Chapitre XII : Géométrie dans l espace

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre XII : Géométrie dans l espace"

Transcription

1 I - Positions relatives dans l espace 1) Positions relatives de droites et de plans Chapitre XII : Géométrie dans l espace Définition 1 : On dit que deux droites et de l espace sont coplanaires lorsqu elles appartiennent à un même plan : autrement dit, elles sont sécantes ou parallèles. Dans le cas contraire, on dit que et sont non coplanaires. Remarque : On parle de droites parallèles lorsqu elles sont strictement parallèles ou confondues. Exemple : Soit le cube ci-dessous : Les droites () et () sont Les droites () et () sont... Les droites () et () sont... Les droites () et () sont... Les droites () et () sont... Les droites () et () sont... Remarque : Les droites parallèles sur une perspective cavalière sont parallèles en réalité mais les droites sécantes sur le dessin ne le sont pas forcément en réalité (comme () et () par exemple). Propriété 1 : Une droite et un plan sont soit sécants soit parallèles. La droite et le plan sont sécants. Ils ont un point en commun. La droite et le plan sont strictement parallèles. Ils n ont rien en commun. La droite et le plan sont confondus. Ils ont une droite en commun. Propriété 2 : Deux plans et sont soit sécants soit parallèles. Les plans sont sécants. Ils ont une droite en commun. Les plans sont strictement parallèles. Ils n ont rien en commun. Les plans sont confondus. Ils ont un plan en commun. 1

2 2) Parallélisme Propriété 3 : Si une droite est parallèle à une droite d un plan, alors elle est parallèle au plan. Propriété 4 : Si un plan contient deux droites sécantes et toutes deux parallèles à un plan alors les plans et sont parallèles. Propriété 5 : Si deux plans sont strictement parallèles, alors tout plan sécant à l un est sécant à l autre et les intersections sont deux droites parallèles. Théorème «du toit» : Soient deux droites et parallèles, avec incluse dans un plan et incluse dans un plan. Si les plans et sont sécants en une droite alors les droites et sont parallèles à. 2

3 II - Orthogonalité dans l espace 1) Orthogonalité de deux droites Définition 2 : Deux droites et sont dites orthogonales lorsqu il existe une droite parallèle à et une droite parallèle à telles que et soient perpendiculaires dans le plan qu elles déterminent. Remarque : Deux droites perpendiculaires sont coplanaires car elles sont sécantes. Deux droites orthogonales ne sont pas forcément coplanaires (et donc ne sont pas nécessairement sécantes). Exemple : Dans le cube H du paragraphe I : Les droites () et () sont orthogonales et coplanaires (elles sont perpendiculaires) ; Les droites () et () sont orthogonales et non coplanaires (la droite () est parallèle à la droite () qui elle, est perpendiculaire à la droite () ). 2) Orthogonalité d une droite et d un plan Définition 3 : Une droite est dite orthogonale à un plan lorsqu elle est orthogonale à toutes les droites du plan. Propriété 6 : Si une droite est orthogonale à deux droites sécantes d un plan alors elle est orthogonale au plan. Exemple : Toujours dans le cube du paragraphe I : La droite () est orthogonale aux droites sécantes () et (), elle est donc orthogonale au plan (C) déterminé par ces deux dernières. D après la définition 3, la droite () est donc orthogonale à toutes les droites du plan () : (), (), (), Propriété 7 : On dit que deux plans sont perpendiculaires lorsque l un d eux contient une droite orthogonale à l autre. 3

4 III - Repérage dans l espace 1) Vecteurs de l espace Comme en géométrie plane, un vecteur de l espace est défini par une direction, un sens et une longueur (ou norme). La somme de deux vecteurs est définie de la même façon et suit les mêmes règles qu en géométrie plane. La relation de Chasles est elle aussi valable dans l espace. On définit le produit d un vecteur par un nombre réel comme en géométrie plane et le vecteur obtenu est colinéaire à. On rappelle également les résultats suivants : (i) Le vecteur nul est colinéaire à tous les vecteurs. (ii) Les points, et sont alignés si et seulement si les vecteurs et sont colinéaires. (iii) Les droites () et () sont parallèles si et seulement si les vecteurs et sont colinéaires. 2) Caractérisation vectorielle d un plan Propriété 8 : Soient et deux vecteurs non colinéaires et un point de l espace. L ensemble des points tels que =+, où et sont des nombres réels, est un plan contenant le point. Remarques : 1) Le triplet (;,) est alors un repère du plan défini dans la propriété 8. 2) C est une propriété caractéristique d un plan. On peut aussi définir un plan par deux droites sécantes ce qui est équivalent. Conséquence : Si les points, et ne sont pas alignés, le plan () est l ensemble des points tels que = +, où et sont des nombres réels. Propriété 9 : Si deux plans sont définis par le même couple de vecteurs non colinéaires (,), alors ils sont parallèles. 3) Vecteurs coplanaires et applications Définition 4 : Des vecteurs sont dits coplanaires lorsqu ils possèdent chacun un représentant dans un même plan. Propriété 10 : Tout vecteur de l espace peut se décomposer suivant trois vecteurs non coplanaires de l espace. Exemple : Toujours dans le cube du paragraphe I : Les vecteurs, et ne sont pas coplanaires. On peut alors exprimer tout vecteur de l espace comme combinaison linéaire de ces trois vecteurs. = + + = + +. = + + = +. 4

