Les ondes progressives périodiques (correction)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les ondes progressives périodiques (correction)"

Transcription

1 Les ondes progressives périodiques (correction) Objectif : Déterminer les propriétés d une onde progressive périodique. 1 PROPRIETES DES ONDES PERIODIQUES SINUSOÏDALES 1.1 Mise en place du dispositif expérimental On alimente l émetteur ultrasonore avec une alimentation continue délivrant une tension ne dépassant pas 12 V. Vérifier le signal ultrasonore émis à l aide de l oscilloscope (amplitude de l ordre de 12 V). 1. Représenter l oscillogramme obtenu. Noter les réglages de l oscilloscope. 4 T = 10 div Sensibilité verticale (base de temps) : 10 µs/div Sensibilité horizontale (calibre) en voie 1 : 5 V/div 2. Expliquer comment déterminer la fréquence f S et l amplitude du signal à partir de l oscillogramme (ajuster le réglage de l oscilloscope pour faire des mesures les plus précises possibles). Les calculer. Sur l oscillogramme, on repère que 4 périodes correspondent à 10 divisions : on en déduit qu une période correspond à 2,5 divisions ; compte tenu de la base de temps, on en déduit T = 2,5 x 10 = 25 µs. La fréquence du signal est donc fs 4, 0.10 Hz 40 khz 6 T L amplitude se détermine à l aide de la tension crête-à-crête U cc : cette tension correspond à 4 divisions, ce qui permet d en déduire que l amplitude U m correspond à 2 divisions, soit compte tenu du calibre U V m 1.2 Détermination de la périodicité temporelle de l onde ultrasonore Positionner le récepteur face à l émetteur. Visualiser le signal émis sur la voie 1 et le signal reçu sur la voie 2 de l oscilloscope. 1. Faire le schéma du montage et noter les réglages de l oscilloscope. 1

2 Sensibilité verticale (base de temps) : 10 µs/div Sensibilité horizontale (calibre) en voie 1 : 5 V/div en voie 2 : 0,5 V/div 2. Déterminer la période T du signal reçu. Faire une remarque sur les périodes des signaux émis et reçu. La période T du signal reçu correspond elle aussi à 2,5 divisions dans la même base de temps : la période T est donc identique à celle du signal émis, T = 25 µs. Le son émis par le récepteur a la même période que celui reçu par le récepteur, ce qui est plutôt rassurant : le micro (récepteur) reçoit un (ultra)son de même hauteur (aigu) que le son émis par le haut-parleur (émetteur) 1.3 Détermination de la périodicité spatiale de l onde ultrasonore Emetteur fixé, positionner le récepteur tel que le signal émis et le signal reçu soit en phase. Repérer la position x 1 du récepteur. Déplacer le récepteur de façon à retrouver les deux signaux en phase. Repérer la position x 2. La distance x 2 x 1 est appelée longueur d onde ou période spatiale. Pour la mesurer de façon plus précise, on déplace le récepteur de 10 longueurs d onde. 1. Définir la longueur d onde ou période spatiale. On appelle longueur d onde la distance séparant deux points vibrant en phase animés simultanément du même mouvement. Il s agit également de la distance parcourue par l onde sur une durée égale à sa période. 2. Déterminer la longueur d onde de l onde ultrasonore. La méthode utilisée est une application directe de la définition précédente. En partant d un point de l espace où les signaux émis et reçus sont en phase, lorsqu on déplace le récepteur par rapport à l émetteur, on observe que les signaux observés se déphasent ; lorsqu ils reviennent en phase, la distance parcourue par le récepteur est par définition égale à la longueur d onde du signal émis. En raisonnant ainsi sur 10 longueurs d onde, on gagne en précision. On détermine ici 10 = 8,5 cm, ce qui permet de dire que = 8,5 mm 1.4 Relation entre la périodicité temporelle et la période spatiale de l onde ultrasonore 1. Noter vos valeurs de la période spatiale et la période temporelle T de l onde ultrasonore. Nous avons déterminé T = 25 µs et = 8,5 mm. 2. Calculer le rapport entre ces deux grandeurs et conclure. T 2

3 3 8, , 4.10 m. s 340 m. s 6 T Ce rapport donne une valeur qui est proche de la célérité des ondes sonores dans l air à température ambiante. L air n est pas un milieu dispersif pour les ondes sonores : ainsi, les ultrasons (de fréquence supérieure à 20 khz) se propagent à la même vitesse que les sons. 3. Ecrire la relation entre la période spatiale et la période temporelle T d une onde en précisant les unités de chaque grandeur. D après la remarque précédente, on peut écrire v T où est la longueur d onde de l onde en mètres (m), v sa célérité en mètres par seconde (m.s 1 ) et T sa période en secondes (s). 2 LA DIFFRACTION DES ONDES ULTRASONORES (ONDES MECANIQUES) 2.1 Expérience Le récepteur est placé dans l axe de l émetteur d ultrasons. Il est relié à l entrée Y A de l oscilloscope et se déplace sur un demi-cercle gradué. On dispose d une fente de largeur a = 0,8 cm à interposer entre l émetteur et le récepteur selon l expérience. On note l angle entre l axe émetteur-fente et l axe fente- récepteur, en, et 2U la valeur de la tension crête-àcrête de la tension en réception, en mv, mesurée à l oscilloscope. Faire le schéma annoté du dispositif expérimental. 2.2 Observations Noter vos observations sans et avec la présence de la fente. Faire vérifier les valeurs obtenues. Sans fente (émetteur et récepteur à 25 cm l un de l autre) ( ) U (mv) 0,91 0,90 0,85 0,78 0,67 0,59 0,49 0,38 0,30 0,16 0,09 (les mesures de 60 à 0 sont les symétriques des précédentes) Avec une fente de 2 cm de diamètre (près du récepteur) ( ) 0 5 7, U (mv) 0,64 0,60 0,56 0,44 0,40 0,41 0,40 3

