Fiche Intégration MOSE Octobre 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fiche Intégration MOSE Octobre 2014"

Transcription

1 Fiche Intégrtion MOSE 13 9 Octore 14 Tle des mtières Propriétés de l intégrle 1 Théorème fondmentl du clcul intégrl Intégrle d une fonction de signe quelconque Propriétés clcultoires Méthodes de clcul 5 Primitivtion directe Intégrtion pr prties Chngement de vrile Propriétés de l intégrle Soit f une fonction continue sur un intervlle fermé [, ]. Définition Lorsque f est continue et positive u sens lrge sur [, ], on définit l intégrle de f, notée f () d comme égle à l ire comprise entre l e des et l coure représenttive de f dns un repère crtésien orthonormé, entre les scisses = et =. L surfce hchurée de l figure suivnte illustre cette définition. f() f() d Figure 1 Définition de l intégrle

2 Encdrement. L inconvénient de l définition ci-dessus est de ne ps être une définition mthémtique. Elle peut stisfire le physicien, qui peut se contenter de l notion intuitive d ire, mis l rigueur mthémtique eige une pproche plus précise. C est l rison pour lquelle les mthémticiens du 19ème siècle, prmi lesquels Bernhrd Riemnn, ont proposé d encdrer l ire en encdrnt le grphe de f entre les grphes de fonctions constntes pr morceu. Pour ces fonctions en effet, le clcul de l ire sous l coure se limite à l somme d un nomre fini d ires rectngulires. f() Figure Encdrement L figure montre ce processus. L intégrle de f est encdrée entre l ire de l zone vert foncé qui est sous l coure, et cette même ire, ugmentée de l ire de l zone vert clir, qui est u dessus de l coure. En considérnt toutes les fonctions en esclier qui encdrent f de cette fçon, on prvient à définir l intégrle de f sns utiliser ucune notion intuitive. Nous n étudierons ps ici les détils de cette construction. Vleur moyenne. Une utre idée qu on peut se fire de l ire sous l coure est d imginer que l figure représente un qurium étroit vu de côté, l coure représenttive de f étnt l surfce (gitée) de l eu dns l qurium. Le rectngle leu de l figure 3 représente l eu revenue à son étt d équilire. L huteur d eu m de ce rectngle représente l vleur moyenne de l fonction f sur l intervlle [, ]. f() m c Figure 3 Vleur Moyenne L eu étnt incompressile, on voit que l surfce ( ) m du rectngle leu doit être égl à l ire sous l coure de f, et pr conséquent l vleur moyenne de f vut. m = 1 f () d On peut montrer, en utilisnt l continuité de f, qu il eiste un point c [, ] tel que cette moyenne ville f (c). Cette propriété porte le nom de théorème de l moyenne. On représenté un tel point c sur l figure, point où se coupent les surfces de l eu dns l qurium gité et dns l qurium u repos. On donc f () d = ( ) f (c)

3 On peut voir ce résultt un peu différement si on imgine cette fois-ci que l coure représenttive de f représente le profil de l étpe d une course cycliste, comme celles qu on voit dns les journu sportifs. L vleur m est l ltitude moyenne de l étpe et le théorème de l moyenne dit qu à u moins un instnt pendnt l étpe, les coureurs seront ectement à l ltitude moyenne. Théorème fondmentl du clcul intégrl 1. L fonction F définie sur [, ] pr l formule F () = f (t) dt est une primitive de l fonction continue f sur [, ], c est à dire qu elle est dérivle et De plus, F () = F () = f () [, ]. Si G est une primitive de f sur [, ], lors f () d = G () G () L figure 4 montre l définition de F (), c est à dire l intégrle de f entre les scisses et. f() F () Figure 4 Primitive L figure 5 ci-dessous illustre le clcul de l dérivée de F : si h est un réel positif suffisment proche de, l différence F ( + h) F () est l ire sous l coure de f située entre les scisses et + h. Le théorème de l moyenne nous dit lors que cette ire vut (( + h) ()) f (c) pour un certin point c [, + h]. On donc F ( + h) F () = f (c) h Lorsque h tend vers, l vleur de f (c) tend vers f () puisque le point c est entre et + h et f est continue. On otient insi le fit que F est dérivle et de dérivée f. Intégrle indéfinie (sns orne). On utilise l nottion d intégrle sns orne pour désigner une primitive d une fonction f, définie à une constnte dditive près. Pr eemple on peut écrire sin (5) cos (5) d = + C 5 pour signifier qu une primitive de cos (5) est l fonction de droite, où C est une constnte réelle quelconque. On note que l intégrle indéfinie désigne une fonction, tndis que l intégrle définie (vec ornes) désigne un nomre. 3