5 Remarque importante : la décomposition de la propriété 10 est unique. Vocabulaire : Une famille de trois vecteurs non coplanaires est dite libre : on dit que les vecteurs sont libres ou indépendants ou encore non liés. 4) Repérage dans l espace Propriété 11 : Soit un point de l espace et,, trois vecteurs non coplanaires. ;,, est un repère de l espace : pour tout point de l espace, il existe un unique triplet (,,) tel que =++ Notation : On note (;;) les coordonnées du point dans ce repère et les coordonnées du vecteur dans ce même repère. Vocabulaire : la coordonnée s appelle l abscisse, l ordonnée et la cote. Remarque : Les opérations sur les coordonnées dans l espace sont exactement les mêmes que celles sur les coordonnées dans le plan, avec une coordonnée de plus. IV - Système d équations paramétriques 1) Représentation paramétrique d une droite Définition 5 : Le point appartient à la droite passant par et de vecteur directeur (non nul), si et seulement si les vecteurs et sont colinéaires, ce qui se traduit par : = où R. Propriété 12 : L espace est muni d un repère ;,,. Soit la droite passant par ( ; ; ) et de vecteur directeur. = + On appelle représentation paramétrique de la droite le système : = +, où décrit l ensemble = + des réels. Remarque : La représentation paramétrique d une droite n est pas unique : en effet, ni le point, ni le vecteur directeur ne sont uniques Exemple : Soient (1;2;3) et (4;4;1) deux points de l espace. =1+3 =4 6 Les systèmes =2+2 où R et =4 4 où R sont deux représentations paramétriques de =3 2 =1+4 la droite (). 5

6 2) Représentation paramétrique d un plan Un plan étant défini par un point et deux vecteurs non colinéaires, on définit de la même façon la représentation paramétrique d un plan : Propriété 13 : L espace est muni d un repère ;,,. Soit le plan contenant ( ; ; ) et dirigé par les vecteurs et. = ++ On appelle représentation paramétrique du plan le système : = ++, où et décrivent = ++ l ensemble des réels. V - Produit scalaire dans l espace 1) Produit scalaire de deux vecteurs Deux vecteurs de l espace peuvent être représentés dans un même plan, le produit scalaire défini en classe de première dans le plan peut donc être défini de la même façon dans l espace : Définition 6 : Soient et deux vecteurs de l espace. On définit le produit scalaire de et par : =0 si l un des deux vecteurs est nul ; = cos(,) sinon. Les propriétés du produit scalaire dans le plan sont étendues à l espace : Propriété 14 : Soient et deux vecteurs non nuls de l espace tels que = et =, alors : = = = Où est le projeté orthogonal du point sur la droite () et le projeté orthogonal de sur la droite (). 6

7 Propriété 15 : Soient, et trois vecteurs de l espace et un réel : = ² = (+)= + () = ()=( ) =0 si et seulement si les vecteurs et sont orthogonaux. 2) Dans un repère orthonormé Propriété 16 : L espace est muni d un repère orthonormé ;,,. Soient les vecteurs et. Le produit scalaire s écrit alors : = + + Conséquences : Dans un repère orthonormé ;,, 1) Le vecteur a pour norme : =²+²+² 2) Les vecteurs et sont orthogonaux si et seulement si + + =0 VI - Application du produit scalaire 1) Vecteur normal à un plan Définition 7 : Soit un plan, un point appartenant à ce plan et un vecteur non nul de l espace. Le vecteur est dit normal au plan si et seulement si, pour tout point du plan, les vecteurs et sont orthogonaux. Autrement dit : Le vecteur est dit normal au plan si et seulement s il est orthogonal à tout vecteur admettant un représentant dans. Théorème 2 : Un vecteur non nul est normal à un plan si et seulement s il est orthogonal à deux vecteurs non colinéaires de. Remarque : Ce théorème permet de démontrer la propriété 6 du paragraphe II-2) : «Si une droite est orthogonale à deux droites sécantes d un plan alors elle est orthogonale au plan» 7

8 2) Équations cartésiennes d un plan Théorème 3 : L espace est muni d un repère orthonormé ;,,. Soit un plan défini par un point et un vecteur non nul et normal à. Le plan admet une équation cartésienne de la forme +++=0 où est un réel. 1 Exemple : Le plan défini par le point (1 ;2; 1) et le vecteur normal 1 a une équation 3 cartésienne de la forme : ++3+=0 Le point appartenant à, ses coordonnées sont solutions de l équation : =0 =2 Une équation cartésienne de est donc : ++3+2=0 Ou encore : 3 2=0 ou bien =0 Propriété 17 : L espace est muni d un repère orthonormé ;,,. Pour tous réels,, non tous nuls et tout réel, l ensemble des points ( ;;) du plan vérifiant l équation +++=0 est un plan dont un vecteur normal est. 3) Plans perpendiculaires Propriété 18 : Deux plans sont perpendiculaires lorsque : 1) un vecteur de l un est orthogonal à deux vecteurs non colinéaires de l autre ; 2) un vecteur normal de l un est orthogonal à un vecteur normal de l autre. Remarque : Le premier point est immédiat d après le théorème 2. 8