4 ( ) U (mv) 0,32 0,29 0,24 0,21 0,18 0,14 0,13 (les mesures de 60 à 0 sont les symétriques des précédentes) 2.3 Exploitation Tracer les courbes donnant 2U (mv) en fonction de ( ). Sans la fente Avec la fente 2.4 Conclusion Le phénomène de diffraction des ondes ultrasonores de longueur d onde = 0,85 cm par une fente de largeur 0,8 cm apparaît nettement : on observe des minima et des maxima d intensité sonore en réception qui ne coïncident pas avec les observations faites en l absence de fente la diffraction apparaît bien comme un écart à une théorie géométrique simple de propagation du son (répartition décroissante de l intensité de part et d autre de l axe de l émetteur). Ce phénomène apparaît car la largeur de la fente est de l ordre de grandeur de la longueur d onde de l onde ultrasonore utilisée. 3 DIFFRACTION DES ONDES LUMINEUSES (ONDES ELECTROMAGNETIQUES) 3.1 Expérience Distance laser fente : quelques cm. Distance fente écran : 2 m. Le laser ou la diode laser émet une radiation monochromatique de = 0,67 m. On place devant cette source une fente de différentes largeurs : a 1 = 0,1 mm, a 2 = 0,2 mm et a 3 = 0,4 mm. On observe le phénomène sur un écran constitué d une feuille de papier blanc pour reproduire les figures de diffraction. 3.2 Exploitation et questions 1. Qu observe-t-on sur l écran? 4

5 On observe à l écran la formation de taches horizontales de part et d autre du point central correspondant à l axe du laser et à son éclairement en l absence de fentes. La largeur des taches dépend de la taille des fentes utilisées. 2. Que dire de la nature de la lumière? Justifier. Le phénomène de diffraction est caractéristique des ondes mécaniques progressives et périodiques. On peut donc en déduire que la lumière est une onde périodique, sans pouvoir la qualifier d onde mécanique et progressive car nous savons qu elle n a pas nécessairement besoin d un support matériel pour se propager. Quoi qu il en soit, il faut y voir ici la preuve expérimentale que la lumière est une onde périodique! 3. Préciser la direction de la figure de diffraction pour une fente verticale puis horizontale. La figure de diffraction est la même pour une fente verticale et pour une fente horizontale : seule son orientation change. Pour une fente verticale, la figure de diffraction s'étale horizontalement ; pour une fente horizontale, la figure de diffraction s'étale verticalement. Tout dépend en fait de la direction dans laquelle la lumière est contrainte par la taille de la fente : une fente verticale diaphragme la lumière horizontalement, ce qui explique l'horizontalité de la figure obtenue. 4. Reproduire la figure de diffraction pour une taille de fente. 5. Comment varie la figure de diffraction en fonction de la taille de fente? Plus la fente est étroite, plus le phénomène de diffraction est marqué : la largeur des taches obtenue augmente. 6. Reproduire le schéma suivant et placer : F le milieu de la fente. E le milieu de la tâche centrale de diffraction, D = FE (la distance fente-écran, remarque : D >> a). A et B les milieux des 2 premiers minimums (ou extinction) ou largeur de la tâche centrale. EA = EB = d, l angle entre les directions FE et FA ou FB ( est l ouverture angulaire ou demi-écart angulaire du faisceau diffracté par rapport au faisceau incident). 7. Mesurer D et AB puis déterminer d pour les 3 fentes. Nous obtenons les mesures suivantes. Pour les trois fentes, on fixe D = 2,00 m. Pour la fente de a = 0,1 mm, on obtient AB = 2,4 cm et d = 1,2 cm. Pour la fente de a = 0,2 mm, on obtient AB = 1,2 cm et d = 0,6 cm. Pour la fente de a = 0,4 mm, on obtient AB = 0,6 cm et d = 0,3 cm. 5

6 8. Comment déterminer de manière expérimentale en fonction de d et D (à partir du schéma du 6)? On rappelle que, pour les petits angles, tan sin (avec en radian). Noter les unités dans cette relation. On considère, sur le schéma précédent, le triangle FAE rectangle en E. La trigonométrie nous donne la relation d tan D qui, puisque θ est petit, peut être approchée par la relation d D Dans cette dernière relation, θ est en radians (rad) si d et D sont exprimés en mètres (m). L étude mathématique de la diffraction montre que les premiers miniums sont obtenus pour sin = + a. est un petit angle donc sin (en radian) d où : (théorique) + a avec l ouverture angulaire du faisceau diffracté (en radian), la longueur d onde (en m) et a la largeur de la fente (en m). 9. Compléter le tableau suivant. fente a (mm) 0,1 0,2 0,4 (expérimentale) = 6, , , (théorique) = a 6, , , théorique expériementale théorique x % 12% 12 % Si l on trace θ en fonction de a, on observe un alignement des points expérimentaux qui ressemble à la courbe représentative de la fonction inverse f(x) = 1/x. q (rad) 7,00E-03 q = f(a) 6,00E-03 5,00E-03 4,00E-03 3,00E-03 2,00E-03 1,00E-03 0,00E+00 a (mm) 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 6

7 On peut donc essayer de tracer θ en fonction de 1/a : La graphique précédent montre que l'écart angulaire de la tache centrale est proportionnel à l'inverse de la largeur de la fente, 1/a. La constante de proportionnalité est de l'ordre de m, c'est-à-dire de 600 nm : c'est l'ordre de grandeur de la longueur d'onde de la lumière laser utilisée. On peut donc conjecturer la relation Pour les fils a Diamètre du fil (µm) Largeur de tache centrale (mm) (expérimentale) = 1, , , , , , (théorique) = a 1, , , , , , théorique expériementale théorique x Pour quelle fente le phénomène de diffraction est-il le plus important? C est pour la fente la plus étroite, a = 0,1 mm, que la tache centrale est la plus large et le phénomène de diffraction le plus marqué. 7