4 f() c + h Figure 5 Théorème fondmentl Intégrle d une fonction de signe quelconque Lorsque f est une fonction continue de signe quelconque, on peut l écrire comme l différence de deu fonctions non négtives en posnt Ces fonctions sont continues et on l reltion f + () = m (f (), ) et f () = m ( f (), ) [, ] L figure 6 illustre les grphes de f + et f. f () = f + () f () f() f + () f () Figure 6 Prties positive et négtive. On peut lors définir l intégrle de f comme l différence de deu intégrles de fonctions positives : f () d = f + () d f () d On montre que cette définition permet d étendre le théorème fondmentl et le théorème de l moyenne u fonctions de signe quelconque. Pour ce qui est du clcul des ires, on voit que l intégrle représente cette fois ci une «ire nlytique» entre l coure représenttive de f et l e des scisses, otenue en comptnt positivement les ires pour les prties de coure situés u dessus de l e des scisses, et négtivement les ires pour les prties de coure située en dessous de l e des scisses. Le signe du résultt dépend nturellement de l fonction f. Propriétés clcultoires Les trois propriétés suivntes sont les outils de se permettnt de mnipuler les intégrles dns les clculs : Linérité : l intégrle d une cominison linéire de fonctions est l cominison linéire des intégrles de ces fonctions, c est à dire que (λf + µg) () d = λ f () d + µ g () d 4

5 où f et g sont deu fonctions continues sur [, ] et λ, µ R. Eemple : / cos () d + / sin () d = / ( cos () + sin () ) / d = 1 d = [] π/ = π Monotonie : Si f et g sont deu fonctions continues telles que f () g () pour tout [, ], lors f () d Eemple : Lorsque [, π 4 ], on sin (), donc 4 sin 3 () d 4 g () d 3 d = π4 56 Reltion de Chsles : Lorsque f est définie et continue sur un intervlle contennt les trois vleurs,, c, on f () d + c f () d = c f () d On peut tirer cette reltion du théorème fondmentl du clcul pr eemple. Cette reltion incite à définir pr convention lorsque f () d = f () d Cette convention permet à l reltion de Chsles d être vrie indépendment de l ordre des trois points,, c. Elle est églement comptile vec les théorèmes fondmentu et de l moyenne. L reltion de Chsles permet de découper l intervlle d intégrtion lorsque l fonction s y prête nturellement, pr eemple lorsqu il y une vleur solue : 1 d = Méthodes de clcul Primitivtion directe 1 d + d = 1 d + d = 1 + = 5 On peut primitiver directement une fonction lorsqu on reconnit une primitive usuelle. Voici le tleu miniml qu il fut connître (C désigne ici une constnte réelle ritrire) 5

6 f () primitive F () α 1 e α 1 + tn () = 1 cos () α+1 α+1 ln + C e α α tn () + C + C ], + [, α 1 ], [ ], + [ + C ], + [, α ] kπ π, kπ + π [, (k Z) cos () sin () + C ], + [ sin () cos () + C ], + [ rctn () + C ], + [ 1 1 rcsin () + C ] 1, 1[ Utilisées conjointement vec l formule de dérivtions des fonctions composées, ces primitives usuelles permettent de clculer des intégrles telles que u () (u ()) α d = (u ())α+1 α + 1 +C, u () d = ln u () +C, u () u () e u() d = e u() +C où u () est une fonction dont l dérivée est continue et que les domines permettent l composition. Pr eemple [ 1 + d = 1 u () 1 u () d = ln ( 1 + ) ] = 1 ln (5) 1 ln (5) ln (1) = en posnt u () = 1 +. Il fut pour cel repérer que l fonction à intégrer est de l forme u () f (u ()), où f est une fonction usuelle de primitive F connue. L primitive cherchée est lors F (u ()). Intégrtion pr prties Si u et v sont deu fonctions continûment dérivles sur l intervlle [, ] (fonctions dérivles dont les dérivées sont continues), on sit que le produit uv est l primitive de u v + uv, donc (u () v () + u () v ()) d = [u () v ()] En coupnt l intégrle en deu à l ide de l linérité, il vient l etc formule d intégrtion pr prties. u () v () d = [u () v ()] u () v () d Le sens du crochet est ici [u () v ()] = u () v () u () v () On utilise l intégrtion pr prties comme une formule de trnsformtion d intégrle. Le prolème de clculer l intégrle de guche est remplcé pr le prolème de clculer l intégrle de droite, qu on espère plus simple. 6