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Prérequis Vecteurs système d équations Plan du cours 1. Équations cartésiennes 2. Caractérisations vectorielles et représentations paramétriques 3. Intersections et parallélisme 4. Orthogonalité 1. Équations

Plus en détail

Vecteurs de l espace

Vecteurs de l espace Vecteurs de l espace Définitions règles de calcul On étend à l espace la notion de vecteur définie dans le plan, ainsi que les opérations associées : somme de vecteurs multiplication par un réel Définition-

Plus en détail

Terminale S Géométrie dans l espace

Terminale S Géométrie dans l espace Terminale S Géométrie dans l espace 1 Positions relatives de droites et de plans 1.1 Positions relatives de deux droites Deux droites de l espace sont : soit..................... elles sont alors soit...............

Plus en détail

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace TS Géométrie vectorielle dans l espace Cours I. Vecteurs de l espace 1. Notion de vecteur dans l espace Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace Deux vecteurs

Plus en détail

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P Résumé du cours roites et plans de l espace ans l espace un plan est caractérisé par la donnée de trois points non alignés, deux droites sécantes ou strictement parallèles. Un plan passant par trois points

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. I- Droites et plans de l espace : Rappels des règles de base Par deux points distincts de l espace, passe une unique droite. Par trois points non alignés passe un

Plus en détail

Droites et plans de l espace - Vecteurs

Droites et plans de l espace - Vecteurs Chapitre 8 Droites et plans de l espace - Vecteurs Objectifs du chapitre : item références auto évaluation étude de la position relative de droite(s) et de plan(s) vecteurs de l espace formules dans un

Plus en détail

Géométrie analytique dans l espace

Géométrie analytique dans l espace Généralités Points coplanaires Quatre points de l espace sont dits coplanaires s ils appartiennent à un même plan (rappel : 3 points d un plan sont dits alignés s ils appartiennent à une même droite) Vecteurs

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail

l espace II) Addition des vecteurs de l espace 3 ème Maths et 3 ème sciences exp. AB DC ABCD est un parallélogramme.

l espace II) Addition des vecteurs de l espace 3 ème Maths et 3 ème sciences exp. AB DC ABCD est un parallélogramme. Prof : Boufares Amor Cours de géométrie dans l espace 3 ème Maths et 3 ème sciences exp. I) d un vecteur de l espace Soit A et B deux points distincts de l espace. On appelle vecteur de représentant (A,

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. : la perspective cavalière Pour représenter un objet de l espace par une figure plane, on adopte un mode de représentation appelé «perspective cavalière» qui est

Plus en détail

Geométrie dans l espace

Geométrie dans l espace Geométrie dans l espace Quelques règles Montrer qu une droite est perpendiculaire à un plan il faut montrer qu elle est orthogonale à deux droites sécantes de ce plan Une droite perpendiculaire à un plan

Plus en détail

Droites et plans dans l espace

Droites et plans dans l espace Droites et plans dans l espace Positions relatives de deux plans Deux plans de l espace sont strictement s ils n ont aucun point en commun. Positions relatives de deux plans Plans Deux plans peuvent être

Plus en détail

Positions relatives de droites et de plans

Positions relatives de droites et de plans TS éométrie dans l espace 2012-2013 I Positions relatives de droites et de plans I.1 Positions relatives de deux droites Propriété : eux droites d 1 et d 2 sont soit coplanaires (appartiennent à un même

Plus en détail

METHODES DE GEOMETRIE ANALYTIQUE DANS L ESPACE

METHODES DE GEOMETRIE ANALYTIQUE DANS L ESPACE METHODES DE GEOMETRIE ANALYTIQUE DANS L ESPACE Représentation paramétrique de droite : Il faut un point de la droite ( ; ; ) et un vecteur directeur (,,) = + = + = + où t est un paramètre réel Méthode

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE On se place dans un repère orthonormal du plan ( O ; i, j, k ) I Équation de plan Exercice 1 : On considère le point A ( 0;1;4) et le vecteur n ( ;3; ) Déterminer une équation du

Plus en détail

Chapitre X- Partie A : Géométrie dans l espace. Points, droites et plan de l espace

Chapitre X- Partie A : Géométrie dans l espace. Points, droites et plan de l espace hapitre X- artie : Géométrie dans l espace oints, droites et plans de l espace Extrait du programme : I Rappels sur les quelques propriétés de la perspective cavalière ➃ ➀ Dans un plan frontal tout est

Plus en détail

Repérage dans l espace

Repérage dans l espace Repérage dans l espace I) Coordonnées dans l espace 1) Définition Un repère (O;I,J,K) de l espace est défini par quatre points non coplanaires (n appartenant pas au même plan) : le point O est l origine,

Plus en détail

Droites et plans de l Espace

Droites et plans de l Espace Droites et plans de l Espace Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Quelques rappels 2 2 Positions relatives 2 2.1 Positions relatives de deux droites...................................