8 11. Comment expliquer les minimums correspondant à «du noir»? Tout se passe comme si les points de la fente éclairés par le laser se comportaient comme des sources secondaires de lumière ; ces sources interfèrent les unes avec les autres et on observe la formation de zones sombres. La justification complète de l'apparition de la figure de diffraction fait intervenir des calculs mathématiques complexes vus dans l'enseignement supérieur ; pour vous en donner une idée, vous pouvez consulter cet article. 4 BILAN GENERAL Dans ce TP, nous sommes revenus sur deux caractéristiques des ondes progressives et périodiques : leurs périodes temporelle T et spatiale. Nous avons montré que les deux grandeurs sont liées par la relation v T qui explicite que la longueur d'onde est la distance parcourue par l'onde à la célérité v pendant la durée d'une période T. Les ondes mécaniques progressives, comme les ondes ultrasonores, subissent le phénomène de diffraction si elles rencontrent un obstacle dont l'étroitesse est petite : l'onde diffractée présente des fronts d'onde caractéristiques et son intensité est diminuée par endroits alors qu'elle est amplifiée à d'autres. La lumière n'est pas une onde mécanique, puisqu'elle peut se propager dans le vide ; toute fois, elle subit elle aussi le phénomène de diffraction si elle rencontre des obstacles d'une taille inférieure ou égale au dixième de millimètre : la lumière est bien une onde, mais elle n'est pas mécanique. C'est une onde électromagnétique. La figure de diffraction obtenue montre bien, elle aussi, des minima et des maxima d'intensité lumineuse ; on peut également dire que la diffraction de la lumière est une entorse à la loi géométrique de propagation de la lumière, puisque la figure de diffraction n'est pas prévue par l'hypothèse de propagation rectiligne de la lumière. L'étude de la diffraction de la lumière par une fente de largeur a (de l'ordre du dixième de millimètre) nous a conduit à trouver une relation approchée liant sa longueur d'onde à la largeur angulaire de la tache centrale de diffraction observée, à condition que cette dernière reste petite a où les longueurs sont exprimées en mètres et en radians. 8

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

Observer TP Ondes CELERITE DES ONDES SONORES

Observer TP Ondes CELERITE DES ONDES SONORES OBJECTIFS CELERITE DES ONDES SONORES Mesurer la célérité des ondes sonores dans l'air, à température ambiante. Utilisation d un oscilloscope en mode numérique Exploitation de l acquisition par régressif.

Plus en détail

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction :

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction : Cours Physique Interaction onde-matière classe : 4 ème Maths 3+Tech I- Introduction : En laissant l œil semi-ouvert lors de la réception de la lumière on observe des annaux alternativement brillants et

Plus en détail

TP Diffraction et Interférence DIFFRACTIONS ET INTERFERENCES

TP Diffraction et Interférence DIFFRACTIONS ET INTERFERENCES OBJECTIFS Observation de la diffraction. Observation des interférences. I ) DIFFRACTION D ONDES A LA SURFACE DE L EAU Sur la photographie ci-dessous, on observe que les vagues, initialement rectilignes,

Plus en détail

Signal et propagation

Signal et propagation SP1 Signal et propagation Exercice 1 Communication à distance Identifier des types de signaux et les grandeurs physiques correspondantes Déterminer comment changer la nature d un signal On considère deux

Plus en détail

Force de tension d une corde

Force de tension d une corde Force de tension d une corde 1.a. Deux façons de répondre à la question : 25 images 1 seconde 1 image T T = 1/25 = 0,04 s. 25 images par seconde représente la fréquence de prise de vue. Or T = 1/f donc

Plus en détail

TUTORAT UE 3 2015-2016 Biophysique Colle n 1

TUTORAT UE 3 2015-2016 Biophysique Colle n 1 TUTORAT UE 3 2015-2016 Biophysique Colle n 1 Données : Champ de pesanteur terrestre : g = 9,81 N.kg -1 Constante de Planck : h = 6,62.10-34 SI Masse de l électron : m e- = 9,1.10-31 kg Charge élémentaire

Plus en détail

Chapitre 2 Caractéristiques des ondes

Chapitre 2 Caractéristiques des ondes Chapitre Caractéristiques des ondes Manuel pages 31 à 50 Choix pédagogiques Le cours de ce chapitre débute par l étude de la propagation des ondes progressives. La description de ce phénomène est illustrée

Plus en détail

Effet Doppler. I. Description

Effet Doppler. I. Description Effet Doppler Objectifs : Construire et appliquer un protocole permettant de réaliser la mesure du changement de la fréquence d un signal ultrasonore après réflexion sur une plaque en mouvement rectiligne

Plus en détail

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Baccalauréat Professionnel SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES Champ professionnel : Alarme Sécurité Incendie SOUS - EPREUVE E12 TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Durée 3 heures coefficient 2 Note

Plus en détail

EXERCICES Optique physique 2 Michelson et diffraction

EXERCICES Optique physique 2 Michelson et diffraction EXERCICES Optique physique 2 Michelson et diffraction O21 Interféromètre de Michelson On raisonne sur l interféromètre de Michelson réglé de telle sorte que l on observe des anneaux avec une source étendue.

Plus en détail

ECE BLANC 4 : PARCE QUE VOUS LE VALEZ BIEN!