7 Eemple Soit l intégrle on peut poser L formule donne lors sin () d u () = sin () v () = u () = cos () v () = 1 [( cos ()) ] π On urit pu fire le choi ( cos ()) 1 d = π + cos () d = π + [sin ()] π = π u () = v () = sin () u () = v () = cos () L formule conduit lors à [ ] π sin () cos () d = cos () d ce deuième choi conduit donc à une intégrle qui semle plus difficile que l intégrle initile. L intégrtion pr prtie est donc une technique qu on essye, éventuellement de plusieurs fçons différentes, qui peut réussir ou échouer en conduisnt à des intégrles qu on sit ou ne sit ps clculer. Chngement de vrile Cette technique s ppuie sur l formule de dérivtion des fonctions composées. Soit α, β R, et soit une fonction ϕ continue sur [α, β] et continûment dérivle sur ]α, β[. Soit pr illeurs f une fonction continue sur ϕ ([α, β]), de primitive F. On lors, pr le théorème fondmentl du clcul β α f (ϕ (t)) ϕ (t) dt = β α (F (ϕ (t))) dt = [F (ϕ (t))] α β = F (ϕ (β)) F (ϕ (α)) = ϕ(β) ϕ(α) f () d Un cs prticulier intéressnt est celui où ϕ est une ijection de l intervlle [α, β] sur un intervlle [, ], ce qu on peut ssurer en demndnt que l dérivée ϕ ne s nnule ps sur ]α, β[. Dns ce cs, cette dérivée est de signe constnt et ϕ est strictement monotone sur [α, β]. C est lors une ijection de l intervlle [α, β] dns l intervlle [, ]. Remrque. Dire que ϕ est une ijection de [α, β] dns [, ] signifie que Pour tout t [α, β], on ϕ (t) [, ]. Pour tout [, ], il eiste un t [α, β] et un seul tel que ϕ (t) =. On note t = ϕ 1 (). L formule précédente peut lors s écrire Formule de chngement de vrile. f () d = ϕ 1 () ϕ 1 () f (ϕ (t)) ϕ (t) dt où ϕ 1 est l ijection réciproque de ϕ. Eemple. Soit à clculer l intégrle 4 e d 7

8 On choisit générlement comme nouvelle vrile un terme qui prit gênnt dns l intégrle. Ici on pose t =. Cel revient à choisir l fonction réciproque ϕ 1 () =, de sorte que l fonction ϕ s otient en clculnt en fonction de t, c est à dire = ϕ (t) = t ϕ (t) = t On pplique l formule de chngement de vrile, et cel donne 4 e t t dt = [ (t 1) e t] = e + (on pssé sous silence ici l otention de l primitive de te t, c est à dire (t 1) e t ). On risonne souvent sns epliciter ϕ ou ϕ 1. Pr eemple soit l intégrle 1 1 d cette intégrle donne l surfce du qurt de disque de ryon 1 puisque l coure représenttive de l fonction intégrée est celle d un qurt de cercle. On pose = sin (t) et on choisit donc t comme nouvelle vrile. On clcule ensuite l dérivée vec une nottion de physicien et on écrit d = cos (t) = d = cos (t) dt dt On remplce ensuite dns l intégrle en éliminnt toute référence à =1 = 1 sin (t) cos (t) dt = t=π/ t= cos (t) dt On vérifie que le chngement de vrile est strictement monotone sur l intervlle ouvert (l dérivée cos (t) ne s nnule ps). Pour les ornes, le risonnement à tenir est qund =, on t = qund = 1, on t = π/. On utilise mintennt l formule de trigonométrie ien connue cos (t) = cos (t) 1, d où / ( ) [ ] π/ 1 cos (t) t sin (t) + dt = + = π 4 4 8

Intégration des fonctions continues par morceaux

Intégration des fonctions continues par morceaux Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f

Plus en détail

Définition d'une intégrale. Calcul intégral

Définition d'une intégrale. Calcul intégral Définition d'une intégrle Clcul intégrl. Introduction... p2 4. Primitives d'une fonction continue sur un intervlle... 2. Intégrle d'une fonction continue positive sur [;]... p5 p 5. Recherche de primitives...

Plus en détail

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées.

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées. Chpitre 7 Intégrtion Contenus Cpcités ttendues Commentires Intégrtion Définition de l intégrle d une fonction continue et positive sur [;] comme ire sous l coure. Nottion f(x) dx. Théorème : si f est une

Plus en détail

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f Chpitre 6 : Clcul intégrl I Intégrle d une fonction continue positive 1 Unité d'ire Le pln est muni d un repère orthogonl O;i!,! j!!" "!!! " " En posnt OI = i et OJ = j, l ire du rectngle OIKJ définit

Plus en détail

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)} Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et

Plus en détail

Nous admettrons et utiliserons souvent le théorème suivant:

Nous admettrons et utiliserons souvent le théorème suivant: < 20 Intégrtion: fonction réelle d une vrile réelle. Définition 2.5. (Intégrilité u sens de Riemnn) Une fonction réelle f: [, ] R est dite intégrle sur [,], si ǫ > 0, f 1, f 2 : [, ] R fonctions en escliers

Plus en détail

1. Notion d intégrale Interprétation graphique

1. Notion d intégrale Interprétation graphique Clcul intégrl TS 1. Notion d intégrle Interpréttion grphique Le pln étnt muni du repère orthogonl ( O,I, J ) l unité d ire ( u. ) est l ire du rectngle âti à prtir des points O, I, J. on ppelle domine

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB).