Plus en détail

Chapitre 11 : Géométrie dans l espace. Un patron d un solide est une figure plane qu on pourrait obtenir par

Chapitre 11 : Géométrie dans l espace. Un patron d un solide est une figure plane qu on pourrait obtenir par Chapitre 11 : Géométrie dans l espace Définition : Patron Un patron d un solide est une figure plane qu on pourrait obtenir par Inversement, à partir d un patron d un solide, on peut fabriquer ce solide

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Géométrie dans l'espace 1. Rappels de géométrie dans l'espace 1.1. Positions relatives de droites et plans 1.1.1. Position relative de deux plans Définition : On dit que deux plans sont strictement parallèles

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Programme selon les sections : - Vecteurs, translations, coordonnées : toutes sections - Colinéarité, coplanarité : S Pré-requis : Coordonnées de points Plan du cours 1. Vecteurs et translations

Plus en détail

Produit scalaire de l'espace. Applications.

Produit scalaire de l'espace. Applications. 1.... p2 2. Équations cartésienne d'un plan... p4 3. Perpendiculaire commune à deux droites non coplanaires... p9 Copyright meilleurenmaths.com. Tous droits réservés 1. Produit scalaire de l'espace 1.1.

Plus en détail

Produit scalaire dans l espace Types Bac

Produit scalaire dans l espace Types Bac Lycée Paul Doumer 2013/2014 TS 1 Exercices Produit scalaire dans l espace Types Bac Exercice 1 Pondichery avril 2012 Dans le repère orthonormé les plans P et P d équations : de l espace, on considère :

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Repère, vecteurs et coordonnées dans l espace. L espace est rapporté au repère orthonormal O; i; j; x. ' On considère deux vecteurs u y

Repère, vecteurs et coordonnées dans l espace. L espace est rapporté au repère orthonormal O; i; j; x. ' On considère deux vecteurs u y Repère, vecteurs et coordonnées dans l espace L espace est rapporté au repère orthonormal O; i; j; k. x x ' On considère deux vecteurs u y et v y'. z z ' ela signifie que u xi y j zk et v x' i y ' j z

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Chapitre 11 Géométrie dans l espace Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Droites et plans Positions relatives de droites et de plans : intersection

Plus en détail

CHAPITRE 2 : Géométrie plane

CHAPITRE 2 : Géométrie plane CHAPITRE 2 : Géométrie plane 1 Egalité de deux vecteurs... 2 2 Somme de deux vecteurs... 3 2.1 Relation de Chasles... 3 2.2 Règle du parallélogramme... 3 3 Vecteurs dans un repère... 4 3.1 Coordonnées

Plus en détail

Chapitre 9 Produit scalaire. Table des matières. Chapitre 9 Produit scalaire TABLE DES MATIÈRES page -1

Chapitre 9 Produit scalaire. Table des matières. Chapitre 9 Produit scalaire TABLE DES MATIÈRES page -1 hapitre 9 Produit scalaire TLE DES MTIÈRES page -1 hapitre 9 Produit scalaire Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Exercices supplémentaires Géométrie plane

Exercices supplémentaires Géométrie plane Exercices supplémentaires Géométrie plane Partie A : Coordonnées de vecteurs, colinéarité Exercice 1 Dans un repère, on considère 6; 1, ; 1, 15; 4 et ; 2. 1) Les points, et sont-ils alignés? Justifier.

Plus en détail

Vecteurs et droites dans l espace

Vecteurs et droites dans l espace Lycée Paul oumer 013-014 TS1 ours Vecteurs et droites dans l espace ontents 1 aractérisations vectorielles 1 1.1 Vecteurs de l espace.................................. 1 1. aractérisations vectorielles

Plus en détail

1 Équations cartésiennes, équations polaires d un ensemble de points

1 Équations cartésiennes, équations polaires d un ensemble de points Plans, cercles, droites et sphères Ce chapitre aborde les objets fondamentaux utilisés en géométrie : droites et cercles dans le plan, plans, droites et sphères dans l espace. Les objectifs du chapitre

Plus en détail

Commun à tous les candidats. Première partie

Commun à tous les candidats. Première partie EXERCICE 4 (6 points ) Commun à tous les candidats Première partie L espace est rapporté à un repère orthonormal (O, i, j, k ) On considère : les points A(0; 0; 3), B(2; 0; 4), C( 1; 1; 2) et D(1; 4; 0)

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Terminale S Ch.8 PARTIE Géométrie dans l'espace Ú La perspective cavalière C'est un ensemble de règles permettant de représenter un volume dans un plan; ce n'est pas ce que nous voyons dans la réalité.