ECE BLANC 4 : PARCE QUE VOUS LE VALEZ BIEN! TS Thème : Observer ECE BLANC 4 : PARCE QUE VOUS LE VALEZ BIEN! Compétences travaillées (capacités et attitudes) : ANA : proposer une stratégie (protocole expérimental) pour répondre à un problème posé.

Plus en détail

Ondes sonores et ultrasonores - Corrigé. D après l oscillogramme, B reçoit le signal avec un décalage de 6,0 divisions par rapport à A.

Ondes sonores et ultrasonores - Corrigé. D après l oscillogramme, B reçoit le signal avec un décalage de 6,0 divisions par rapport à A. Ondes sonores et ultrasonores - Corrigé Partie A : Ondes ultrasonores. I. Mesure de la célérité des ultrasons dans l air. A. Première méthode : émetteur en mode «salves» 1. Détermination du retard τ avec

Plus en détail

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS Matériel : Un GBF Un haut-parleur Un microphone avec adaptateur fiche banane Une DEL Une résistance

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

TP 6 initiation à l utilisation d un oscilloscope numérique

TP 6 initiation à l utilisation d un oscilloscope numérique TP 6 initiation à l utilisation d un oscilloscope numérique Objectifs : - Le but de cette manipulation est de connaître les fonctionnalités d un oscilloscope numérique Tektronix TDS (210 ou 1001B) bicourbe,

Plus en détail

Prise en main de l oscilloscope. TP1

Prise en main de l oscilloscope. TP1 1. UTILISATION D UN OSCILLOSCOPE POUR LA MESURE D UNE TENSION CONTINUE. 1.1. Repérage des groupes de fonction. Zone ➊ : Assure la fonction MISE EN SERVICE Zone➋ : Assure la fonction ENTREE DES TENSIONS

Plus en détail

1/6 TP de physique n 1 UTILISATION DE L OSCILLOSCOPE Terminale

1/6 TP de physique n 1 UTILISATION DE L OSCILLOSCOPE Terminale 1/6 TP de physique n 1 UTILISATION DE L OSCILLOSCOPE Terminale I. BUT - Utiliser un oscilloscope pour mesurer des fréquences et des tensions - Déterminer la fréquence d un émetteur à ultrasons (noté US)

Plus en détail

Quelles sont les caractéristiques de l image d un journal? Pourquoi l œil ne distingue-t-il pas la trame de l image?

Quelles sont les caractéristiques de l image d un journal? Pourquoi l œil ne distingue-t-il pas la trame de l image? TP spécialité élec. N 1Conversion d une image en signal électrique. Principe de la TV. 1 / 7 I- Perception des images. 1)- La perception. - Une image est destinée à être vue par l œil. La prise de vue,

Plus en détail

TS1 - DST de Physique-Chimie 04/11/2013-2 h

TS1 - DST de Physique-Chimie 04/11/2013-2 h NOM : PRÉNOM : CLASSE : TS1 - DST de Physique-Chimie 04/11/2013-2 h COMPETENCES EVALUEES (A = acquis ; E = en cours d acquisition ; N = non acquis) Ex1 Ex2 Ex3 Rédiger et présenter son devoir. Restituer

Plus en détail

GEL 1002 Systèmes & mesures. Chapitre 5 :

GEL 1002 Systèmes & mesures. Chapitre 5 : Automne 2012 GEL 1002 Systèmes & mesures Chapitre 5 : Oscilloscopes Jérôme Cros 4 octobre 2012 Principe de fonctionnement d un tube cathodique pour un oscilloscope Y-Y : Plaques de déviation verticale

Plus en détail

Objectifs : Pour illustrer l échographie, nous allons ici étudier la production et la détection des ultrasons

Objectifs : Pour illustrer l échographie, nous allons ici étudier la production et la détection des ultrasons Document élève 1/9 Nom : Prénom : Classe : Date : Objectifs : Physique Chimie Thème : La Santé LE PRINCIPE DE L ECHOGRAPHIE - Comprendre que la nature des matériaux a une influence sur les phénomènes d

Plus en détail

Fiche à destination des enseignants TS 2 CD ou DVD?

Fiche à destination des enseignants TS 2 CD ou DVD? Fiche à destination des enseignants TS 2 CD ou DVD? Type d'activité Activité expérimentale ou évaluation expérimentale, type ECE Objectifs Pré-requis Conditions de mise en œuvre Liste du matériel, par

Plus en détail

Les ondes au service du diagnostic médical

Les ondes au service du diagnostic médical Chapitre 12 Les ondes au service du diagnostic médical A la fin de ce chapitre Notions et contenus SAV APP ANA VAL REA Je maitrise Je ne maitrise pas Signaux périodiques : période, fréquence, tension maximale,

Plus en détail

Etude de signaux observés sur un oscilloscope

Etude de signaux observés sur un oscilloscope Etude de signaux observés sur un oscilloscope Exercice 1 : Signaux observés sur un oscilloscope Pour ces différents signaux, donner le nom du signal si cela est possible, noter sa période, hachurer au

Plus en détail

EXERCICE I : Où il est question de lumière (8 points) PARTIE A. Figure 2

EXERCICE I : Où il est question de lumière (8 points) PARTIE A. Figure 2 EXERCICE I : Où il est question de lumière (8 points) PARTIE A 1. Figure 2 D On observe sur l'écran un étalement du faisceau laser, perpendiculaire à la direction du fil, constitué d'une tache centrale

Plus en détail

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre TP fibres optiques Laser, Matériaux, Milieux Biologiques Sécurité laser ATTENTION : la diode laser à 810 nm est puissante (50 mw). Pour des raisons de sécurité et de sauvegarde de la santé des yeux, vous

Plus en détail

TP 0: Initiation à l utilisation d un oscilloscope numérique

TP 0: Initiation à l utilisation d un oscilloscope numérique FOUGERAY P. ANNE J.F. TP 0: Initiation à l utilisation d un oscilloscope numérique Objectifs : - Le but de cette manipulation est de connaître les fonctionnalités d un oscilloscope numérique bi courbe,