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB). Vdouine Terminle S Cpitre 4 Intégrtion Définition Soit f une fonction continue et positive sur un intervlle I contennt et deu nomres tels que. L représenttion grpique est trcée dns un repère ortogonl O;;

Plus en détail

M : Zribi 4 ème Sc Fiche. Calcul intégral. Le plan est rapporté à un repère orthogonal (O;i,j).

M : Zribi 4 ème Sc Fiche. Calcul intégral. Le plan est rapporté à un repère orthogonal (O;i,j). L.S.Mrs Elridh Clcul intégrl M : Zrii Le pln est rpporté à un repère orthogonl (O;i,j). A) Intégrle d une fonction continue et positive. 1 - Aire et intégrle. Définition Soit f une fonction continue et

Plus en détail

INTEGRATION. f(x) I F(x) I ) PRIMITIVE. e x R e x + c

INTEGRATION. f(x) I F(x) I ) PRIMITIVE. e x R e x + c INTEGRATION I ) PRIMITIVE Définition : Soient f et F deu fonctions définies sur I. F est une primitive de f sur I si F est dérivle sur I et pour tout de I F () = f () Propriété : Si f continue sur I lors

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

COURS TERMINALE S LE CALCUL INTEGRAL

COURS TERMINALE S LE CALCUL INTEGRAL COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006. Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions

Plus en détail

Intégrales et primitives

Intégrales et primitives Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

C f. 1 u.a. B x 1 A' E4 E2. 1 u.a. a. OJ = et K le point tel que OIKJ. OI = i, J le point tel que

C f. 1 u.a. B x 1 A' E4 E2. 1 u.a. a. OJ = et K le point tel que OIKJ. OI = i, J le point tel que CLCULS 'IRES. INTEGRLES. PRIMITIVES ) Intégrle d'une fonction. Soit f une fonction définie sur [ ; ] et C s coure représenttive dns un repère orthogonl ( ; j ). Si I est le point tel que I i, J le point

Plus en détail

PRIMITIVES ET INTÉGRALES

PRIMITIVES ET INTÉGRALES Lurent Grcin MPSI Lycée Jen-Bptiste Corot PRIMITIVES ET INTÉGRALES Les fonctions de ce chpitre sont des fonctions d une vrible réelle à vleurs réelles ou complexes. Primitives. Définition Définition. Primitive

Plus en détail

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels Chpitre 6 Primitive et Intégrle 6. Primitive 6.. Rppels Définition 6... Si f est une fonction définie sur un intervlle I, une primitive de f sur I est une fonction F telle que pour tout x dns I, F (x)

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail

Cours de Terminale S /Intégration. E. Dostal

Cours de Terminale S /Intégration. E. Dostal Cours de Terminle S /Intégrtion E. Dostl Février 26 Tble des mtières 9 Intégrtion 2 9. Intégrles............................................. 2 9.. Aire sous une courbe...................................

Plus en détail

Exemple d'introduction 1. Découverte des fonctions définies par une intégrale et premiers pas vers le théorème fondamental du calcul intégral.

Exemple d'introduction 1. Découverte des fonctions définies par une intégrale et premiers pas vers le théorème fondamental du calcul intégral. Eemple d'introduction 1. Découverte des fonctions définies pr une intégrle et premiers ps vers le théorème fondmentl du clcul intégrl. PARTIE I : Découverte de l fonction «ire sous l coure» et conjecture

Plus en détail

Lycée Stendhl (Grenole) Niveu : Titre Cours : Terminle S Année : Chpitre 09 : Les Intégrles 204-205 826-866 874-94 Cittion du moment : «Le seul enseignement qu un professeur peut donner, à mon vis, est

Plus en détail

Intégration Primitives

Intégration Primitives Intégrtion Primitives Christophe ROSSIGNOL Année scolire 2015/2016 Tble des mtières 1 Rppels et compléments 3 1.1 Rppels de dérivtion.......................................... 3 1.1.1 Dérivtion en un point......................................

Plus en détail

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions.

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions. Fiches de cours nlyse 4 ème Sciences epérimentles Limites et continuité Limites et comprison de fonctions. L et L ' sont des réels. désigne soit un réel, soit +, soit Premier théorème de comprison Soit

Plus en détail

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral Clcul Intégrl christophe.profet@univ-evry.fr http://www.mths.univ-evry.fr/pges_perso/cprofet/ Amphi n 1 Jnvier 214 Objectifs du cours 1 donner une définition de l intégrle f (x)dx qui permet de comprendre

Plus en détail

Les intégrales. C f. A = aire sous la courbe sur [0 ; 1] A = 1 3. II. Deux points de vue. 1 ) 1 er aspect : avec les suites

