n a k x k = 0, k=0 n a k x k. k=0

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "n a k x k = 0, k=0 n a k x k. k=0"

Transcription

1 Université Claude Bernard Lyon I CAPES de Mathématiques : Oral Année Fonctions polynômes On travaille sur un corps K infini, par exemple R ou C. Définition, structures (a) Définition On appelle fonction polynôme toute fonction de K dans K qui est une combinaison linéaire des fonctions K K, x x n (n N). (b) Unicité des coefficients (K infini) Lemme (K infini) La famille de fonctions (x x n ) n N est libre. Démonstration. Il s agit de montrer que, si n N et (a 0,..., a n ) K n sont tels que ( ) x K, a x = 0, alors tous les a sont nuls. Première méthode (K = R ou C) : Par récurrence sur n. Pour n = 0, c est clair. Supposons la propriété vraie pour n. On pose On constate que x K, P (x) = a x. n ( x K, 0 = P (2x) 2 n P (x) = 2 2 n) a x. Par hypothèse de récurrence, on en déduit que (2 2 n )a = 0 pour n. Comme on est sur R ou C, on peut diviser par 2 2 n pour obtenir : a = 0 si n. Il vient : 0 = P (x) = a n x n pour tout x, d où a n = 0. Deuxième méthode (meilleure, car valable sur un corps infini de caractéristique quelconque) : choisissons n+ éléments distincts de K, x,..., x n+. L égalité ( ) pour x = x i (i =,..., n+) donne un système linéaire en a 0,..., a n, dont la matrice est (x j i ) i,j=,...,n+. On reconnaît une matrice de Vandermonde, dont le déterminant est, au signe près, le produit des (x i x j ) (0 i < j n). Par suite, le système est de Cramer, donc tous les a sont nuls. Corollaire Pour toute fonction polynôme P non uniformément nulle, il existe un unique n N et une unique n + -liste (a 0,..., a n ) K n+ telle que ( ) a n 0 et x K, P (x) = a x. L existence résulte de la définition d une fonction polynôme, l unicité du lemme. Définition. Avec les notations du corollaire, le degré d une fonction polynôme P non nulle est l entier n. On le note deg P. Par convention, le degré de la fonction nulle est : deg 0 =. Ceci ne marcherait pas sur un corps de caractéristique non nulle : par exemple, = 0 si on est en caractéristique 3.

2 2 (c) Aparté : non unicité des coefficients sur un corps fini Remarquons que la fonction de K = Z/2Z dans lui-même définie par P (x) = x 2 x est la fonction nulle. Pourtant, on a (souvent?) bien envie de considérer le polynôme X 2 X. Plus généralement, si p est un nombre premier, le petit théorème de Fermat entraîne que : x Z/pZ, x p x = 0 dans Z/pZ. En d autres termes, la fonction Z/pZ Z/pZ, x x p x est la fonction nulle. Ainsi, on peut identifier polynômes et fonctions polynômes seulement sur un corps infini. (d) Opérations Lemme L ensemble des fonctions polynômes est stable par somme, produit et donc produit par une constante. De plus, si P, Q sont des fonctions polynômes et λ K, on a : deg(p + Q) max(deg P, deg Q), deg(λp ) = deg P, deg(p Q) = deg P + deg Q. Démonstration. (Dans cette preuve, les égalités sont valables pour x quelconque dans K.) On vérifie que tout cela est vrai si l un des polynômes est nul. Sinon, en vertu du corollaire, on écrit P (x) = 0 a x et Q(x) = 0 b x, avec a n 0, a = 0 si > n, b p 0 et b = 0 si > p. Alors : n+p (P + Q)(x) = N(a + b )x = + b )x (a, (P Q)(x) = N l+m= a l b m x. On constate que pour > n + p et l + m =, on a : l > n ou m > p donc a l = 0 ou b m = 0, donc le coefficient de x est nul. Pour = n + p, et l + m =, on a : l > n ou m > p ou (l = n et m = p), donc le coefficient de x n+p est a n b p 0. Le reste est évident. Corollaire L ensemble des fonctions polynômes est une algèbre intègre. Démonstration. On vient de montrer la stabilité de l ensemble des fonctions polynômes par combinaison linéaire et produit. La distributivité du produit sur la somme résulte de la propriété analogue dans K, de même que la relation (λp )Q = λ(p Q) = P (λq). La seule partie nouvelle du corollaire, c est l intégrité : le produit de deux polynômes non nuls n est pas nul. En effet, le degré du produit est la somme des degrés, donc il est positif ou nul si les polynômes ne sont pas nuls, donc le produit n est pas nul. 2 Fonction polynôme dérivée (K corps infini quelconque) Intérêt de la notion : pouvoir caractériser la multiplicité d une racine ; avoir une formule de Taylor dans n importe quel corps (de caractéristique nulle). (a) Soit P une fonction polynôme, on l écrit comme dans ( ). On définit la fonction polynôme dérivée de P par : n x K, P (x) = ( + )a + x. C est évidemment une fonction polynôme. Notons que cette définition est purement formelle, elle ne repose pas sur la définition des fonctions dérivables réelles ou des fonctions holomorphes, même si (par chance!) elle coïncide avec ces notions sur R et C.

3 3 Lemme L application de dérivation P P est un endomorphisme linéaire de l espace des fonctions polynômes. Pour P, Q fonctions polynômes, on a : (P Q) = P Q + Q P. Démonstration. La linéarité est évidente. Pour montrer l effet sur un produit, il suffit donc de tester sur la base (x x n ) n N. Pour P : x x n et Q : x x p, on a : (P Q) (x) = (n + p)x n+p = nx n x p + px p x n = P (x)q(x) + Q (x)p (x). Pour P fonction polynôme, on définit par récurrence : P (0) = P et P (n+) = (P (n) ). Corollaire (Leibniz) Soit P, Q deux fonctions polynômes et n N. Alors (P Q) (n) = ( ) n P () Q (n ). Démonstration. Par récurrence sur n. Déjà vu si n =. Si la relation est vraie pour n, on calcule, en utilisant la relation de récurrence, puis le cas n = : (P Q) (n) = ( n ( ) ) n n ( ) n ( P () Q (n ) = P (+) Q (n ) + P () Q (n )). Un changement d indice dans la première partie de la somme donne : (P Q) (n) = ( ) n P () Q (n ) + n ( n On conclut par une relation classique sur les coefficients binômiaux. (b) Formule de Taylor (K de caractéristique nulle) Proposition Soit P une fonction polynôme et a K. Alors : x K, P (x) = deg P P () (a)! (x a). ) P () Q (n ). Démonstration. Par linéarité, il suffit de démontrer la formule pour P (x) = x n (n N). D après la formule du binôme de Newton, le membre de gauche s écrit : x K, P (x) = x n = (a + x a) n = ( ) n a n (x a). D autre part, une récurrence immédiate sur donne : { n! x K, P () (x) = (n )! xn si n, 0 si > n, d où, en mélangeant ces égalités : P (x) =! n! (n )! an (x a) =! P () (a)(x a).

4 4 3 Racines (a) On dit qu un élément r K est une racine d une fonction polynôme P si P (r) = 0. Lemme Soit P une fonction polynôme et r K. Alors, r est une racine de P si et seulement s il existe une fonction polynôme Q telle que P (x) = (x r)q(x) pour tout x K. Remarque. Avec les notations du lemme, le polynôme Q est unique. Ceci résulte de l intégrité de l algèbre des fonctions polynômes. Démonstration. Supposons P (r) = 0. Si P est la fonction nulle, Q = P convient. Sinon, on écrit P comme dans ( ). Alors : x K, P (x) = P (x) P (r) = La réciproque est évidente. a (x r ) = (x r) a (x + ax a ). (b) Multiplicité d une racine (K de caractéristique nulle) On peut améliorer le lemme précédent grâce à la notion de fonction polynôme dérivée. Proposition Soit P une fonction polynôme non nulle, r K, l N. Sont équivalentes : (i) il existe une fonction polynôme Q telle que P (x) = (x r) l Q(x) pour tout x K ; (ii) P (r) = P (r) = = P (l ) (r) = 0. Définition. Pour P non nulle, l entier l tel que P (r) = P (r) = = P (l ) (r) = 0, P (l) (r) 0 est le plus grand entier tel que (x r) l divise P. On l appelle multiplicité de r comme racine de P. (Ainsi, une racine de multiplicité 0 n est pas une racine...) Démonstration. Supposons (i). La formule de Leibniz et le calcul des dérivées de x (x r) l fait dans la preuve de la formule de Taylor donnent, pour l : x K, P () (x) = i=0 ( ) l! i (l i)! (x r)l i Q ( i) (x). Comme r est racine de (x r) l i pour tout i l, il vient : P () (r) = 0 pour l. Inversement, si (ii) est réalisée, la formule de Taylor s écrit x K, P (x) = deg P =l deg! P P l () (a)(x a) = (x r) l j=0 (l + j)! P (l+j) (a)(x a) j. (c) Polynômes complexes Théorème (d Alembert-Gauss, admis) Toute fonction polynôme non constante à coefficients complexes possède une racine complexe. Proposition Pour toute fonction polynôme non constante à coefficients complexes, il existe un unique a C, un unique l N, des couples (r, α ),... (r l, α l ) C N, avec r i r j pour i j, uniques à l ordre près, tels que x C, l P (x) = a (x r i ) α i. i=

5 5 Démonstration. Existence. Par récurrence sur le degré n de P. Pour n =, c est clair. Supposons la propriété est vraie pour tout polynôme de degré n, et soit P de degré n. Par le théorème de d Alembert-Gauss, P admet une racine r C. On peut alors écrire P (x) = (x r)q(x) (x C) pour Q fonction polynôme de degré n. Par hypothèse de récurrence, on peut écrire Q comme un produit, ce qui permet d écrire P comme un produit. Unicité. Supposons pouvoir écrire x C, l m P (x) = a (x r i ) α i = b (x s j ) β j. i= j= En développant, on constate que P (x) = ax P α i + = bx P β j +, où les points de suspension désignent des polynômes de degrés strictement plus petit. Par unicité des coefficients, on en déduit que α i = deg P = β j, puis que a = b. Fixons i {,..., l}. Comme le produit de droite s annule pour x = r i, c est que r i = s j pour j convenable. D où, l inclusion {r,..., r l } {s,..., s m }. L inclusion inverse se démontre de même, donc l = m et, quitte à renuméroter, on peut supposer r i = s i pour tout i. Reste à voir que, pour i {,..., l} fixé, α i = β i. Par symétrie, on peut supposer sans perte de généralité que α i β i. On peut donc écrire : x C, (x r i ) α i (x r j ) α j (x r i ) β i α i (x r j ) β j = 0, d où, par intégrité (cette précision est indispensable pour pouvoir diviser) : x C, (x r j ) α j = (x r i ) β i α i (x r j ) β j. On en déduit que β i = α i : en effet, sinon, en prenant x = r i, on obtient 0 dans le membre de droite mais pas dans le membre de gauche. (d) Polynômes réels Proposition Soit P une fonction polynôme réelle non constante. On peut écrire x R, h P (x) = a (x r i ) α i (x 2 + b j x + c j ) β j, i= j= où a R, h, N, r,..., r h, b, c,, b, c R, α,..., α h, β,..., β N, et b 2 j 4c j < 0 pour tout j. De plus, une telle écriture est unique à l ordre des facteurs près. Démonstration. Existence : Par récurrence sur le degré. C est évident en dégré. Supposons l existence prouvée pour les polynômes de degré n, et soit P de degré n. Si P a une racine réelle r, on factorise : P (x) = (x r)q(x) et on applique l hypothèse de récurrence à Q. Sinon, on écrit P comme dans ( ). Ca permet de définir P (x) pour x complexe quelconque, et de prolonger P en une fonction polynôme P de C dans C. Alors, P a une racine complexe non réelle r (une racine réelle de P serait une racine de P ). En appliquant la conjugaison complexe à la relation a i r i = 0, i=0 vu que a i = a i pour tout i, on voit que r est une racine de P. Donc, il existe une fonction polynôme (a priori complexe) Q telle que P (x) = (x r)(x r)q(x) pour tout x C. Si

6 6 on pose b = r r et c = rr, ce sont deux réels et on a : b 2 4c < 0 et pour tout x C, P (x) = (x 2 + bx + c)q(x). En développant cette expression, on constate que les coefficients de Q sont les solutions d un système triangulaire à coefficients réels (l écrire! il semble qu il y ait trop d équations, mais on sait déjà qu il existe une solution ouf!), donc ils sont réels. On peut donc appliquer l hypothèse de récurrence à Q et conclure. Unicité : Se débrouiller. (e) Relations entre coefficients et racines Proposition Considérons un polynôme, réel ou complexe, unitaire et de degré n, P (x) = a i x i, avec a n =. i=0 Supposons que P ait toutes ses racines r,..., r n dans K. Alors, si on appelle a,..., a n ses coefficients comme dans ( ) (avec a 0 = par hypothèse), on a : i {0,..., n }, ( ) i a n i = r r i, c est-à-dire : a n = a n 2 = n < < i n r <l n ( ) n a 0 = r r n. r r l Démonstration. Avec les propositions précédentes, on a : n x K, P (x) = (x r ), et il suffit de développer et d identifier les coefficients. 4 Propriétés analytiques (cas réel) Lemme Une fonction polynôme réelle a en l infini les mêmes limites que son terme de plus haut degré. Elle est indéfiniment dérivable. Proposition Soit f : R R une fonction. Alors f est une fonction polynômiale si et seulement si f est indéfiniment dérivable et une dérivée f (n) est partout nulle. Démonstration. Le sens direct est trivial. Inversement, montrons par récurrence que si f est une fonction C telle que f (n) = 0, alors f est polynômiale de degré n. Pour n = 0, rien à démontrer. Pour n =, d après le théorème des accroissements finis, pour a < b, il existe c ]a, b[ tel que f(a) f(b) = (b a)f (c) = 0 : ainsi, f est constante. Supposons la propriété vraie pour n, et soit f une fonction C telle que f (n+) = 0. L hypothèse de récurrence appliquée à f donne a 0,..., a n R tels que pour tout x R, on ait : f (x) = a x. Intégrons, ce qui conduit à poser : x R, g(x) = f(x) a + x+. On constate que g est dérivable, et que sa dérivée est nulle. D après le théorème des accroissements finis, g est constante, ce qui prouve que f est polynômiale.

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

P (X) = (X a) 2 T (X)

P (X) = (X a) 2 T (X) Université Bordeaux I - année 00-0 MHT0 Structures Algébriques Correction du devoir maison Exercice. Soit P (X) Q[X]\Q.. Soit D(X) := pgcd(p (X), P (X)). a) Montrer que si deg D alors il existe α C tel

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Tatiana Labopin-Richard Mercredi 18 mars 2015 L algèbre linéaire est une très grosse partie du programme de Maths. Il est

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Cours de mathématiques.

Cours de mathématiques. Orsay 008-009 IFIPS S Mathématiques (M160). Cours de mathématiques. 1. Equations différentielles linéaires du second ordre. La fonction C : x cos x est indéfiniment dérivable sur R, et C (x) = S(x), avec

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Équations du troisième degré

Équations du troisième degré par Z, auctore L objet de cet article est d exposer deux méthodes pour trouver des solutions à une équation du troisième degré : la recherche de racines évidentes d une part, et la formule de Cardan d

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

COURS SUR LES POLYNÔMES À UNE VARIABLE

COURS SUR LES POLYNÔMES À UNE VARIABLE 1 COURS SUR LES POLYNÔMES À UNE VARIABLE - Opérations sur les polynômes - On commence par définir la notion de polynôme et voir quelques propriétés. Définition 1. Une fonction P de R dans R est appelée

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Base : une axiomatique

Base : une axiomatique Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

FACTORISATIONS POLYNOMIALES ÉLÉMENTAIRES

FACTORISATIONS POLYNOMIALES ÉLÉMENTAIRES FACTORISATIONS POLYNOMIALES ÉLÉMENTAIRES CHRISTIAN AEBI C est en donnant un cours privé de math à une élève terminant sa scolarité obligatoire, que mon regard a croisé l exercice de factorisation du polynôme

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Division de Polynômes

Division de Polynômes LGL Cours de Mathématiques 00 Division de Polynômes A INTRODUCTION Motivations: * Résoudre des équations d un degré supérieur à * Représenter des fonctions algébriques en se basant et sur des fonctions

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1 Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Décomposition des fractions rationnelles

Décomposition des fractions rationnelles Décomposition des fractions rationnelles Cas des fractions rationnelles réelles Johan MILLAUD Département Génie Civil de l IUT du Limousin Mars 2006 version 2 I Avant-propos 4 I.1 Navigation dans le cours......................

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Equations polynomiales modulaires et Conjecture de Goldbach

Equations polynomiales modulaires et Conjecture de Goldbach Equations polynomiales modulaires et Conjecture de Goldbach Denise Vella-Chemla 5/2/2013 La conjecture de Goldbach stipule que tout nombre pair supérieur à 2 est la somme de deux nombres premiers. 1 Modéliser

Plus en détail

TS - Cours sur le logarithme népérien

TS - Cours sur le logarithme népérien Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

Fiche n 2: Morphisme, sous-groupe distingué, quotient

Fiche n 2: Morphisme, sous-groupe distingué, quotient Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 2: Morphisme, sous-groupe distingué, quotient Exercice 1 Soient G, G deux groupes et f un homomorphisme de G dans G. Montrer que si A G, alors f( A )

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Algorithmique et Programmation TD n 9 : Fast Fourier Transform

Algorithmique et Programmation TD n 9 : Fast Fourier Transform Algorithmique et Programmation TD n 9 : Fast Fourier Transform Ecole normale supérieure Département d informatique td-algo@di.ens.fr 2011-2012 1 Petits Rappels Convolution La convolution de deux vecteurs

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Autour de a n ± b n. DOMAINE : Arithmétique. NIVEAU : Avancé STAGE : Montpellier 2014 CONTENU : Cours et exercices

Autour de a n ± b n. DOMAINE : Arithmétique. NIVEAU : Avancé STAGE : Montpellier 2014 CONTENU : Cours et exercices DOMAINE : Arithmétique AUTEUR : Igor KORTCHEMSKI NIVEAU : Avancé STAGE : Montpellier 2014 CONTENU : Cours et exercices Autour de a n ± b n Ce cours présente des résultats concernant l étude des facteurs

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Démontrer le caractère injectif / surjectif / bijectif d une application

Démontrer le caractère injectif / surjectif / bijectif d une application Démontrer le caractère injectif / surjectif / bijectif d une application Il s agit donc de montrer une propriété commençant par un symbole. La démonstration débute donc par : Soit (x 1, x 2 ) E 2. La propriété

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Introduction des nombres complexes en TS

Introduction des nombres complexes en TS Introduction des nombres complexes en TS 1 À la découverte de nouveaux nombres Résoudre : dans, puis dans, l équation 5 + x = 0 ; dans, puis dans, l équation 3x + 2 = 0 ; dans, puis dans, l équation x

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Mathématiques autour de la cryptographie.

Mathématiques autour de la cryptographie. Mathématiques autour de la cryptographie. Index Codage par division Codage série Code cyclique Code dual Code linéaire Corps de Galois Elément primitif m séquence Matrice génératrice Matrice de contrôle

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin Enoncés : M. Quéffelec Corrections : A. Bodin Exo7 Topologie générale Exercice 1 1. Rappeler les définitions d une borne supérieure (inférieure) d un ensemble de nombres réels. Si A et B sont deux ensembles

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne Exo7 Arithmétique Vidéo partie 1. Division euclidienne et pgcd Vidéo partie 2. Théorème de Bézout Vidéo partie 3. Nombres premiers Vidéo partie 4. Congruences Exercices Arithmétique dans Z Préambule Une

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail

COURS L1 PREPA AGRO VETO 2012. Claire CHRISTOPHE

COURS L1 PREPA AGRO VETO 2012. Claire CHRISTOPHE COURS L PREPA AGRO VETO 202 Claire CHRISTOPHE 8 avril 203 2 Table des matières I ANALYSE 5 Fonctions numériques de la variable réelle 7. Complément sur l étude des fonctions..................................

Plus en détail

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES I. Logique. II. Ensemble. III. Relation, fonction, application. IV. Composition, réciprocité. V. Relation d

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Triangle de Pascal dans Z/pZ avec p premier

Triangle de Pascal dans Z/pZ avec p premier Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Matrices. 1. Définition. Exo7. 1.1. Définition

Matrices. 1. Définition. Exo7. 1.1. Définition Exo7 Matrices Vidéo partie 1 Définition Vidéo partie 2 Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse

Plus en détail