Plus en détail

Paire Amplitude de l onde 1 Amplitude de l onde 2 Différence de phase A 3 mm 6 mm π rad B 5 mm 1 mm 0 rad C 9 mm 7 mm π rad D 2 mm 2 mm 0 rad

Paire Amplitude de l onde 1 Amplitude de l onde 2 Différence de phase A 3 mm 6 mm π rad B 5 mm 1 mm 0 rad C 9 mm 7 mm π rad D 2 mm 2 mm 0 rad 1. Laquelle des affirmations suivantes est fausse? A) Pas toutes les ondes ne sont des ondes mécaniques. B) Une onde longitudinale est une onde où les particules se déplacent de l avant à l arrière dans

Plus en détail

Correction des exercices sur les ondes progressives sinusoïdales

Correction des exercices sur les ondes progressives sinusoïdales CORRECTION EXERCICES TS 1/5 ONDES PROGRESSIVES SINUSOÏDALES Correction des exercices sur les ondes progressives sinusoïdales Correction de l exercice 1 : le téléphone pot de yaourt A A PROPOS DES ONDES

Plus en détail

Exercice 1. AUTOUR DE LA VOITURE (7 points) http://labolycee.org. Partie A : Le stationnement «ultra-simple» avec les ultrasons

Exercice 1. AUTOUR DE LA VOITURE (7 points) http://labolycee.org. Partie A : Le stationnement «ultra-simple» avec les ultrasons Afrique 2008 Les parties A et B sont indépendantes. Exercice 1. AUTOUR DE LA VOITURE (7 points) http://labolycee.org Partie A : Le stationnement «ultra-simple» avec les ultrasons Les ultrasons sont des

Plus en détail

Diffraction. Comment mesurer le diamètre d un cheveu?...

Diffraction. Comment mesurer le diamètre d un cheveu?... Diffraction Comment mesurer le diamètre d un cheveu?... Doc. 1. Classes d un laser : Selon la puissance et la longueur d'onde d'émission du laser, celui-ci peut représenter un réel danger pour la vue et

Plus en détail

F - Optique de Fourier, filtrage d images (détramage et strioscopie)

F - Optique de Fourier, filtrage d images (détramage et strioscopie) F - Optique de Fourier, filtrage d images (détramage et strioscopie) I - Montage : Il comporte 3 parties : le banc de mise en forme du faisceau (réalisation d un faisceau parallèle, large et homogène),

Plus en détail

Amplificateur à fibre dopée erbium

Amplificateur à fibre dopée erbium Amplificateur à fibre dopée erbium Laser, Matériaux, Milieux Biologiques Sécurité laser ATTENTION : la diode laser à 980 nm est puissante (100 mw). Pour des raisons de sécurité et de sauvegarde de la santé

Plus en détail

T.P. n 4. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe

T.P. n 4. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe T.P. n 4 polytech-instrumentation.fr 0 825 563 563 0,15 TTC /min à partir d un poste fixe Redressement d une tension I. Objectifs Redressement d une tension alternative par le moyen de diodes. Transformation

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens.

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Objectifs Connaître les caractéristiques de la structure gaussienne d un faisceau laser (waist, longueur

Plus en détail

Sujet. calculatrice: autorisée durée: 4 heures

Sujet. calculatrice: autorisée durée: 4 heures DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Approche d'un projecteur de diapositives...2 I.Questions préliminaires...2 A.Lentille divergente...2 B.Lentille convergente et

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

P5 Ondes acoustiques ; acoustique musicale

P5 Ondes acoustiques ; acoustique musicale Ondes acoustiques ; acoustique musicale On appelle onde mécanique le phénomène de propagation d une perturbation dans un milieu élastique, sans transport de matière mais avec transport d énergie. L exemple

Plus en détail

Lentilles Détermination de distances focales

Lentilles Détermination de distances focales Lentilles Détermination de distances focales Résumé Les lentilles sont capables de faire converger ou diverger un faisceau lumineux. La distance focale f d une lentille caractérise cette convergence ou

Plus en détail

Niveau 2 nde THEME : LA SANTE. Programme : BO spécial n 4 du 29/04/10 LA SANTE

Niveau 2 nde THEME : LA SANTE. Programme : BO spécial n 4 du 29/04/10 LA SANTE Document du professeur 1/10 Niveau 2 nde THEME : LA SANTE Physique Chimie PROPAGATION DES ONDES ULTRASONORES Programme : BO spécial n 4 du 29/04/10 LA SANTE NOTIONS ET CONTENUS COMPÉTENCES ATTENDUES Le

Plus en détail

CELLULE DE POCKELS : MESURE DU DEPHASAGE

CELLULE DE POCKELS : MESURE DU DEPHASAGE CELLULE DE POCKELS : MESURE DU DEPHASAGE Durée : 3H. Ce T.P. comporte 5 pages. 1. MATERIEL / LOGICIELS / DOCUMENTATION Laser He-Ne polarisé - Polariseurs - Lame /4 - Puissancemètre - Cellule de Pockels

Plus en détail

TP oscilloscope et GBF

TP oscilloscope et GBF TP oscilloscope et GBF Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : ce travail a pour buts de manipuler l oscilloscope et le GBF. A l issu de celui-ci, toutes les fonctions essentielles

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

Propriétés ondulatoires du son

Propriétés ondulatoires du son Propriétés ondulatoires du son But de la manipulation : Illustrer le caractère ondulatoire du son. Introduction : Pour se convaincre que le son est une onde, il suffit de montrer que son comportement est