Les intégrales. C f. A = aire sous la courbe sur [0 ; 1] A = 1 3. II. Deux points de vue. 1 ) 1 er aspect : avec les suites TS I Introduction ) Prolème Les intégrles II eu points de vue ) er spect : vec les suites Méthode des rectngles (Pscl iemnn) f est une fonction définie, continue et positive sur un intervlle [, ] ( ) n

Plus en détail

Intégrabilité d une fonction à valeurs réelles ou complexes

Intégrabilité d une fonction à valeurs réelles ou complexes Cours de Mthémtiques ntégrtion sur un intervlle quelconque Prtie : Fonctions intégrbles à vleurs complexes Fonctions intégrbles à vleurs complexes Dns ce prgrphe, est un intervlle de R, et K désigne R

Plus en détail

Chapitre 6 - Intégration

Chapitre 6 - Intégration TES Chpitre 6 - Intégrtion 1-13 Chpitre 6 - Intégrtion I Intégrle d une fonction positive TD1 : Des clculs d ire Définition 1 Dns un repère orthogonl (O, I, J), on ppelle unité d ire l ire du rectngle

Plus en détail

Cours de remise à niveau Maths 2ème année. Intégrales simples

Cours de remise à niveau Maths 2ème année. Intégrales simples Cours de remise à niveu Mths 2ème nnée Intégrles simples C. Mugis-Rbusseu GMM Bureu 116 cthy.mugis@ins-toulouse.fr C. Mugis-Rbusseu (INSA) 1 / 47 Pln 1 Définitions 2 Propriétés des fonctions intégrbles

Plus en détail

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23 Clcul intégrl Ctherine Decyeux Ctherine Decyeux () Clcul intégrl 1 / 23 I-Introduction Le clcul intégrl s est développé u XVIIe siècle vec les trvux de Bonvntur Cvlieri, Isc Newton, Leibniz... mis les

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts Ch7 : Clcul intégrl-ts CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION Activité n : Trcer dns un repère orthonorml l représenttion grphique de l fonction f définie pr : f(x) = 5. Hchurer l'ire du domine pln

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

Chapitre 6 - Fonctions numériques - Généralités

Chapitre 6 - Fonctions numériques - Généralités PS hpitre 6 - Fonctions numériques - Générlités Fonctions d une vrile réelle à vleurs réelles. Définitions Une fonction à vleurs réelles est une ppliction de ou une prtie A de dns. On note f : A ; f ().

Plus en détail

Intégrale 4 ème math B.H.Hammouda Fethi

Intégrale 4 ème math B.H.Hammouda Fethi Intégrle 4 ème mth BHHmmoud Fethi Intégrle d une onction continue et positive : Déinition : Le pln est muni d un repère orthogonl Soit une onction continue et positive sur un intervlle, et F une primitive

Plus en détail

Chapitre 11 : Calcul intégral

Chapitre 11 : Calcul intégral Cpitre 11 : Clcul intégrl I Intégrle d une fonction positive I.1 Définition Définition ( 1. Dns un repère ortogonl O; i ; ) j, on ppelle unité d ire l ire du rectngle de côtés [OI] et [OJ]. 2. Soient f

Plus en détail

XI. Différentielles et intégrales définies : notions de base

XI. Différentielles et intégrales définies : notions de base . Différentielle XI. Différentielles et intégrles définies : notions de se soit f : R R y = f() et s dérivée : f '() = y ' Considérons un ccroissement de l vrile :. Définition - nottion On ppelle différentielle

Plus en détail

8. Primitives d'une fonction et intégrales

8. Primitives d'une fonction et intégrales 8. Primitives d'une fonction et intégrles I- Usge du tleu des dérivées Compléter les tleu et en précisnt le numéro des lignes utilisées. Tleu N f () f ' () -... Fonction f f () + érivée f ' f ' ()......

Plus en détail

Calcul différentiel et intégral 2 (M-1.1)

Calcul différentiel et intégral 2 (M-1.1) Clcul différentiel et intégrl (M-.) Cdre : dns l suite on considère une fonction numérique f définie sur un intervlle I et un réel I I. Dérivée d'une fonction Définition du nomre dérivé : l fonction f

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles Je donne ici des éléments pour triter l exposé de CAPES 76 (liste 2007) : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité

Plus en détail

Intégration. sur R. Soit f donnée par sa courbe C sur R.

