Centrale MP 2003 Math 1 Partie I

Dimension: px
Commencer à balayer dès la page:

Download "Centrale MP 2003 Math 1 Partie I"

Transcription

1 Cerale MP 3 Mah Parie I I.A.Soi g() = e cos()+ie si() = e e i. Lafocio g es coiue sur [;[ e lim jg()j = lim e =. Doc g es iégrable sur [;[, doc aussi ses paries réelles e imagiaires. Ue primiive de > e ( +i) éa > +i e( +i) de limie ulle e (car +i e( +i) = e p ) o a Z g()d = + i e( +i) = e e ( + i)(cos() + i si()) = ((cos() si()) + i(cos() + si())) il e résule par séparaio des paries réelles e imagiaires, que : e e cosd = (cos() si ()) e e e si d = (cos () + si()) I.B. La soluio géérale de y y = es y = e. O uilise alors la méhode de variaio de la cosae : ()e es soluio de y y = cos() si e seuleme si ()e = cos (). Doc () = K + R e cos ()d :K éa ue cosae. Les soluios sur R de y y + cos = so doc K + R e cos ()d e. O cherche ue soluio Y borée. Or lim > (e ) =. pour avoir ue soluio borée il fau doc e doc K = R O a alors Y () = e µ Z lim K + e cos()d = e cos()d. soi K + R e cos() d = R e cos()d e cos d = (cos () si()), focio claireme borée sur R. La soluio géérale sur R de y y + cos = es doc Y = e + (cos si ). Remarquos que Y () es la seule soluio borée sur R. De même la soluio géérale sur R de y y + si = es e + (cos + si). I.C.. D après la première quesio Á es bie dé ie. Elle es e oure claireme liéaire e, oujours d après la première quesio, les images des focios cos e si appariee à : Á(cos) = Á(si) = cos si cos + si Á dé i bie u edomorphisme de. D après la première quesio, la marice de Á das la base (cos;si) es µ I.C.. Si f() = acos + bsi o sai que f() = p a + b cos( ') de sore que jjfjj = p q a + b. Alors f () = a+b b a cos + si de sore que jjf a jj = +b = p jjfjj. jjf jj = p jjfjj Il e résule que jjf jj = p jjfjj e doc sup R (jf j) > Aisi, pour oue focio f, la suie (f ) N coverge uiforméme sur R vers la focio ulle. II.A. Parie II e d coverge car > e es coiue posiive sur [;[ (car > ) e lim e =.

2 Sio repred la méhode dela variaio de lacosae dela mêmemaière eaceme qu e I.B.,o rouve que lasoluio géérale sur ];[ de y y + = es : Y () = + Z e da e oujours comme au I. : si il eise ue soluio borée sur [a;[ c es Y () = e Rese à véri er que cee focio es borée: Y () e e d car µ e e = e d: O a doc Y a sur ou iervalle [a;[ iclus das ];[.e Y es borée quad ed vers Y () = e + e De l epressio de la soluio géérale, il e découle que Y es la seule soluio borée quad ed vers : e d ² O a, au voisiage de +, e» avec e coiue, posiive, o iégrable sur ];]. Doc par équivale R e iégrable sur ];] e doc lim e + d =, e doc e ajoua la cosae d lim > + e d = es pas ² De l epressio de la soluio géérale, il e découle que lim > + Y () = pour ou R. II.B. D après le héorème de Cauchy-Lipschiz pour ue équio di éreielle liéaire résolue du premier ordre, o dispose bie de l eisece e de l uicié de la soluio Y m elle que Y m ( m ) = y m pour ou poi M( m ;y m ) du demi-pla >. O a d après l équaio : Y m ( m ) Ym( m ) + m = doc Ym( m ) = si e seuleme si y m = m. Doc H es iclus das la brache d hyperbole y = avec >. C es l esemble des pois des courbes iégrales à agee horizoale. Réciproqueme si (X;Y ) es u poi de cee demi hyperbole, il eise ue soluio y de l équaio di éreielle passa par ce poi (Cauchy Lipschiz) e e ce poi y (X) = Doc H es la brache d hyperbole y = avec > La focio > éa de classe C il e résule que oue soluio es de classe C e aisi o a le droi de dériver l équaio E f e doc Ym ( m) Ym ( m) = doc Y m m ( m) = si e seuleme si Ym ( m)+ = soi si e seuleme m si Y m ( m ) m + =. m Doc T es iclus das la courbe d équaio y = pour > : l aure iclusio découle aussi de Cauchy Lipschiz. II.B. par iégraio par paries, o a R X O sai déja que > e T es la courbe d équaio y = pour > Si la dérivée secode Y " chage de sige e u poi de T o u poi d i eio au graphe C : O peu remarquer que e u el poi Ym( m ) = <. m R X e d = e e X e d: X es iégrable sur [;[. O a aussi > e, coiue,posiive gligeable deva =, doc iégrable sur [;[. E lim e X X > =. Doc par passage à la limie Y X () = e e d Par ue secode iégraio par paries o a : Y () = + e Y (). Aisi la courbe iégrale C es sriceme comprise ere les courbes H e T. II.B.3 voir graphe e aee e 3 d doc