Plus en détail

DUT GEII - DUT 1 TRAVAUX PRATIQUES D ÉLECTRONIQUE

DUT GEII - DUT 1 TRAVAUX PRATIQUES D ÉLECTRONIQUE DU GEII - DU 1 RAVAUX PRAIQUES D ÉLECRONIQUE P1: PRISE EN MAIN DU MAÉRIEL - NOIONS DE BASE Objectifs du P : 1. Connaitre le matériel utilisé lors des séances de P d électronique : Oscilloscope numérique

Plus en détail

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 TP A.1 Page 1/5 BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 Ce document comprend : - une fiche descriptive du sujet destinée à l examinateur : Page 2/5 - une

Plus en détail

MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE

MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE Licence de Physique 2000-2001 Université F. Rabelais UFR Sciences & Techniques P. Drevet 1 A1 - GONIOMETRE DE BABINET I. PRINCIPE

Plus en détail

Chapitre n 3 : Propriétés des ondes

Chapitre n 3 : Propriétés des ondes T6S 23 24 Thème A: Observer Chapitre n 3 : Propriétés des ondes Les ondes mécaniques (sons musicaux, ondes sismiques, ) et les ondes électromagnétiques (lumière visible et invisible) ont des propriétés

Plus en détail

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques 1 Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques 1 Introduction Détection par effet mirage Mesures photothermiques La méthode de détection par effet mirage fait partie de méthodes

Plus en détail

DOSSIER TECHNIQUE : AIDE AU STATIONNEMENT

DOSSIER TECHNIQUE : AIDE AU STATIONNEMENT Educauto.org 20-01-05, Jean REYNAUD, Lycée JC Aubry, Bourgoin-Jallieu (38) Page 1 sur 7 DOSSIER TECHNIQUE : AIDE AU STATIONNEMENT Introduction Garer son véhicule, effectuer une manœuvre en toute sécurité,

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Notice de présentation et d'utilisation d'un ensemble d'appareils de mesure

Notice de présentation et d'utilisation d'un ensemble d'appareils de mesure Notice de présentation et d'utilisation d'un ensemble d'appareils de mesure A) ANALYSE FONCTIONNELLE DU SYSTEME I) Présentation de l organisation d une mesure. Une mesure se fait en 3 étapes successives.

Plus en détail

L C D T P I è r e B C P a g e 1. TP 3: Oscilloscope

L C D T P I è r e B C P a g e 1. TP 3: Oscilloscope L C D T P I è r e B C P a g e 1 TP 3: Oscilloscope L C D T P I è r e B C P a g e 2 Partie I : familiarisation avec l oscilloscope 1. Description et mise en marche Utilité : Un oscilloscope permet d analyser

Plus en détail

CH 06 UTILISATION DE L OSCILLOSCOPE

CH 06 UTILISATION DE L OSCILLOSCOPE CH 06 UTILISATION DE L OSCILLOSCOPE Pendant tout le TP vous utiliserez la Fiche méthode de l oscilloscope OX 71 Livre Bordas, Collection ESPACE, 2008, p 183 I- FONCTIONNEMENT Mettre l appareil sous tension.

Plus en détail

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE I LE PHENOMENE DE DISPERSION 1 Expérience 2 Observation La lumière émise par la source traverse le prisme, on observe sur l'écran le spectre de la lumière blanche.

Plus en détail

L INTERFEROMETRE DE MICHELSON

L INTERFEROMETRE DE MICHELSON L INTERFEROMETRE DE MICHELSON Chappuis Emilie (chappue0@etu.unige.ch) Fournier Coralie (fournic0@etu.unige.ch) . Introduction.. But de la manipulation. INTERFEROMETRE DE MICHELSON Lors de ce laboratoire,

Plus en détail

TP vélocimétrie. Laser, Matériaux, Milieux Biologiques. Sécurité laser

TP vélocimétrie. Laser, Matériaux, Milieux Biologiques. Sécurité laser TP vélocimétrie Laser, Matériaux, Milieux Biologiques Sécurité ATTENTION : le faisceau du Hélium-Néon utilisé dans cette salle est puissant (supérieur à 15 mw). Il est dangereux et peuvent provoquer des

Plus en détail

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION - 1 - Expérience no 21 1. INTRODUCTION ELEMENTS D OPTIQUE Dans cette expérience les principes de l optique géométrique sont applicables car les obstacles traversés par la lumière sont beaucoup plus grands

Plus en détail

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN) 1/5 Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN) Objectifs : Reconnaître des signaux de nature analogique et des signaux de nature numérique Mettre en

Plus en détail

Oscilloscope - MPSI 1 Lycée Chaptal - 2012. Oscilloscope Élec.1. La fiche sur l appareillage électrique.

Oscilloscope - MPSI 1 Lycée Chaptal - 2012. Oscilloscope Élec.1. La fiche sur l appareillage électrique. Oscilloscope - MPSI 1 Lycée Chaptal - 2012 Oscilloscope Élec.1 TP de Physique Objectifs du TP Document utile Découvrir l oscilloscope ; Comprendre les modes d affichage et les principes de synchronisation

Plus en détail

OBJECTIFS. I. A quoi sert un oscilloscope?

OBJECTIFS. I. A quoi sert un oscilloscope? OBJECTIFS Oscilloscope et générateur basse fréquence (G.B.F.) Siuler le fonctionneent et les réglages d'un oscilloscope Utiliser l oscilloscope pour esurer des tensions continues et alternatives Utiliser

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

3 ème COURS Electricité Chapitre 4 UTILISATION DE L'OSCILLOSCOPE CORRECTION DES EXERCICES. Téléchargé sur http://gwenaelm.free.