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Produit scalaire dans l'espace Terminale S Olivier Lécluse Mai 2014 1.0 Table des matières Introduction 3 I - Notion de produit scalaire dans l'espace 4 1. Définition et propriétés... 4 2. Exercice : Calcul

Plus en détail

Classe de Terminale S

Classe de Terminale S Pˆr o dˆuˆiˆt Œs c a l aˆiˆr e d e l e sœp a c e Classe de Terminale S I. GÉNÉRALISATION DU PRODUIT SCALAIRE À L ESPACE. Exercice 1 ABCDEFGH est un cube d arête 1, O est le centre de la face EFGH. 1. a)

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Notes : dans cette synthèse de cours, on suppose connues les notions du programme de 1 ère S relatives au produit scalaire dans

Plus en détail

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace TS Géométrie vectorielle dans l espace Cours I. Vecteurs de l espace 1. Notion de vecteur dans l espace Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace Deux vecteurs

Plus en détail

PRODUIT SCALAIRE DANS L ESPACE

PRODUIT SCALAIRE DANS L ESPACE PRODUIT SCALAIRE DANS L ESPACE Cours Terminale S 1 Produit scalaire de deux vecteurs 1) Définition Définition 1 : Le produit scalaire dans l espace se définit de la même façon que dans le plan Les trois

Plus en détail

Chapitre 6 : Géométrie dans l espace

Chapitre 6 : Géométrie dans l espace hapitre 6 : éométrie ans l espace I. Les positions relatives e roites et plans 1 ositions relatives e eux roites 1 et 2 coplanaires 1 et 2 parallèles 1 et 2 strictement parallèles 1 et 2 confonues 1 2

Plus en détail

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun.

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun. Chapitre 8 : Droites et plans de l espace - Vecteurs I Positions relatives de droites et de plans Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires, soit non coplanaires

Plus en détail

Livre : Chapitre 12 p. 319

Livre : Chapitre 12 p. 319 TABLE DES MATIÈRES Produit scalaire dans l espace D. Péron 14 Livre : Chapitre 12 p. 319 Table des matières 1 Diérentes expressions du produit scalaire.................................. 2 2 Orthogonalité

Plus en détail

TS 2016 Correction Exercices n 2 Ch10. Géométrie Espace B. Vecteurs de l espace, Vecteurs Colinéaires :

TS 2016 Correction Exercices n 2 Ch10. Géométrie Espace B. Vecteurs de l espace, Vecteurs Colinéaires : TS 016 orrection xercices n h10. éométrie space Vecteurs de l espace, Vecteurs olinéaires : xercice 1 : Soient,, et quatre points de l espace. 1. Soient I et J définis par I = 1 et J = 1. Montrer que IJ

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Chapitre G Produit scalaire dans l espace Contenus Capacités attendues Commentaires Produit scalaire Produit scalaire de deux vecteurs dans l espace : définition, propriétés. Vecteur normal à un plan.

Plus en détail

Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques. Feuille d exercices n 4 : Calculus

Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques. Feuille d exercices n 4 : Calculus Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques Feuille d exercices n 4 : Calculus Dans ce qui suit, l espace euclidien de dimension 3 est rapporté à un repère orthonormé direct (O;

Plus en détail

Progression terminale S

Progression terminale S Progression terminale S Chapitre 1 : Suites (3 semaines) I. Rappels sur les suites A. Mode de génération d une suite B. Représentations graphiques C. Suites arithmétiques et géométriques II. III. IV. Raisonnement

Plus en détail

Vecteurs de l'espace

Vecteurs de l'espace Vecteurs de l'espace T.S. Introduction : On étend à l'espace la notion de vecteur vue dans le plan et on retrouve donc toutes les règles connues dans le plan Définition : Soient et deux points distincts

Plus en détail

AB, AC. k.u = I) Généralités: Une unité de longueur est fixée dans tout ce cours, le cm. par exemple. 1) Définition: On retiendra:

AB, AC. k.u = I) Généralités: Une unité de longueur est fixée dans tout ce cours, le cm. par exemple. 1) Définition: On retiendra: PRODUIT SCALAIRE DANS E YOUSSEFBOULILA I) Généralités: Une unité de longueur est fixée dans tout ce cours, le cm. par exemple 1) Définition: On appelle produit scalaire des deux vecteurs AB le réel noté:

Plus en détail

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition:

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition: Produit scalaire dans l espace : Définition: Soit A, B et C trois points, le produit scalaire des vecteurs AB et AC est le réel défini par : AB AC = si AB = 0 ou AC = 0 AB AC = si AB 0 et AC 0 Conséquence

Plus en détail

Mathématiques Terminale C Calcul Vectoriel Résumé de cours

Mathématiques Terminale C Calcul Vectoriel Résumé de cours . arycentre I- arycentre de deux points pondérés I. 1. Définition 1: Soit (, ) et (, ) deux points pondérés tels que + 0, Il existe un point unique G tel que G G 0 ; le point G est appelé barycentre des

Plus en détail

Distance entre deux droites non coplanaires

Distance entre deux droites non coplanaires Distance entre deux droites non coplanaires Hédi Abderrahim Cette notion dans les programmes officiels et les manuels scolaires. Programmes officiels Les textes des programmes officiels stipulent:.. Section:

Plus en détail

(donnés) a et b tels que : f : x où a est le coefficient directeur de f et b l ordonnée à l origine.