Intégration. sur R. Soit f donnée par sa courbe C sur R. Intégrtion A) Intégrle d une onction Déinition Déinition : Soit une onction continue et positive sur un intervlle ; et C s coure représenttive dns un repère orthogonl O ; I ; J L ire sous l coure est l

Plus en détail

Mathématiques Différentielle - Intégrale

Mathématiques Différentielle - Intégrale Mthémtiques Différentielle - Intégrle F. Richrd 1 1 Institut PPRIME - UPR 3346 CNRS Déprtement Fluides, Thermique, Combustion Frnce Institut des Risques Industriels Assurntiels et Finnciers IRIAF F. Richrd

Plus en détail

Intégration et primitives

Intégration et primitives TS 202-203 Intégrtion et primitives Intégrle d une fonction continue et positive. Notion d ire sous une coure Etnt donné une fonction f continue et positive sur un intervlle [; ] vec, on note C s représenttion

Plus en détail

Chapitre 10 Intégration

Chapitre 10 Intégration Chpitre Intégrtion I. Intégrle d'une fonction continue et positive Définition : Dns un repère orthogonl (O ; OI, OJ), l'unité d'ire (notée u..) est l'ire du rectngle OIKJ où K est le point de coordonnées

Plus en détail

Chapitre 8 Le calcul intégral

Chapitre 8 Le calcul intégral Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Chpitre 8 Le clcul intégrl A) Intégrle d une fonction dérivle sur un intervlle 1) Définition Soit f une fonction dérivle sur un intervlle

Plus en détail

Analyse 2 - Résumé du Cours

Analyse 2 - Résumé du Cours UFR de Mthémtiques Université de Lille Licence sciences et technologies A - S MASS Anlyse - Résumé du Cours Tble des mtières Prtie I : Intégrtion. Introduction : Premières remrques sur les primitives et

Plus en détail

Rappels et compléments sur l intégrale de Riemann

Rappels et compléments sur l intégrale de Riemann Chpitre Rppels et compléments sur l intégrle de Riemnn Commençons pr un rppel. Théorème.. (Théorème fondmentl du clcul intégrl) Soit f :[, b]! R une fonction continue. Pour tout x 2 [, b], posons F (x)

Plus en détail

LOIS DE PROBABILITE CONTINUES

LOIS DE PROBABILITE CONTINUES LOIS DE PROBABILITE CONTINUES I) LOI A DENSITE SUR UN INTERVALLE ( fire fiche '' vérifier les cquis'' ) 1) Introduction Qund l univers est un intervlle Jusqu à présent, chque expérience létoire conduisit

Plus en détail

Calcul Intégral - Equations Différentielles M211-1

Calcul Intégral - Equations Différentielles M211-1 /46 Clcul Intégrl - Equtions Différentielles M11-1 Michel Fournié michel.fournie@iut-tlse3.fr http://www.mth.univ-toulouse.fr/ fournie/ /46 Introduction Tble des mtières 1 Introduction Préliminires, Rppels

Plus en détail

Le Calcul de Primitives

Le Calcul de Primitives Le Clcul de Primitives MPSI Prytnée Ntionl Militire Pscl Delhye 25 octobre 27 ϕ(x) f(u) du = f(ϕ(t) )ϕ (t) }{{}}{{} u du Résultts préliminires Définition : Primitives Soit deux fonctions f et F définies

Plus en détail

CHAPITRE 7. Rappel sur l intégrale simple.

CHAPITRE 7. Rappel sur l intégrale simple. CHPITRE 7 Rppel sur l intégrle simple. Les prochins chpitres triteront de l intégrtion. Dns un premier temps, nous rppellerons ce qu est l intégrle simple (l intégrtion pour les fonctions d une seule vrible

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Remise en forme. Chapitre 1

Remise en forme. Chapitre 1 Chpitre 1 Remise en forme 1) Trigonométrie L fonction exponentielle est l réciproque de l fonction logrithme. Elle trnsforme une somme en un produit, lors que le logrithme trnsforme un produit en une somme

Plus en détail

Synthèse de cours PanaMaths Variables aléatoires à densité

Synthèse de cours PanaMaths Variables aléatoires à densité Synthèse de cours PnMths Vriles létoires à densité Vrile létoire à densité Vrile létoire réelle continue Soit X une vrile létoire réelle. On dit que «X est une vrile létoire réelle continue» si elle prend

Plus en détail

Feuille d exercices 2 : Analyse Intégrale

Feuille d exercices 2 : Analyse Intégrale Université Denis Diderot Pris 7 (3-4) TD Mths, Agro www.mth.jussieu.fr/ merle Mthieu Merle : merle@mth.univ-pris-diderot.fr Feuille d eercices : Anlyse Intégrle Eercice Trouver une primitive de f : rccos()

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

Limite d une fonction à l infini

Limite d une fonction à l infini CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L

Plus en détail

Résumés de cours : Terminale S.

Résumés de cours : Terminale S. Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle

Plus en détail

MAT 1720 A : Calcul différentiel et intégral I

MAT 1720 A : Calcul différentiel et intégral I MAT 1720 A : et intégrl I Pul-Eugène Prent Déprtement de mthémtiques et de sttistique Université d Ottw le 14 octobre 2015 Au menu ujourd hui 1 2 3 4 Le théorème de Stokes Voici le contenu d un peu plus

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

I. Fonctions

I. Fonctions FORMULAIRE MATHÉMATIQUES - RENTRÉE 205 - PRÉPA ECS PREMIÈRE ANNÉE Tble des mtières I. Fonctions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4. Générlités sur les fonctions...................