3 ème COURS Electricité Chapitre 4 UTILISATION DE L'OSCILLOSCOPE CORRECTION DES EXERCICES. Téléchargé sur http://gwenaelm.free. 3 ème COURS Electricité Chapitre 4 UTILISATION DE L'OSCILLOSCOPE CORRECTION DES EXERCICES Téléchargé sur http://gwenaelm.free.fr/gestclasse Correction : Exercice 1 p 135 C'est le bouton de réglage a) qui

Plus en détail

T.P. n 11. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe

T.P. n 11. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe T.P. n 11 polytech-instrumentation.fr 0 825 563 563 0,15 TTC /min à partir d un poste fixe Utilisation de l oscilloscope à mémoire numérique I. Introduction Avec un oscilloscope numérique, le signal étudié

Plus en détail

Rapport de projet coopératif Mise en œuvre d un télémètre à comparaison de phase

Rapport de projet coopératif Mise en œuvre d un télémètre à comparaison de phase IFIPS ème Année Rapport de projet coopératif Mise en œuvre d un télémètre à comparaison de phase David COLIN Marie DUBOUE Ali EL MOKHTAR Aurélien NOEL Adrien PEREYROL Yann PHAM THAN Jeremy SILBERSTEIN

Plus en détail

OSCILLOSCOPE. Présentation Altitude Tracé. Leçon + ex n 3 page 207 + ex n 18 page 226 chapitre 13 page 198

OSCILLOSCOPE. Présentation Altitude Tracé. Leçon + ex n 3 page 207 + ex n 18 page 226 chapitre 13 page 198 Date: Séquence n OSCILLOSCOPE Présentation Altitude Tracé Leçon + ex n 3 page 207 + ex n 18 page 226 chapitre 13 page 198 Présentation Présentation Présentation Fiche méthode page 247 Présentation Fiche

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

UNE LENTILLE MINCE CONVERGENTE

UNE LENTILLE MINCE CONVERGENTE TS Spécialité-ptique 1-formation d une image T.P-cours de Physique n 1 : IMGE RMEE PR UNE LENTILLE MINCE CNVERGENTE Partie : Produire des Il faudra être capable de : images et observer Positionner sur

Plus en détail

TP 1 : Détecteurs d'ondes et de particules - Correction

TP 1 : Détecteurs d'ondes et de particules - Correction TP : étecteurs d'ondes et de particules - Correction Objectifs : Extraire et exploiter des informations sur des sources d'ondes et de particules et sur un dispositif de détection. Pratiquer une démarche

Plus en détail

SIGNAUX PERIODIQUES (activités de découvertes et acquis du collège)

SIGNAUX PERIODIQUES (activités de découvertes et acquis du collège) Thème SANTE SIGNAUX PERIODIQUES (activités de découvertes et acquis du collège) Acquis du collège : une tension alternative périodique (comme celle du secteur) est une tension qui se répète à l'identique

Plus en détail

Epreuve de Physique. Nom : N o : Série E1 ; février 2015 Classe : 3 eme Durée : 55 minutes

Epreuve de Physique. Nom : N o : Série E1 ; février 2015 Classe : 3 eme Durée : 55 minutes Nom : N o : Epreuve de Physique Série E1 ; février 2015 Classe : 3 eme Durée : 55 minutes L usage de la calculatrice scientifique est autorisé. Les figures de l exercice 1 et exercice 2 seront travaillées

Plus en détail

QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive. Comment installer le format de compression divx?

QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive. Comment installer le format de compression divx? Lycée Bi h t QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive Il semble nécessaire d utiliser des fichiers images, de grande taille généralement, aussi, nous proposons

Plus en détail

Exercice n 1 : Les taches solaires

Exercice n 1 : Les taches solaires Vendredi 14 octobre Contrôle de physique TS spé Sauf indication contraire, tout résultat doit être justifié. Calculatrice autorisée Exercice n 1 : Les taches solaires On se propose d étudier une lunette

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

L oscilloscope Cathodique

L oscilloscope Cathodique Modèle de compte-rendu de TP L oscilloscope Cathodique Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement en temps que compte-rendu

Plus en détail

PROCEDURE DE MISE EN MARCHE DE L OSCILLOSCOPE METRIX OX 803B

PROCEDURE DE MISE EN MARCHE DE L OSCILLOSCOPE METRIX OX 803B 1 ) DESCRIPTION ET INITIALISATION D UN OSCILLOSCOPE Fiche Méthode PROCEDURE DE MISE EN MARCHE DE L OSCILLOSCOPE 1 METRIX OX 803B 9 15 4 7 6 2 14 5 8 17 3 12 11 10 16 13 Les boutons de 9 à 13 sont identiques

Plus en détail

THÈME : LA SANTÉ LE DIAGNOSTIC MÉDICAL ONDES ULTRASONORES PRINCIPE DE L'ECHOGRAPHIE

THÈME : LA SANTÉ LE DIAGNOSTIC MÉDICAL ONDES ULTRASONORES PRINCIPE DE L'ECHOGRAPHIE T.P PHYSIQUE SECONDE. THÈME : LA SANTÉ LE DIAGNOSTIC MÉDICAL ONDES ULTRASONORES PRINCIPE DE L'ECHOGRAPHIE TP P5 F.MISTRAL 2010 NOM :... PRÉNOM :... CLASSE :... DATE :... I. INTRODUCTION a) L échographie

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Repère : SESSION 2008 Durée : 3 H Page : 0/7 Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Page : 1/7 Coefficient : 2

Plus en détail

1) Prise en main de l'oscilloscope numérique et de sa fonction FFT.

1) Prise en main de l'oscilloscope numérique et de sa fonction FFT. TP n 8 : obtention des spectres de signaux usuels. But du TP : ce huitième TP de BTS SE a pour but l'étude de la manière d'obtenir le spectre d'un signal sinusoïdal et carré avec un rapport cyclique variable.