3 ² Le graphe H es évide. ² Pour T o pose T() =, focio C sur R +, de dérivée e o a T()» >, T()» + >, T() =. + = 3 3 égaive si, posiive si. ² Comme Y () < o a Y () = Y () < (pesez à E f ) e doc Y es oujours décroissae. D où l allure de C. ² Y () > Y (), Y () ed vers e + e e, De plus e Y ()» e d où ue brache parabolique vericale C coupe H e u poi au plus sio, par le héorème de Rolle, Y s aulerai ce qui es impossible car C es au-dessus de C elle-même sriceme au dessus de T. De plus e Y ()» e d où ue brache parabolique vericale. D ou l allure de C. C coupe H sio Y serai sriceme moooe sur ];[, ce qui es icompaible avec les limies e e. ² Y () < Y () doc C es oujours e dessous de C doc a foriori de H e doc la dérivée es oujours égaive. Y () ed vers e + e vers e, De plus e Y ()» e d où ue brache parabolique vericale C coupe T e so poi d i eio E e e Y T ed vers e e vers e. La focio Y T es coiue sur ];[ e chage de sige sur ce iervalle, doc y adme ue racie. Parie III III.A. E es o vide (coie la focio ulle) e es sable par combiaiso liéaire e e e : Soie (f ;f ) E e ( ; ) C o doi morer que f + f E.Par hypohèse: 9 R, lim f() = f () 9 R, lim = O pose alors > ma( ; ) e f ) + f () = f () + f ()! > : + : = E es u sous-espace de C (I; C) III.A.bis ) comme [;[½ [ ;[ les focios f e g so iégrables sur [;[ e doc F e G so dé ies. Pour morer la égligeabilié o revie au quai caeurs: f << g ) 8" > ;9X; X ) jf()j "g() Si o iègre l iégalié sur [;[ o a : soi 8" > ;9X; X ) jf ()j jf()jd f << g ) F << G "g()d "G() III.A.er O a e ( e e ), e e, car e > doc pour > S = [ ;[ e pour, S = R + Doc pour X = sup( ;), X ) e ( e e ) ) e ( e ) Remarque : ou impore quel réel sriceme posiif) Si o iègre pour X sur [;[ (les deu focios éa coiues, posiives, égligeable deva e o a : e d e lim z > z e z = e III.B. Pour f E, > e f() es iégrable sur [;[ car la focio es coiue e lim e µ f() = lim + e µ f() = Il e résule, de lamême maière que précédemme par laméhode de la variaio de lacosae, que la soluio géérale sur I de l équaio E f es y() = e K R e f (). 3

4 y E, 9 ;lim e K R doc K = R e f () e K R e f () Il eise au plus ue soluio das E : f () = e R e f () =. Or lim e =. Doc si eise lim K R e f () = e = R e f ()d e f ()d = Rese à véri er que f E. Doc rouver el que lim f() or f E doc 9, f << f() << ) e f() << e les deu focios so coiues iégrables sur [ ;[ (pour I ), la secode focio éa posiive doc d après les quesios III.A.bis e III.A.er : e f()d << doc f () << e comme f es coiue f E. III.C. o a f = Á(f ) doc f f + f = pour ou. Désigos par K u segme quelcoque de I. e d e ² (i) ) (ii)supposos que la suie (f ) coverge uiforméme sur K vers ue focio oée F. Alors la suie (f ) égale à la suie (f f ) coverge uiforméme sur K vers la focio F F doc vers la focio ulle. Le héorème de dérivaio de la limie d ue suie de focios C s applique alors (CVS de la suie (f )e CVU de la suie (f ) ) ce qui prouve que la focio F es dérivable sur K de dérivée la focio ulle. Ce qui prouve que F es cosae sur K puisque K es u iervalle. ² (ii) ) (i) es évide ² Remarque 5/ : le suje iiialise sur ou compac me semble fau si K es pas u iervalle. III.D. Les deu iégrales proposées eise : - > ( ) f()e es coiue sur [;[ e ( ) f()e» + jf()je << > ++a e e doc lim > (. - u > u lim f( + u)e u es coiue sur [;[ (car + u I ) e jf( + u)j << u > ( + u) a» u > a e doc u u f( + u)e u = O raisoe alors par récurrece sur pour morer f () = e ( ) f()e d ² la formule proposée éa vraie pour = par dé iio de Á: ² Supposos la formule vraie au rag. f () = e ( ) f()e d E oa que f = Á (f ), il vie par hypohèse de récurrece que f () = e par paries ere e A e dériva f ()e = e u f(u) du (de dérivée e f()) : ( ) ( )! f ()e d. Iégros AZ ( ) f ()e d = ( )! AZ (A ) f (A)e A + ( ) f()e d Or il eise R el que f (A) << A lorsque A!. Doc Il e découle que (A ) f (A)e A A» A > f (A)e A << A > A + e A de limie ulle ( ) ( )! f ()e d = ² E coclusio f () = e ( ) f()e d ( ) f()e d ce qui prouve que la formule es vraie au rag +. Z A Z A ( ) ² Or f()e ( ) u d = f( + u)e u du par chageme de variable u =. 4

5 doc e passa à la limie (o a déjà prouver l iégrabilié) III.E.Si f kerá alors > f () = ulle. Aisi Á es ijecive de E das lui-même. ( ) f()e ( ) u d = f( + u)e u du e f()d es la focio ulle doc de dérivée ulle ce qui implique que f es la focio ² Si f = Á(f) alors f véri e l équaio di éreielle f f + f = doc, f = f f E puisque E es u espace vecoriel e que f e f so das E. Aisi Im(Á) es iclus das l esemble des applicaios g de classe C sur I elles que g e g appariee à E. ² Réciproqueme soi g ue applicaio de ce espace. Si o pose f = g g, alors f E (car sous-espace vecoriel) e g véri e l équaio y y + f =. Or g apparie à E doc g = f = Á(f) d après l uicié de la quesio III.B. ² E coclusio Á es u isomorphisme de E sur l esemble des applicaios g de classe C sur I elles que g e g appariee à E (de plus Á es dé ie par Á (g) = g g ): Parie V. V.A. Si f es périodique e coiue sur R alors elle es borée sur R doc e f() es iégrable sur [;[ e doc par variaio de la cosae la soluio géérale sur R de E f es oujours du ype y = e +f () avec f () = e e f(). ² O a égaleme (même chageme de variable q au III.D ) f () = que f P. e u f( + u) du ce qui prouve immédiaeme De l epressio de la soluio géérale, il e résule que f es l uique soluio de E f apparea à P. ² f es ue focio périodique e de classe C sur R a foriori coiue e de classe C par morceau de sore que sa série de Fourier coverge ormaleme sur R vers elle-même. V.B. Comme f es de classe C la relaio ere coe cies de Fourier (qui se rerouve par iégraio par parie) doe : c k (f ) = ik:c k(f ) Par ailleurs f f + f = de sore que c k (f ) c k (f ) + c k (f) =. Aisi ( + ik)c k (f ) + c k (f) = V.C. ² P \ K es évidemme rédui à la focio ulle ce qui prouve que la somme es direce ² si f P, o cherche ue décomposiio f = p + k; p périodique de valeur moyee ulle e k cosae. Le calcul de l iégrale R ¼ R f dos alors k = ¼ ¼ f()d e doc p() = f() k. ² O véri e alors que cee décomposiio covie : f apparie bie à P K. Aisi P = P K. ² De la quesio V.B. résule e pariculier que si la valeur moyee de f es ulle, il e va de même de celle de f car c (f ) = c (f) Aisi P es u sous-espace supplémeaires de sable par Á. ² si f = k es ue cosae o a f = e R ke d = e (ke ) = k doc K es sable par Á. Soi f P Pour, f es somme de sa série de Fourier d après la quesio V.A. e sa valeur moyee es ulle, doc c (f) = Doc g () = X c k(g )e ik + c k (g )e ik. kn Par ailleurs c k (g ) = ik c k(g ) d après la quesio V.B. e doc c k (g ) = ck (g ik ) de sore que g () = XkN ik c ( ik) k (g )e ik + c (+ik) k (g )e Or, pour k N, o a j ikj p e, comme la série de Fourier de g coverge ormaleme, la série X kn jc k(g )j + jc k (g )j coverge (o oe S sa somme). S Il e résule que jg ()j ( p pour ou réel ce qui prouve bie la covergece uiforme de la suie (g ) ) vers la focio ulle. 5

6 Soi f P f se décompose e f = g + k avec g P e k la valeur moyee de f. O a alors Á(f) = Á(g) + Á(k): Or Á(k) = k (cf sabilié de K ) e doc Á(f) = Á(g) + k e par récurrece Á (f) = Á (g) + k. Comme Á (g) coverge uiforméme vers, Á (f) coverge uiforméme vers k sa valeur moyee E coclusio, pour f P, la suie (f ) coverge uiforméme sur R vers la valeur moyee de f. 6

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Intégrales dépendant d un paramètre

Intégrales dépendant d un paramètre [hp://mp.cpgedupuydelome.fr] édié le 3 avril 5 Eocés Iégrales dépeda d u paramère Covergece domiée Exercice [ 9 ] [correcio] Calculer les limies des suies do les ermes gééraux so les suivas : a) u = π/4

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Développement en Série de Fourier

Développement en Série de Fourier F-IRIS-5.ex Développeme e Série de Fourier Développer e série de Fourier les focios de période T défiies aisi : a b { f impaire T = f = si ] ; { f paire T = f = si ; ] Faire das chaque cas ue représeaio

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

Trading de Volatilité

Trading de Volatilité M émoire moire d Eude d Approfodisseme Tradig de Volailié Chrisia DIDION & Thomas JANNAUD Valdo DURRLEMAN Ecole Polyechique Sommaire Iroducio. Modèle de Blac-Scholes. Iroducio 44. Modèle de Blac & Scholes..5

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Définition d un Template

Définition d un Template Objectif Ce document a pour objectif de vous accompagner dans l utilisation des templates EuroPerformance. Il définit les différents modèles et exemples proposés. Définition d un Template Un template est

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

M e t h o d o l o g i e s & W o r k i n g p a p e r s. Manuel des indices des prix de l immobilier résidentiel

M e t h o d o l o g i e s & W o r k i n g p a p e r s. Manuel des indices des prix de l immobilier résidentiel M e h o d o l o g i e s & W o r k i g p a p e r s Mauel des idices des prix de l immobilier résideiel Édiio 23 M e h o d o l o g i e s & W o r k i g p a p e r s Mauel des idices des prix de l immobilier

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

BTS BAT 1 Notions élémentaires de chimie 1

BTS BAT 1 Notions élémentaires de chimie 1 BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Gestion hybride de la mémoire dynamique dans les systèmes Java temps-réel

Gestion hybride de la mémoire dynamique dans les systèmes Java temps-réel Gestion hybride de la mémoire dynamique dans les systèmes Java temps-réel Nicolas Berthier Stage de Magistère M encadré par Christophe Rippert et Guillaume Salagnac Laboratoire Vérimag Septembre 007 Résumé

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

!" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $'

! #$#% #& ' ( &)(*% * $*' )#*(+#%(' $#),)- '(*+.%#'#/* ') $' !" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $' &!*#$)'#*&)"$#().*0$#1' '#'((#)"*$$# ' /("("2"(' 3'"1#* "# ),," "*(+$#1' /&"()"2$)'#,, '#' $)'#2)"#2%#"!*&# )' )&&2) -)#( / 2) /$$*%$)'#*+)

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

+, -. / 0 1! " #! $ % % %! &' ( &))*

+, -. / 0 1!  #! $ % % %! &' ( &))* !"#!$%% +,-. /01 %!&'(&))* 23%#!! " # " " " "$! 4 5-6 4! 1! " # - 5! " # 6 3! " # 7! " # " 8! 9 : ; 5 7 4! 1! # 42 5! 5 < 44 3! # " 7! 41 5 8 '9 4! " $ = " > 4!4 *% 43 4!1? 48 4 4!5 $ 9 4!3 4@ 4!7 $ #

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Comportement mécanique d'un faisceau de câble automobile

Comportement mécanique d'un faisceau de câble automobile SP7 : Élecroique Sysème Posiioeme Allocaio Câble Eviroeme (E-SPACE) Comporeme mécaique d'u faisceau de câble auomobile Travaux de Gwedal CUMUNEL préseés par Olivia PENAS LISMMA - Supméca 1 Pla SP7: ESPACE

Plus en détail

Développement d'un projet informatique

Développement d'un projet informatique Développement d'un projet informatique par Emmanuel Delahaye (Espace personnel d'emmanuel Delahaye) Date de publication : 27 janvier 2008 Dernière mise à jour : 25 avril 2009 Cet article présente un certain

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I. PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS CONCOURS EXTERNE ÉPREUVES D ADMISSION session 2010 TRAVAUX PRATIQUES DE CONTRE-OPTION DU SECTEUR A CANDIDATS DES SECTEURS B ET C

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure Sylvain Meille To cite this version: Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa

Plus en détail