Plus en détail

CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN

CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN 1. Fonctions en esclier. Le but de l construction de l intégrle d une fonction f : [, b] R étit, initilement, de définir rigoureusement l ire de l figure

Plus en détail

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Clcul d intégrles - Intégrtion pr prties Cours CHAPITRE 7 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Dns ce cours, nous disposons de trois techniques de clcul d intégrles : ) primitivtion pr lecture

Plus en détail

NOTIONS DE CALCUL DIFFERENTIEL ET INTEGRAL EN PHYSIQUE

NOTIONS DE CALCUL DIFFERENTIEL ET INTEGRAL EN PHYSIQUE NOTIONS D CALCUL DIFFNTIL T INTGAL N PHYSIQU 1) Dérivée d une fonction Soit une fonction F : x F(x) D F(x + ) F(x ) ΔF x x + ( +Δ ) ( ) Δ F F x x F x Le tux de vrition = L limite de ce tux de vrition lorsque

Plus en détail

Exemple. Les fonctions affines (non nulles) sont les fonctions polynômes de degré 1 ou 0 (fonctions constantes).

Exemple. Les fonctions affines (non nulles) sont les fonctions polynômes de degré 1 ou 0 (fonctions constantes). S Fonctions polynômes et secon egré I Fonctions polynômes Définition Une fonction f est une fonction polynôme (ou plus simplement un polynôme) si : () Elle est éfinie sur R () Elle met une écriture e l

Plus en détail

3.3.3 Changement de variable

3.3.3 Changement de variable 3. Primitives: Techniques de clcul des rimitives 33 3.3.3 Chngement de vrible Si F est une rimitive de f et si g est une fonction, lors l formule de dérivtion diune fonction comosée donne quel dérivée

Plus en détail

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1 ntégrtion Licence de mthémtiques, 4 e semestre Université Ai-Mrseille J-Y. Briend Fscicule de résultts ntégrbilité, intégrle Définition.. Soit = [,b] un intervlle compct. Une subdivision pointée P de est

Plus en détail

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur Chpitre 21 Clcul de primitives 21.1 Clcul prtique de primitives On note f(x une primitive de l fonction f sur l intervlle I. Cette nottion désigne une fonction, à ne ps confondre vec une intégrle définie

Plus en détail

Lois de probabilité continues

Lois de probabilité continues Lois de proilité continues. Notion de loi à densité de proilité... p 4. Durée de vie sns vieillissement... p. Lois de proilité continues... p5 5. Loi exponentielle... p3 3. L loi uniforme... p7 Copyright

Plus en détail

MT91 P2010 Médian - f(x) = α + x + βx 2.

MT91 P2010 Médian - f(x) = α + x + βx 2. MT9 P Médin - Corrigé Eercice. α et β sont deu prmètres réels tels que α >. On définit f) = α + + β. Ecrire le développement limité de f, à l ordre, en.. Utiliser l question précédente pour étudier l brnche

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

La continuité. I Introduction 1. II Notion de continuité 1 1 Définitions Graphique Exemples et contre exemple... 2

La continuité. I Introduction 1. II Notion de continuité 1 1 Définitions Graphique Exemples et contre exemple... 2 L continuité Tle des mtières I Introduction 1 II Notion de continuité 1 1 Définitions.................................................. 1 Grphique.................................................. 1 3

Plus en détail

Techniques Mathématiques de Base UCBL L1 PCSI UE TMB. Programme du cours. Partie I : Algèbre linéaire et géométrie cartesienne

Techniques Mathématiques de Base UCBL L1 PCSI UE TMB. Programme du cours. Partie I : Algèbre linéaire et géométrie cartesienne UCBL L PCSI UE Techniques Mthémtiques de Bse Alessndr Frbetti Institut Cmille Jordn, Déprtement de Mthémtiques http://mth.univ-lyon.fr/ frbetti// Progrmme du cours Prtie I : Algèbre linéire et géométrie

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

Corrigé du TD 3 : Limites

Corrigé du TD 3 : Limites Corrigé du TD 3 : Limites Eercice : Fonction réciproque. Cs f() = + L fonction f est définie sur R et à vleurs dns I = [,+ [. Elle est pire donc en prticulier pour tout réel, on f( ) = f() et en prticulier

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE 1.Logrithme Définition: On ppelle fonction logrithme népérien l primitive de l fonction 1/ définie sur l intervlle ]0 ;+ [ qui s nnule en 1. ln 1 dt t Cette fonction est définie,

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2 Intégrle de Riemnn cours et exercices de Licence, L1, PC, S2 H. Le Ferrnd Jnury 29, 2010 Contents 1 Des premières méthodes 2 2 Sommes de Drboux 2 3 Fonction intégrble u sens de Riemnn 3 3.1 Qu est-ce qu