(donnés) a et b tels que : f : x où a est le coefficient directeur de f et b l ordonnée à l origine. ❶ - Fonctions affines I-1- Définitions et vocabulaire Définition 1: On dit que f est une fonction affine si pour tout réel, il eistent deu réels (donnés) a et b tels que : f : a + b où a est le coefficient

Plus en détail

Les définitions et opérations sur les vecteurs du plan se généralisent dans l espace

Les définitions et opérations sur les vecteurs du plan se généralisent dans l espace Lcée Camille SEE 08 décembre 2011 GÉMÉTRIE DANS L ESPACE I VECTEUR DE L ESPACE Les définitions et opérations sur les vecteurs du plan se généralisent dans l espace 1 VECTEURS CLINÉAIRES Dire que deu vecteurs

Plus en détail

DROITES ET PLANS DE L'ESPACE

DROITES ET PLANS DE L'ESPACE DROITES ET PLANS DE L'ESPACE I. Positions relatives de droites et de plans 1) Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires.

Plus en détail

Repérage dans le plan

Repérage dans le plan Repérage dans le plan I Les repères a) Définition Définition : Un repère du plan est défini par la donnée de trois points distincts non alignés O, I et J. Le repère est alors noté (O ; I ; J). Le point

Plus en détail

Géométrie Chapitre 1 : Vecteurs et droites du plan

Géométrie Chapitre 1 : Vecteurs et droites du plan Géométrie Chapitre 1 : Vecteurs et droites du plan I- Rappels et compléments sur les vecteurs 1) Vecteurs égaux La translation qui transforme en est appelée la translation de vecteur. Le point s appelle

Plus en détail

Equations cartésiennes. Fiche(1)

Equations cartésiennes. Fiche(1) Fiche(1) Le tableau suivant indique, dans la case située ligne l et colonne c, l altitude (exprimée en centaines de mètres) au point dont l abscisse est c et l ordonnée l : par exemple, l altitude du point

Plus en détail

Les vecteurs du plan

Les vecteurs du plan Les vecteurs du plan Colinéarité Lycée du golfe de Saint Tropez Année 2015/2016 Première S ( Lycée du golfe de Saint Tropez) Vecteurs Année 2015/2016 1 / 13 1 Vecteurs colinéaires Définition et première

Plus en détail

Équations de droites

Équations de droites Équations de droites I/ lignement, colinéarité II/ Coefficient directeur III/ Équations de droites 1/ Définition / Comment dire si un point appartient à une droite dont on connaît l équation 3/ Propriétés

Plus en détail

III. Géométrie du plan

III. Géométrie du plan 1 Repérage dans le plan 11 Repérage cartésien Définition 1 On appelle base du plan un couple ( i, avec i et deux vecteurs non colinéaires du plan Tout vecteur u du plan s exprime de manière unique comme

Plus en détail

Collège notre Dame de Jamhour Classe de seconde Juin 2014

Collège notre Dame de Jamhour Classe de seconde Juin 2014 Collège notre Dame de Jamhour Classe de seconde Juin 2014 Corrigé de l examen de mathématiques Exercice 1 =. 1. Les coordonnées du sommet. et. D où :. La forme canonique.de :. 2. est strictement croissante

Plus en détail

i, j, k ) un repère orthonormal direct de l'espace.

i, j, k ) un repère orthonormal direct de l'espace. EXERCICES DE CLCUL VECTORIEL DNS LE PLN ET L'ESPCE EUCLIDIEN Exercice 1 On considère, dans l'espace, les points (0 ; 1 ; 1), B(6 ; 1 ; 9) et C(1 ; 0 ; 0) 1. Déterminer une équation cartésienne du plan

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace 1 arallélisme 1.1 osition relative de deux droites Géométrie dans l'espace Droites coplanaires Г // et sécantes = ={A} Droites non coplanaires Г = 1.2 osition relative de deux plans lans parallèles lans

Plus en détail

Géométrie vectorielle

Géométrie vectorielle I) Vecteurs ans l'espace : Géométrie vectorielle a) notion e vecteur ans l'espace : On repren la éfinition u vecteur ans le plan en l'étenant à l'espace. éfinition : Soit un couple ( ; ) e points e l'espace.

Plus en détail

Position relative de droites et plans

Position relative de droites et plans TS Position relative de droites et plans Cours Rappels : Un plan est défini par : - Trois points non alignés ou - Deux droites sécantes ou - Deux droites strictement parallèles Si un plan contient deux

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace»

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace» Chapitre 9 truc Géométrie dans l espace Complément au chapitre «géométrie élémentaire du plan et de l espace» Prérequis On suppose ici connue toute la géométrie de collège et de lycée, en particulier les

Plus en détail

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES Configurations du plan Le théorème de Pythagore s applique à un triangle rectangle ; le théorème de Thalès, à une figure qui comprend des droites parallèles

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 010 Enoncés On demandait de résoudre trois questions

Plus en détail

Chapitre 11 Produit scalaire dans l'espace

Chapitre 11 Produit scalaire dans l'espace I. Produit scalaire Chapitre 11 Produit scalaire dans l'espace 1) Produit scalaire dans l'espace Définition : Soient u et v deux vecteurs de l'espace et A, B, C trois points tels que u= AB et v= AC. Les

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

Chapitre 9 Produit scalaire. Table des matières. Chapitre 9 Produit scalaire TABLE DES MATIÈRES page -1

Chapitre 9 Produit scalaire. Table des matières. Chapitre 9 Produit scalaire TABLE DES MATIÈRES page -1 hapitre 9 Produit scalaire TLE DES MTIÈRES page -1 hapitre 9 Produit scalaire Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Chapitre 8 Géométrie dans l'espace

Chapitre 8 Géométrie dans l'espace Chapitre 8 Géométrie dans l'espace I. Représentation d'un solide dans le plan 1) La perspective cavalière Définition : Les faces frontales sont perpendiculaires au regard. Les droites perpendiculaires

Plus en détail

Chapitre 5 : Géométrie

Chapitre 5 : Géométrie Chapitre 5 : Géométrie 1 Géométrie dans le plan Julien Reichert Les notions d abscisse et d ordonnée, avec lesquelles un élève sortant de collège est plus ou moins familier, sont intimement liées à celle

Plus en détail

Géométrie dans l espace

Géométrie dans l espace xercices 29 mai 2016 éométrie dans l espace roites et plans xercice 1 Soit un cube et un plan (JK) tel que : = 2, 3 J = 2 3 et K = 1 4 éterminer l intersection du plan (JK) avec le cube. K J xercice 2

Plus en détail

1 km. Le plan ( ) Les deux «routes aériennes» à contrôler sont représentées par deux et ( D ( 2) 1. a. Indiquer les coordonnées d un vecteur u 1

1 km. Le plan ( ) Les deux «routes aériennes» à contrôler sont représentées par deux et ( D ( 2) 1. a. Indiquer les coordonnées d un vecteur u 1 Centres étrangers I Série S Juin Exercice On se propose d étudier une modélisation d une tour de contrôle de trafic aérien, chargée de surveiller deux routes aériennes représentées par deux droites de

Plus en détail

Chapitre 9 Produit scalaire dans l espace

Chapitre 9 Produit scalaire dans l espace Chapitre 9 Produit scalaire dans l espace Réactiver les savoirs, p 272 Calculer et utiliser le produit scalaire dans le plan QCM 1 Réponse C Le triangle ABC est rectangle en A donc les vecteurs AB et CA

Plus en détail

Chapitre 1 : Rappels et vocabulaire de

Chapitre 1 : Rappels et vocabulaire de Chapitre 1 : Rappels et vocabulaire de base : algèbre et géométrie 1 Notations On considère n, un entier naturel. Si on a une famille finie a k 0 k n de nombres réels ou complexes, on pose : a k a 0 +a

Plus en détail

Chapitre 7 : Géométrie dans l espace

Chapitre 7 : Géométrie dans l espace Chapitre 7 : Géométrie ans l espace I ositions relatives e roites et plans e l espace I.1 ositions relatives e eux roites Deux roites e l espace sont soit coplanaires, soit non coplanaires. et sont coplanaires

Plus en détail

GEOMETRIE DANS L ESPACE

GEOMETRIE DANS L ESPACE 1) Représentation en perspective cavalière GEOMETRIE DANS L ESPACE Pour représenter un solide par une figure plane, on utilise souvent, en mathématiques, la perspective cavalière. Définition : La perspective

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9. Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9. Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Le sujet comporte 8 pages numérotées de à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 Une enquête

Plus en détail

2 Géométrie dans l espace TS 2015/2016 Exercices

2 Géométrie dans l espace TS 2015/2016 Exercices Exercices Exercice 2. 1 est un cube (cf annexe). Les points, ", #,$,%,&,',( sont les milieux de certaines arêtes du cube. Dans chaque cas construire la section du cube par le plan 0. a. 0 = ( ) ; b. 0

Plus en détail

CAPES Les deux problèmes de géométrie.

CAPES Les deux problèmes de géométrie. Ecrit CAPES 014. Les deux problèmes de géométrie. 1. Epreuve 1, problème 1 : le sujet Cette épreuve s intéresse aux applications bijectives du plan qui transforment une droite en une droite. Cette propriété

Plus en détail

Espaces vectoriels. S2 Mathématiques Générales 1 11MM21

Espaces vectoriels. S2 Mathématiques Générales 1 11MM21 Espaces vectoriels S2 Mathématiques Générales 1 11MM21 Les notes qui suivent sont très largement inspirées du site : http://uel.unisciel.fr/mathematiques/espacevect1/espacevect1/co/espacevect1.html et

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Seconde 1 Géométrie dans l espace. page n

Seconde 1 Géométrie dans l espace. page n Seconde 1 Géométrie dans l espace. page n 1 Dans le plan, il existe autant de polygones réguliers distincts qu'il y a d'entiers supérieurs ou égaux à trois. Mais, dans l'espace, Euclide a démontré qu'il

Plus en détail

Géométrie de l espace

Géométrie de l espace [http://mp.cpgedupuydelome.fr] édité le 4 septembre 06 Enoncés Géométrie de l espace Notions communes Exercice [ 087 ] [Correction] À quelle(s) condition(s) simple(s) l intersection de trois plans de l

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Produit scalaire dans l'espace Il y a de la géométrie dans l'espace au bac tous les ans. Dans tout ce chapitre, on se place dans un repère (O, ı, j, k ) orthonormal de l'espace. Introduction L'espace,

Plus en détail

Chapitre 4: Géométrie analytique dans l'espace

Chapitre 4: Géométrie analytique dans l'espace GEOMETRIE ANALYTIQUE DANS L'ESPACE 35 Chapitre 4: Géométrie analytique dans l'espace Prérequis: Géom. vectorielle dans V 3, géom. analytique dans le plan Requis pour: Algèbre linéaire, examen de maturité.

Plus en détail

Géométrie spatiale. Positions relatives de droites et de plans de l espace

Géométrie spatiale. Positions relatives de droites et de plans de l espace Chapitre 6 : Géométrie spatiale - Positions relatives de droites et de plans : intersection et parallélisme I. TS - Orthogonalité de 2 droites. - Orthogonalité d une droite et d un plan Représentation

Plus en détail

Fiche d exercices 9 : Géométrie et orthogonalité dans l espace

Fiche d exercices 9 : Géométrie et orthogonalité dans l espace Fiche d exercices 9 : Géométrie et orthogonalité dans l espace Droites et plans de l espace Exercice SABC est un tétraèdre, la droite (SA) est orthogonale au plan (ABC), le triangle ABC est rectangle en

Plus en détail

Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel.

Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel. I Colinéarité de deux vecteurs Définition 1: Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel. Exemples : Les vecteurs u -5 3 et v 15-9 sont colinéaires car

Plus en détail

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1

1S DS 4 Durée : 2h. ( 5,5 points ) Exercice 1 1S DS Durée : h Exercice 1 (, points ) Dans un repère orthonormé (annexe exercice 1), on donne la droite (d) d équation x 3y + 6 = 0, le point A(1; 7) et le vecteur v (; 3). 1. Pour tracer (d) on peut

Plus en détail

FONCTIONS AFFINES, DROITES ET SYSTÈMES

FONCTIONS AFFINES, DROITES ET SYSTÈMES FONCTIONS AFFINES, DROITES ET SYSTÈMES Ph DEPRESLE 6 juin 05 Table des matières Fonctions affines. Définition, Propriétés................................... Représentation graphique................................3

Plus en détail

G É O M É T R I E D A N S L E S P A C E. Tétraèdre

G É O M É T R I E D A N S L E S P A C E. Tétraèdre 2 nde. 2003/2004. Ch.6 Géométrie dans l espace. J. TAUZIEDE. G É O M É T R I E D A N S L E S P A C E. I- PERSPECTIVE CAVALIERE ET REGLES D INCIDENCE. 1 ) Perspective cavalière. Dans une représentation

Plus en détail

(Isométrie et produit scalaire)

(Isométrie et produit scalaire) 1. Définitions et propriétés Définition (d une isométrie) Soit f une application du plan dans lui-même. On dit que f est une isométrie du plan si elle conserve la distance c est-à-dire pour tous points

Plus en détail

b) Déterminer les valeurs de m pour lesquelles la distance de A à P m est égale à

b) Déterminer les valeurs de m pour lesquelles la distance de A à P m est égale à 4 éme Année *** Maths Série d exercices Prof : Dhahbi. A *, Por : 97441893 Géométrie dans l espace Dans tous les exercices, 1'espace est rapporté à un repère orthonormé ( 0, i, j, k ). EXER CICE N 1 :

Plus en détail

Chapitre 14. Produit scalaire dans l espace. Orthogonalité

Chapitre 14. Produit scalaire dans l espace. Orthogonalité Chapitre 14. Produit scalaire dans l espace. Orthogonalité I. Produit scalaire dans le plan. Rappels de 1ère S 1) Les différentes expressions du produit scalaire dans le plan On rappelle ici sans démonstrations

Plus en détail

Fiche 1 Calcul vectoriel dans R 2 et R 3

Fiche 1 Calcul vectoriel dans R 2 et R 3 Université Paris, IUT de Saint-Denis Année universitaire 0-0 Licence Pro MDQ Géométrie Fiche Calcul vectoriel dans R et R Dans les exercices suivants, on suppose le plan muni d un repère orthonormal (O,,

Plus en détail