Plus en détail

DIU Echographie - Région Sud-Est - Tronc Commun. DIU Echographie - Région Sud-Est - Tronc Commun. Bases de l'echographie - Michel Dauzat

DIU Echographie - Région Sud-Est - Tronc Commun. DIU Echographie - Région Sud-Est - Tronc Commun. Bases de l'echographie - Michel Dauzat Quatrième partie : la construction de l image échographique. 75 76 Le schéma de principe d un appareil d échographie est simple : une horloge fournit une référence temporelle, donnant le départ des impulsions

Plus en détail

Etude d un afficheur à cristaux liquides (LCD : Liquid Crystal Display)

Etude d un afficheur à cristaux liquides (LCD : Liquid Crystal Display) Etude d un afficheur à cristaux liquides (LCD : Liquid Crystal Display) La partie A décrit la structure et le fonctionnement d une cellule LCD. La partie B décrit le dispositif d étude et les observations

Plus en détail

ECE : Parce que vous le valez bien!

ECE : Parce que vous le valez bien! TS Thème : Observer ECE : Parce que vous le valez bien! DESCRIPTIF DE SUJET DESTINE AU PROFESSEUR Propriétés des ondes Compétences exigibles du B.O. Tâches à réaliser par le candidat Compétences évaluées

Plus en détail

Les lentilles minces TP 3

Les lentilles minces TP 3 TP 3 Les lentilles minces Mots-clefs : lentille convergente, lentille divergente, distance focale, équation de conjugaison, réel, virtuel, méthode de Silbermann, autocollimation. Vous disposez de : un

Plus en détail

1 Introduction générale

1 Introduction générale Expérience n 10 Éléments d optique Domaine: Optique, ondes électromagnétiques Lien avec le cours de Physique Générale: Cette expérience est liée aux chapitres suivants du cours de Physique Générale: -

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

Thibaut DIVOUX & Frédéric PEREZ ENS de Cachan, 2005-2006

Thibaut DIVOUX & Frédéric PEREZ ENS de Cachan, 2005-2006 Montage de Physique 39 : Filtrage (Compte rendu ). 1 Thibaut DIVOUX & Frédéric PEREZ ENS de Cachan, 2005-2006 Introduction Nous avons choisi de couper ce montage en deux parties : une première partie centrée

Plus en détail

obs.1 Lentilles activité

obs.1 Lentilles activité obs.1 Lentilles activité (Lentille mince convergente) 1) première partie : étude qualitative Dans cette manipulation, on va utiliser un banc d optique. On va positionner la lentille de distance focale

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 4 : Les ondes Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. IV- Les ondes Finalité du chapitre Pour

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

Niveau 2 nde THEME : L UNIVERS. Programme : BO n 4 du 29 avril 2010

Niveau 2 nde THEME : L UNIVERS. Programme : BO n 4 du 29 avril 2010 Document du professeur 1/13 Niveau 2 nde THEME : L UNIVERS Physique Chimie LA REFRACTION : LOIS DE SNELL- DESCARTES Programme : BO n 4 du 29 avril 2010 L UNIVERS NOTIONS ET CONTENUS COMPETENCES ATTENDUES

Plus en détail

TP mesures électriques

TP mesures électriques TP0 : FAMILIARISATION AVEC L OSCILLOSCOPE On utilise l oscilloscope HAMEG HM 303-4 dont la face avant est donnée par la figure suivante : L explication de la fonction de chaque touche est donnée sur la

Plus en détail

TP N 3 CARACTERISATION DE DIODE LASER ET DETECTION SYNCHRONE

TP N 3 CARACTERISATION DE DIODE LASER ET DETECTION SYNCHRONE TP N 3 CARACTERISATION DE DIODE LASER ET DETECTION SYNCHRONE PRE-REQUIS SAVOIR : AOP en régime linéaire et non linéaire OBJECTIFS SAVOIR : Valider par le calcul et la mesure, les performances des fonctions

Plus en détail

Chap2 L oscilloscope.

Chap2 L oscilloscope. Chap2 L oscilloscope. Items Connaissances Acquis Fréquence d une tension périodique. Unité de la fréquence dans le Système international (SI). Relation entre la période et la fréquence. Valeur de la fréquence

Plus en détail

Physique Transmission et stockage de l information Chap.22

Physique Transmission et stockage de l information Chap.22 TS Thème : Agir Activités Physique Transmission et stockage de l information Chap.22 I. Transmission de l information 1. Procédés physique de transmission Une chaîne de transmission peut se schématiser

Plus en détail

Structure interne simplifiée d un oscilloscope

Structure interne simplifiée d un oscilloscope Structure interne simplifiée d un oscilloscope 1 Méthodologie d utilisation et mesure Avant de visualiser n importe quel signal { l oscilloscope il faut d abord : Faire apparaître les deux traces lumineuses

Plus en détail

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE TP0 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE I. QU EST-CE QU UNE LENTILLE CONVERGENTE?. Caractéristiques des lentilles disponibles avec le matériel d optique: Définitions : Une lentille est un solide

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

Nom : Prénom : MPI : L oscilloscope et le générateur de fonctions - 1 - RENCONTRE AVEC L OSCILLOSCOPE ET LE GENERATEUR DE FONCTIONS

Nom : Prénom : MPI : L oscilloscope et le générateur de fonctions - 1 - RENCONTRE AVEC L OSCILLOSCOPE ET LE GENERATEUR DE FONCTIONS Nom : Prénom : MPI : L oscilloscope et le générateur de fonctions - 1 - RENCONTRE AVEC L OSCILLOSCOPE ET LE GENERATEUR DE FONCTIONS I RENCONTRE AVEC L OSCILLOSCOPE : 1) Observation du signal : a) Dessiner

Plus en détail