Université des Sciences et de la Technologie Houari Boumediene Faculté de Mathématiques Math1 L1 Semestre 1 SM ST Dr M ZIDANI-BOUMEDIEN 1 Ensembles, Relations, Applications Structures

Plus en détail

B03. Ensembles, applications, relations, groupes

B03. Ensembles, applications, relations, groupes B03. Ensembles, applications, relations, groupes Bernard Le Stum Université de Rennes 1 Version du 6 janvier 2006 Table des matières 1 Calcul propositionnel 2 2 Ensembles 5 3 Relations 7 4 Fonctions, applications

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

BASES DU RAISONNEMENT

BASES DU RAISONNEMENT BASES DU RAISONNEMENT P. Pansu 10 septembre 2006 Rappel du programme officiel Logique, différents types de raisonnement. Ensembles, éléments. Fonctions et applications. Produit, puissances. Union, intersection,

Plus en détail

Examen - 14 décembre 2015

Examen - 14 décembre 2015 Licence Informatique, semestre 5 20 16 Eléments de logique pour l informatique (Info 3) http://www.lri.fr/~paulin/logique ANONYMAT :..................... Examen - 14 décembre 20 L examen dure 2 heures.

Plus en détail

Un tout petit peu d homotopie

Un tout petit peu d homotopie Vincent Beck On note I = [ 0, 1 ]. Un tout petit peu d homotopie 0.1 Homotopie Définition 1 Applications homotopes. Soient X, Y deux espaces topologiques et f, g : X Y deux applications continues. On dit

Plus en détail

L2: cours I4c Langages et automates

L2: cours I4c Langages et automates L2: cours I4c Langages et automates Olivier Togni, LE2I (038039)3887 olivier.togni@u-bourgogne.fr Modifié le 31 mai 2007 Sommaire Utiles pour compilation, interprétation,... 1. Langages rationnels 2. Langages

Plus en détail

Arbres. Alphabet Σ = Σ 0 Σ k. Exemples

Arbres. Alphabet Σ = Σ 0 Σ k. Exemples Arbres Alphabet Σ = Σ 0 Σ k Σ i : alphabet fini de symboles de rang i (Σ i Σ j possible). Un arbre t de rang k est défini par un ensemble (fini) dom(t) {1,..., k} clos par préfixe (domaine de t) : si v,

Plus en détail

Chapitre 4 Automates à pile et langages hors-contexte

Chapitre 4 Automates à pile et langages hors-contexte Chapitre 4 Automates à pile et langages hors-contexte 87 Introduction Langage a n b n n est pas accepté par un automate fini. Par contre L k = {a n b n n k} est accepté. Mémoire finie, mémoire infinie,

Plus en détail

Logique et théorie des ensembles

Logique et théorie des ensembles Université de Metz Licence de Mathématiques 1ère année, 1er semestre Logique et théorie des ensembles par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2007/08 1 Contenu Chapitre

Plus en détail

Arbres binaires de recherche (ABR) Binary Search Trees (BST)

Arbres binaires de recherche (ABR) Binary Search Trees (BST) LSVIII-BIM Algorithmie, 2015 Arbres binaires de recherche (ABR) Binary Search Trees (BST) I. Arbres binaires 1. Structure 2. Parcours II. Arbres binaires de recherche 1. Définition 2. Opérations sur les

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

Mathématiques pour l'informatique? Au programme. Objectif du semestre

Mathématiques pour l'informatique? Au programme. Objectif du semestre Mathématiques pour l'informatique? Calcul des Ensembles David Teller 09/02/2007 Q L'informatique, au juste, c'est quoi? A L'informatique, c'est : de l'électronique de la théorie des processus de la linguistique

Plus en détail

MLO - TD logique des prédicats

MLO - TD logique des prédicats MLO - TD logique des prédicats Exercice 1 (Logique du premier ordre et syntaxe) Question 1 Quand dit-on qu une variable est libre dans une formule? Une variable est dite libre dans une formule si elle

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Programmation, partiel: sémantique d un tableur

Programmation, partiel: sémantique d un tableur Programmation, partiel: sémantique d un tableur Recommandations. Votre copie (papier ou électronique) devra être lisible et bien structurée. La note tiendra compte autant du fond que de la présentation.

Plus en détail

Leçon 1: les entiers

Leçon 1: les entiers Leçon 1: les entiers L ensemble N des entiers naturels Compter, dresser des listes, classer et comparer des objets interviennent dans de multiples activités humaines. Les nombres entiers naturels sont

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

TD: Ensembles, applications, dénombrement

TD: Ensembles, applications, dénombrement Université de Provence Année 011/1 Licence Math Info ème année S3 Fondements de l Informatique 1 Ensembles et fonctions TD: Ensembles, applications, dénombrement 1. On suppose que l ensemble de tous les

Plus en détail

CHAPITRE 4 FORMES NORMALES SYSTEMES COMPLETS DE CONNECTEURS 1

CHAPITRE 4 FORMES NORMALES SYSTEMES COMPLETS DE CONNECTEURS 1 Université Paris 7 U3MI36 CHAPITRE 4 FORMES NORMALES SYSTEMES COMPLETS DE CONNECTEURS 1 4.1 Formes normales Définitions : 1) Une formule F est sous forme normale disjonctive si et seulement si il existe

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes

Plus en détail

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé MIE - E ANNÉE ALGORITHMIQUE GÉNÉRALE Vincent Mousseau EXAMEN FINAL Février 006 - heures Aucun document autorisé Exercice : On s intéresse à la gestion informatique des réservations sur l année d une salle

Plus en détail

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr)

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr) Partie 3 Gilles Lebrun (gilles.lebrun@unicaen.fr) Les arbres binaires Définition : C est une structure arborescente ou hiérarchique ou récursive Chaque élément (nœud) constituant la structure de l arbre

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Plan du module. Licence 2 Informatique 2005/2006. 1ère partie - Systèmes relationnels. 2ème partie - Algèbre. 3ème partie - Séries

Plan du module. Licence 2 Informatique 2005/2006. 1ère partie - Systèmes relationnels. 2ème partie - Algèbre. 3ème partie - Séries Informatique 20h cours/30h théorique TD 2 Informatique Systèmes -Informatiquethéorique 2 relationnels 2005/2006 Informatique -Informatiquethéorique Relations 22005/2006 n-aires 2 Informatique 2005/2006

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT

Machines de Turing. Chapitre 14 14.1. DÉFINITION ET FONCTIONNEMENT Chapitre 4 Machines de Turing Dans ce chapitre on présente un modèle de calcul introduit dans les années 3 par Turing, les machines de Turing. Ces machines formalisent la notion de calculabilité. La thèse

Plus en détail

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak Arbres Binaire PSI DAKHLA Prof Youssef El marzak 1 Prof Youssef Elmarzak 1.introduction: Les arbre sont très utilisées en informatique, d une part parce que les informations sont souvent hiérarchisées,

Plus en détail

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations Serge Iovleff 13 septembre 2004 Quelques références Ma Page http ://www.iut-info.univ-lille1.fr/ iovleff Un Cours réalisé par des

Plus en détail

INF1130 SESSION A08 EXAMEN INTRA SOLUTIONS

INF1130 SESSION A08 EXAMEN INTRA SOLUTIONS 1 INF1130 SESSION A08 EXAMEN INTRA SOLUTIONS dimanche 26 octobre 2008 Question 1 sur la logique propositionnelle (12 points, 3 pour chaque partie). Supposons que les quatre propositions suivantes sont

Plus en détail

Épreuve d informatique 2011

Épreuve d informatique 2011 A 2011 INFO. MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

Feuille 1 Modèle Relationnel et Requêtes Conjonctives

Feuille 1 Modèle Relationnel et Requêtes Conjonctives Université de Bordeaux M2 d Informatique, 2015-2016 Cours de Bases de Données Avancées Feuille 1 Modèle Relationnel et Requêtes Conjonctives Le but de cette feuille est d introduire le modèle de bases

Plus en détail

Démontrer le caractère injectif / surjectif / bijectif d une application

Démontrer le caractère injectif / surjectif / bijectif d une application Démontrer le caractère injectif / surjectif / bijectif d une application Il s agit donc de montrer une propriété commençant par un symbole. La démonstration débute donc par : Soit (x 1, x 2 ) E 2. La propriété

Plus en détail

Programmation avancée Examen final

Programmation avancée Examen final Programmation avancée Examen final jeudi 17 décembre 2009 Nom : Prénom : Vos points sont précieux, ne les gaspillez pas! Votre nom Le travail qui ne peut pas vous être attribué est perdu: écrivez votre

Plus en détail

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES I. Logique. II. Ensemble. III. Relation, fonction, application. IV. Composition, réciprocité. V. Relation d

Plus en détail

Démonstrations. Chapitre 4. 4.1 Introduction

Démonstrations. Chapitre 4. 4.1 Introduction Chapitre 4 Démonstrations L objectif de ce chapitre est de commencer à aborder la question fondamentale suivante : qu est-ce qu une démonstration? Pour cela, plus précisément, on va se focaliser dans ce

Plus en détail

COURS MPSI A.1.IV.NOTIONS DE BASE : RELATIONS R. FERRÉOL 13/14

COURS MPSI A.1.IV.NOTIONS DE BASE : RELATIONS R. FERRÉOL 13/14 IV) RELATIONS. 1) Définition. DEF : une relationrest définie par la donnée d unensemblededépart E, d unensembled arrivée F et d un ensemble G de couples(x,y) avecxdanse ety dansf (autrement dit, G est

Plus en détail

DIC9305 Logique, informatique et sciences cognitives

DIC9305 Logique, informatique et sciences cognitives DIC9305 Logique, informatique et sciences cognitives Logique du premier-ordre Roger Villemaire Département d informatique UQAM le 17 mars 2016 Plan 1 Introduction 2 Sémantique 3 Méthode des tableaux et

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

Représentation des fonctions booléennes

Représentation des fonctions booléennes Représentation des fonctions booléennes Épreuve pratique d algorithmique et de programmation Juillet 2003 Ce problème est consacré à l étude de deux représentations des fonctions booléennes de N variables

Plus en détail

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé Jusqu'à présent Nous avons déjà abordé Vers l'inni David Teller 23/01/2007 Les ensembles Le regroupement de valeurs caractérisées par des critères. Informatique Types. Physique Unités. Logique Domaines.

Plus en détail

Résolution des équations linéaires à deux variables. Octobre 2012

Résolution des équations linéaires à deux variables. Octobre 2012 Résolution des équations linéaires à deux variables Dédou Octobre 2012 Equations à deux inconnues? Une équations à deux inconnues réelles c est quoi? Equations à deux inconnues! Une équation à deux inconnues

Plus en détail

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche Université Paris Diderot Paris L Informatique Algorithmique Année 00-0, er semestre TD n Arbres Binaire de Recherche Le type de donné arbre" sera utilisé pour indiquer l ensemble de toutes les Arbres Binaires

Plus en détail

Applications. Mars 2010

Applications. Mars 2010 Applications Dédou Mars 2010 Application partielle Définition Une application partielle (certains disent fonction ) de l ensemble E vers l ensemble F est une partie G de E F vérifiant la condition d unicité

Plus en détail

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30 Table des matières 1 Généralités 3 1.1 Un peu de logique................................. 3 1.1.1 Vocabulaire................................ 3 1.1.2 Opérations logiques............................ 4 1.1.3

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

VIII Relations d ordre

VIII Relations d ordre VIII Relations d ordre 20 février 2015 Dans tout ce chapitre, E est un ensemble. 1. Relations binaires Définition 1.0.1. On appelle relation binaire sur E tout triplet R = (E, E, Γ) où Γ est une partie

Plus en détail

Exercice sur les arbres binaires de recherche

Exercice sur les arbres binaires de recherche Exercice sur les arbres binaires de recherche Voici une liste aléatoire de 1 éléments. Notez que vous pouvez faire cet exercice en prenant une autre liste aléatoire ; évidemment, il y a peu de chances

Plus en détail

Exercices à savoir faire

Exercices à savoir faire Licence 1 Mathématiques 2014 2015 Algèbre et Arithmétique 1 Feuille n o 2 Théorie des ensembles, applications Exercices à savoir faire Théorie des ensembles Exercice 1 Soit F l ensemble des femmes. Qu

Plus en détail

Polytechnique. Épreuve d Informatique 1998

Polytechnique. Épreuve d Informatique 1998 Polytechnique Épreuve d Informatique 1998 Corrigé rédigé par Martine Lannaud, Lycée Chaptal, Paris Pour toute remarque ou correction martine.lannaud@prepas.org Motifs et automates Question 1. Quelques

Plus en détail

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab Cours d algèbre Maths1 LMD Sciences et Techniques Par M. Mechab 2 Avant Propos Ceci est un avant projet d un manuel de la partie Algèbre du cours de Mathématiques de premières années LMD Sciences et techniques

Plus en détail

Logique : le calcul de prédicats

Logique : le calcul de prédicats Logique : le calcul de prédicats Sophie Pinchinat sophie.pinchinat@irisa.fr IRISA, Université de Rennes 1 UE LOG année 2015-2016 Sophie Pinchinat Logique : le calcul de prédicats UE LOG année 2015-2016

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Langage mathématique

Langage mathématique Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année Langage mathématique Eric Dumas, Emmanuel Peyre et Bernard Ycart

Plus en détail

Initiation à la Programmation en Logique avec SISCtus Prolog

Initiation à la Programmation en Logique avec SISCtus Prolog Initiation à la Programmation en Logique avec SISCtus Prolog Identificateurs Ils sont représentés par une suite de caractères alphanumériques commençant par une lettre minuscule (les lettres accentuées

Plus en détail

MATHÉMATIQUES - SPÉCIALITÉ. Table des matières

MATHÉMATIQUES - SPÉCIALITÉ. Table des matières MATHÉMATIQUES - SPÉCIALITÉ F.HUMBERT Table des matières Chapitre A - Congruences 2 Chapitre B - PGCD 5 Chapitre C - Nombres premiers 11 Chapitre D - Matrices et évolution de processus 14 Chapitre E - Matrices

Plus en détail

Logique des propositions (2)

Logique des propositions (2) Logique des propositions (2) F. Alexandre École Supérieure d Informatique et Applications de Lorraine January 21, 2009 Plan Algorithme de mise sous forme clausale 1 Système formel basé sur les clauses

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

LE PROBLEME DU FLOT MAXIMAL

LE PROBLEME DU FLOT MAXIMAL LE PROBLEME DU FLOT MAXIMAL I Exemple d introduction Deux châteaux d'eau alimentent 3 villes à travers un réseau de canalisations au sein duquel se trouvent également des stations de pompage. Les châteaux

Plus en détail

Programmation Avancée - Prolog

Programmation Avancée - Prolog Programmation Avancée - Prolog N. Prcovic Programmation Avancée - Prolog p.1/26 Introduction La programmation logique est une forme particulière de programmation déclarative. La programmation déclarative

Plus en détail

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée.

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée. A 2015 INFO. MP École des Ponts ParisTech, SUPAERO (ISAE), ENSTA ParisTech, Télécom ParisTech, Mines ParisTech, Mines de Saint-étienne, Mines Nancy, Télécom Bretagne, ENSAE ParisTech (filière MP), École

Plus en détail

Logique et bases de données

Logique et bases de données Logique et bases de données Plan Théorie du premier ordre Hypothèses CWA, unique name, domain closure BD comme interprétation BD comme théorie du 1er ordre BD déductives Signification des différentes formes

Plus en détail

Mathématiques pour l Informatique Relations binaires Jérôme Gensel

Mathématiques pour l Informatique Relations binaires Jérôme Gensel Master ICA Spécialité IHS Année 2007/2008 Mathématiques pour l Informatique Relations binaires Jérôme Gensel I) Relations binaires 1. Généralités Définition 1 : Une relation binaire d un ensemble E vers

Plus en détail

Logique des prédicats

Logique des prédicats Logique des prédicats MLO Catherine Dubois, Julien Narboux (Strasbourg) Catherine Dubois, Julien Narboux (Strasbourg) () Logique des prédicats 1/40 Introduction Soit le syllogisme de Socrate suivant :

Plus en détail

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Les automates Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Avril 2015 Retour sur l île et le barman Deux problèmes similaires: Des îles, des bateaux et un trésor à trouver

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

Quelques problèmes NP-complets

Quelques problèmes NP-complets Chapitre 12 Quelques problèmes NP-complets Maintenant que nous connaissons la NP-complétude d au moins un problème (SAT), nous allons montrer qu un très grand nombre de problèmes sont NP-complets. Le livre

Plus en détail

Un automate à états fini

Un automate à états fini Automates à états et langages Notion d automate Langage reconnu par un automate Automates non déterministes Expressions régulières et automates Limites des automates Notion d automate Objectif : définir

Plus en détail

Une relation R sur E est transitive si x, y, z E, (xry et yrz) xrz. Question 1.1 Est-ce-qu une relation alternée est toujours antisymétrique?

Une relation R sur E est transitive si x, y, z E, (xry et yrz) xrz. Question 1.1 Est-ce-qu une relation alternée est toujours antisymétrique? Domaine Sciences et Technologies Licence d informatique Automates et circuits 2ième Devoir Surveillé Durée : 2 heures Année 2012-13 Aucun document autorisé Calculatrice interdite Nous vous recommandons

Plus en détail

Les types utilisateurs (VBA) Corrigé

Les types utilisateurs (VBA) Corrigé PAD INPT ALGORITHMIQUE ET PROGRAMMATION 1 Cours VBA, Semaine 2 avril mai 2013 Corrigé Résumé Ce document décrit comment traduire en VBA les types utilisateur du langage algorithmique. Table des matières

Plus en détail