Plus en détail

Chapitre 9. Calcul intégral. 9.1 Intégrale d une fonction continue Définition, exemples et propriétés

Chapitre 9. Calcul intégral. 9.1 Intégrale d une fonction continue Définition, exemples et propriétés Chpitre 9 Clcul intégrl L notion de clcul intégrle est une notion ssez importnte dns bons nombres de domines de l science. Ce cours pour but d introduire ldite notion. On utilise le clcul intégrl :. pour

Plus en détail

Séquence 6. Intégration. Sommaire

Séquence 6. Intégration. Sommaire Séquence 6 Intégrtion Ojectifs de l séquence Introduire une nouvelle notion : l intégrle d une fonction sur un intervlle ;. Après une première pproche géométrique, l introduction de l notion de primitive

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S BACCALAURÉAT GÉNÉRAL Session Pondichéry vril ) MATHÉMATIQUES obligtoire) Correction Série : S Durée de l épreuve : 4 heures Coefficient : 7 EXERCICE PARTIE A Soient et b deux réels tels que < b. Soient

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue 29 Chpitre 2 Intégrle de Lebesgue 2.1 Rppels sur l intégrle de Riemnn Soit f bornée sur un intervlle [,b] fini de IR, et soit x 1,...,x n un ensemble fini de points de [,b] tels que = x 0 < x 1

Plus en détail

Chapitre 19 Intégration sur un segment

Chapitre 19 Intégration sur un segment Chpitre 19 ntégrtion sur un segment Dns tout ce chpitre, suf mention contrire,, b désignent deux réels tels que < b et un intervlle de R contennt u moins deux points. - Construction de l'intégrle.1 - Continuité

Plus en détail

Analyse numérique : Intégration numérique

Analyse numérique : Intégration numérique Anlyse numérique : Intégrtion numérique Pgor 1A Chpitre 4 8 février 11 mrs 2013 Anlyse numérique (Pgor 1A) Intégrtion numérique 8/02-11/03/2013 1 / 67 Pln 1 Introduction 2 Intégrtion pr méthode de Monte-Crlo

Plus en détail

DÉRIVATION ET CONTINUITÉ

DÉRIVATION ET CONTINUITÉ CHAPITE II DÉIVATIN ET CNTINUITÉ 1 Dérivtion 1.1 Nomre dérivé, tngente à une coure 6 5 A 2 M 2 (T) 1 M 1 1 1 1 2 5 6 7 8 9 10 Sur le grphique ci-dessus,c f est l coure d une fonctionfet psse pr le pointa(;).

Plus en détail

Comparaison de fonctions, développements limités

Comparaison de fonctions, développements limités I Comprison de fonctions Définitions Comprison de fonctions, développements limités Négligeble Définition Soient f et g deu fonctions définies sur un même ensemble D et à vleurs dns R. Soit R tel que f

Plus en détail

Intégration. Hors Sujet. Chapitre 10

Intégration. Hors Sujet. Chapitre 10 Chpitre Intégrtion Hors Sujet Document rélisé à l ide de L A TEX Auteur : D. Zncnro Site : wick-mth.fr.nf Lcée : Jen Durnd (Cstelnudr) Titre : «Inglourious Bsterds» Auteur : Quentin Trntino Présenttion

Plus en détail

Convergence dominée et conséquences.

Convergence dominée et conséquences. Chpitre 3 Convergence dominée et conséquences.. nterversion ite-intégrle............................................................2 / Le cs d une CU sur un segment..................................................

Plus en détail

La formule de Simpson avec reste intégral Jean-François Burnol, septembre 2016

La formule de Simpson avec reste intégral Jean-François Burnol, septembre 2016 L formule de Simpson vec reste intégrl Jen-Frnçois Burnol, septembre 1 On cherche à pprocher l intégrle b f (t)dt pr une combinison linéire λf () + µf ( + b ) + νf (b) On v tout d bord prendre = et b =

Plus en détail

Chapitre I Equations et inéquations du premier degré

Chapitre I Equations et inéquations du premier degré Chpitre I Equtions et inéqutions du premier degré I Équtions du premier degré 1 Les ensemles de nomres Définition 1 On ppelle ensemle des réels, noté R, l ensemle des nomres connus en clsse de seconde.

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry vril EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deu fonctions continues sur un intervlle [ ; b] donc g f est

Plus en détail

PARTIE II : Un exemple pour se familiariser avec la conjecture et cette drôle de fonction. . (On ne cherchera pas à exprimer F plus simplement.

PARTIE II : Un exemple pour se familiariser avec la conjecture et cette drôle de fonction. . (On ne cherchera pas à exprimer F plus simplement. Eercice. Découverte des fonctions définies pr une intégrle et premiers ps vers le téorème fondmentl du clcul intégrl. PARTE : Découverte de l fonction «ire sous l courbe» et conjecture sur s dérivée et

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail