Savoir son cours. COMP.9 Energie mécanique exercices. Quel frimeur! Comparer voiture et camion : Julie sur sa balançoire : Le bon choix :

Dimension: px
Commencer à balayer dès la page:

Download "Savoir son cours. COMP.9 Energie mécanique exercices. Quel frimeur! Comparer voiture et camion : Julie sur sa balançoire : Le bon choix :"

Transcription

1 COMP.9 Energie mécanique exercices Savoir son cours Quel frimeur! Quelle est leur masse? E c = ½ m v m = E c/v Attention! La vitesse doit être en m/s! v = 45 km/h = 45/ 3,6 m/s = 1,5 m/s. Ainsi, m = /(1,5) 30 kg. Evidemment, cette masse comporte celle du scooter, celle du garçon et celle de sa copine! Le bon choix : Parmi les 3 graphiques ci-dessous, lequel correspond à l évolution de l énergie au cours de la chute d un objet? Comparer voiture et camion : Une voiture et un camion possèdent la même énergie cinétique égale à J. a) Rappelez la relation qui existe entre l énergie cinétique E c, la masse m et la vitesse v (donne les unités de chaque grandeur) : E c = ½ m v avec E c en J, m en kg et v en m/s. b) Le camion roule à 40 km/h. Calculez sa masse : E c = ½ m v m = E c/v Attention! La vitesse doit être en m/s! v = 40 km/h = 40/ 3,6 m/s = 11,1m/s. Ainsi, m = x /(11,1) = 4058 kg c) La masse de la voiture est de 800 kg, calculez sa vitesse et exprime-la en km/h. E c = ½ m v v = E c/m v = Ainsi, v = = 5 m/s. 5 m/s = 5 x 3,6 km/h = 90 km/h. Julie sur sa balançoire : Parmi les 3 graphiques cidessous, lequel correspond à l évolution de l énergie au cours du temps sur la balançoire? Au cours d une chute, l énergie potentielle diminue (l objet perd de l altitude) alors que l énergie cinétique augmente (la vitesse de l objet augmente).

2 Chercher l erreur : Au départ, le skieur possède une énergie potentielle de pesanteur E pmax et une énergie cinétique nulle (il démarre sans vitesse). Au plus bas de la pente, toute son E p se sera transformée en E c et sa vitesse sera donc maximale. Ainsi, au plus bas de la pente, E c = E pmax du départ et E p = 0. Au plus bas de la pente, toute son E p se sera transformée en E c et sa vitesse sera donc maximale. Ainsi, au plus bas de la pente, E c = E pmax du départ et E p = 0. Lorsqu il remonte, son E c se retransforme en E p. A mesure qu il monte, E c diminue. L altitude maximale qu il atteindra dépendra de la valeur de l énergie cinétique qu il aura avant d attaquer la montée. Or, cette énergie cinétique vaut E pmax. Il ne pourra donc pas monter au-delà de ce que lui permet cette valeur de E pmax. Ainsi, il ne pourra jamais monter plus haut que son altitude de départ. Il n atteindra donc jamais le sommet S. Les boules! Deux boules A et B de même masse sont tombées en chute libre sur un bloc d argile. Allez, hop! a) Quelle boule avait la plus grande vitesse au moment de l impact? Justifier. C est la boule B. La déformation est plus grande : cela veut dire que l E c de la boule B était plus grande. Les deux boules ayant la même masse, la différence de déformation provient donc de leur différence de vitesse. La boule B était donc plus rapide. b) Des deux boules, laquelle a été lâchées le plus haut? Justifier. La boule B. Car si elles sont toutes deux lâchées sans vitesse initiale, leur différence d E c à la fin provient d une différence d E p au départ, donc d une différence d altitude. a) L acrobate A est prêt à sauter. Quelle forme d énergie possède-t-il? Energie de position. b) Sous quelle forme sera son énergie lorsqu il touchera le sol avec la planche? Energie cinétique. c) Quelle forme d énergie possède l acrobate B lorsqu il décolle de la planche? Il est à l altitude 0, mais aura une vitesse. Son énergie est donc sous forme cinétique. d) Quelle sera la forme de son énergie lorsqu il sera au sommet de sa trajectoire? Au sommet, il n aura plus de vitesse mais aura une altitude maximale. Donc son énergie sera sous la forme d énergie de position.

3 Utiliser ses connaissances Sur les pentes enneigées : On s intéresse à la descente d un skieur de 60 kg sur une piste ABCDE Un traitement vidéo de la descente permet de tracer les courbes d évolution des énergies E p, E c, E m du surfeur en fonction du temps. On obtient les courbes I, II et III de la figure. A B C D E Skate : Grâce une rampe, un skateur de 60 kg s élève dans les airs. Quand il atteint son altitude maximale, il a une énergie de position de 500 J. a) Comment l énergie cinétique du skieur varie-t-elle entre A et C. Elle augmente jusqu en B puis diminue jusqu en C. b) Comment l énergie potentielle de pesanteur du skieur varie-t-elle entre A et C. Elle diminue jusqu en B puis augmente jusqu en C. c) Identifier les 3 courbes de la figure. D après ce que nous venons de dire, on peut affirmer que E c correspond à la courbe rouge (II) et que E p correspond à la courbe bleue (I). Ainsi, la courbe verte (III) qui reste est celle représentant l E m. d) Si l énergie mécanique n est pas constante, c est qu une partie de cette énergie se dissipe peu à peu à cause des frottements. Est-ce le cas ici? La courbe verte (III) diminue au cours du temps. E m n est donc pas constante : il y a donc des frottements. e) Donner l expression de l énergie cinétique du skieur en précisant les unités des grandeurs qui interviennent. E c = ½ m v avec E c en J, m en kg et v en m/s. f) En déduire l expression de la vitesse en fonction de l énergie cinétique. E c = ½ m v v = E c / m v = g) En quels points A, B, C, D ou E l énergie cinétique est-elle maximale? Au point B. Déterminer alors la vitesse en ce point en m/s. Au point B, E c 900 J (voir courbe rouge) v = v v 5,5 m/s = 19,7 km/h. h) En déduire sa valeur en km/h. v 5,5 m/s = 19,7 km/h. a) A quoi est égale son énergie cinétique E c : quand il a atteint son altitude maximale : Il n a plus de vitesse donc E c = 0. quand il est au bas de la rampe : Toute l énergie potentielle de pesanteur qu il avait à l altitude maximale s est transformée en énergie cinétique. Donc, en bas, E c = 500 J. b) Qu appelle-t-on l énergie mécanique? C est la somme de E p et de E c : E m = E p + E c. c) Représenter sur un même graphique l évolution des énergies E p, E c et E m quand le skateur va d un côté à l autre de la rampe : d) Déterminer la vitesse maximale atteinte par le skateur en m/s puis en km/h : Au point le plus bas, E c 500 J. Or, v = v v 9,1 m/s v 9,1 m/s 33 km/h.

4 Montagnes russes : Encensoir de Botafumeiro : Un chariot et ses passagers assimilés à un point matériel G de masse m, roulent sur des montagnes russes. Le chariot quitte A avec une vitesse considérée comme nulle. Les frottements sont négligés. On prendra comme référence des énergies potentielles de pesanteur celle du point B. z A saint Jacques de Compostelle, il existe un des plus remarquables encensoirs du monde (vidéo). On peut schématiser son mécanisme simplifié comme ci-dessous : A h a) Donner l expression de l énergie potentielle de pesanteur en A, B et C : En A : E PA = m g (h+d) En B : E PB = 0 En A : E PC = m g h b) Donner l expression de la vitesse en B et C : Energie mécanique : On peut considérer qu elle est constante ici car il n y a pas de forces de frottements ou de traction Pour avoir sa valeur, plaçons nous au point A où v A = 0 : E m = cste = E ma = E PA + E CA = m g (h+d) + 0 Donc : E m = cste = m g (h+d). Pour calculer les vitesses en B et en C, on utilise E m : Vitesse en B : E m = 0 + ½ m v B v B = v B = = Vitesse en C : E m = m g h + ½ m v C m g (h+d) = m g h + ½ m v C m g d = ½ m v C g d = ½ v C v C = 0 Suspendu à une corde de 1 m, cet encensoir pèse 50 kg. Lorsqu il effectue ses oscillations, on supposera que les frottements sont négligeables tout comme la masse de la corde. L angle maximal atteint est de 80. Quelle est la vitesse de l encensoir lorsqu il atteint le point le plus bas de sa trajectoire? Energie mécanique : On peut considérer qu elle est constante ici car il n y a pas de forces de frottements ou de traction Pour avoir sa valeur, plaçons-nous au point A où v A = 0 : E m = cste = E ma = E PA + E CA = m g z max + 0 Calcul de z max : on utilise le triangle bleu : h = L cos max z max = L h = L - L cos max z max = L (1- cos max). On en déduit la valeur de l énergie mécanique : E m = cste = E ma = E PA + E CA = mgl (1- cos max) + 0 E m = cste = mgl (1- cos max). Pour calculer la vitesse en B on utilise E m : Vitesse en B : E m = E PB + E CB = 0 + ½ m v B v B = v B = v B = = B = 18,45 m/s = 66,4 km/h.

5 Tennis : En t = 0s, le joueur au service frappe la balle de 58,0g à une hauteur h =,40 m au-dessus du sol. Il communique alors à la balle, une vitesse v 0 = 116 km/h. On prendra comme origine des énergies potentielles de pesanteur, celle correspondant à un point situé au niveau du terrain. On néglige les frottements. Centrale de lac : L eau de la retenue d un barrage de m 3 est acheminée vers les turbines via une conduite forcée. Il y a 100 m de dénivelé entre le haut et le bas de la conduite forcée. L eau fait tourner les turbines et en ressort avec une vitesse quasi nulle. En cas de besoin, la retenue peut être vidée en 3 jours. a) Calculer l énergie mécanique En t = 0s : Energie mécanique : On peut considérer qu elle est constante ici car il n y a pas de forces de frottements ou de traction Pour avoir sa valeur, plaçons-nous en t = 0s : E m = cste = E m0 = E P0 + E C0A = m g h + ½ m v 0 E m = 0,058 9,81,40 + ½ 0,058 (116/ 3,6) E m 31,5 J. b) Calculer la vitesse de la balle lorsqu elle touche le sol en I. ViE m = 0 + ½ m v I v I = v I = 33 m/s = 118,6 km/h. c) Cette vitesse, en réalité est-elle supérieure ou inférieure à celle trouvée théoriquement? Elle est un peu inférieure car à cause des frottements de l air contre la balle, l énergie mécanique n est pas conservée. Elle diminue légèrement. Donc E mi < E m0, donc v I = < a) Sous quelle forme l énergie est-elle stockée? Sous forme d énergie potentielle de pesanteur E P. b) Lorsque la centrale est complètement vidée, quelle sera l énergie totale transmise par l eau à la turbine? Lorsque le barrage sera vidé, toute l énergie potentielle de pesanteur aura été convertie en énergie cinétique. L énergie transmise sera donc E P = m g z. 1 m 3 = 1000 L pèsent 1000 kg. E P = m g z = , =, J. c) On estime que 85% de cette énergie peut être convertie en énergie électrique. Combien d énergie électrique peut être produite en 3 jours? Comme l eau ressort avec une vitesse quasi nulle, c est que toute l énergie cinétique recueillie au niveau des pales a été transférée à l alternateur. Après, 85% de cette énergie est convertie en énergie électrique, soit : 0,85, =, J.

6 Balle rebondissante : Une balle de 100 g est lâchée d un point A sans vitesse initiale. Entre t 0 = 0 s et t = 0,9 s elle rebondit au sol au point B puis remonte verticalement jusqu au point C. E p choc E c t c a) Identifiez la courbe représentant l énergie cinétique E c et celle représentant l énergie potentielle E pp de pesanteur au cours du temps : l énergie cinétique est représentée par la courbe verte car au départ, la balle n a pas de vitesse et son énergie cinétique est donc nulle. b) Que peut-on dire de l énergie mécanique avant le choc? L énergie mécanique avant le choc semble être conservée car si on fait la somme de E C et de E P on voit que cette somme reste constante au cours du temps. Qu en concluez-vous? On en conclut qu il n y a pas de frottements ou do moins que ces derniers sont négligeables. c) A quelle date se produit le choc? Le choc a lieu à la date t c 0,45 s. d) Est-ce que ce choc est instantané? Ce choc n est pas instantané car on voit que E p reste nulle (donc la balle reste en position 0) pendant un petit moment et pas de façon instantanée. e) Que peut-on dire de l énergie mécanique après le choc? Elle a baissé puisqu à la fin, lorsque E c est à nouveau nulle, E p n est pas remontée au même niveau qu au départ. f) Que se passe-t-il pour l énergie au cours du choc? Au cours du choc, il y a donc eu, pendant que la balle restait écrasée au sol, une déperdition d énergie. Cette énergie a dû être perdue (sous forme de chaleur, ou communiquée au sol ) pendant la durée du choc.

CH.9 ÉNERGIES exercices - correction

CH.9 ÉNERGIES exercices - correction CH.9 ÉNERGIES exercices - correction SAVOIR SON COURS ❶ Choisir la bonne réponse : Enoncés Réponse A Réponse B Réponse C ❶ L énergie de position d un objet ❷ Lorsqu un objet tobe augente quand son altitude

Plus en détail

Mécanique3. Cours. L énergie mécanique. Troisièmes. 3 ème. Qu est-ce que l énergie mécanique?

Mécanique3. Cours. L énergie mécanique. Troisièmes. 3 ème. Qu est-ce que l énergie mécanique? 3 ème Mécanique 3 Qu est-ce que l énergie mécanique? Objectifs 1 Calculer une énergie cinétique 2 Reconnaître une énergie de position 3 Expliquer une conversion d énergie mécanique Mécanique3 Photos Pourquoi

Plus en détail

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J.

E c (t 0 ) = ½ m v 0. E pp (t 0 ) = mgh. Séance n 12 Conservation de l énergie. E c (t 0 ) = 30,1 J. E pp (t 0 ) = 1,4 J. Séance n 12 Conservation de l énergie Exercice n 1 Au service Au service, un joueur de tennis frappe, à l instant de date t 0 = 0 s, une balle de masse m = 58,0 g à une hauteur h = 2,4 m au dessus du sol

Plus en détail

Exercices sur Travail, puissance et l'énergie mécanique

Exercices sur Travail, puissance et l'énergie mécanique F en N LNW Physique II e BC Exercices sur Travail, puissance et l'énergie mécanique 1) Calculer le travail d'une force constante F 3 i 1 j le long d'un trajet rectiligne de A (2,0) vers B (7,4). 2) Le

Plus en détail

Exercices corrigés sur E m, E p, E c et la sécurité routière

Exercices corrigés sur E m, E p, E c et la sécurité routière Exercices corrigés sur E m, E p, E c et la sécurité routière Exercice 1 : Conversion d énergie Sa2 h (altitude) goutte d eau Ec énergie cinétique Ep énergie de position 0 On étudie la chute d une goutte

Plus en détail

6 Les forces mettent les objets en mouvement.

6 Les forces mettent les objets en mouvement. 6 Les forces mettent les objets en mouvement. Tu dois devenir capable de : Savoir expliquer la proportion directe entre la force et l accélération à l aide d un exemple ; expliquer la proportion inverse

Plus en détail

Exercices : Travail, Puissance, Energie

Exercices : Travail, Puissance, Energie LCD Physique III e BC 1 Exercices : Travail, Puissance, Energie 1) Le matin, un élève soulève son cartable de 10 kg d une hauteur de 1,4 m. Déterminer le travail qu il effectue. Ensuite, il emprunte une

Plus en détail

EXAMEN #1 PHYSIQUE MÉCANIQUE 20% de la note finale

EXAMEN #1 PHYSIQUE MÉCANIQUE 20% de la note finale EXMEN #1 PHYSIQUE MÉNIQUE 20% de la note finale Hiver 2011 Nom : haque question à choix multiples vaut 3 points 1. Un projectile est lancé avec un angle de 45 avec l horizontale et retombe à une hauteur

Plus en détail

1 ) Métropole STLB 2015

1 ) Métropole STLB 2015 1 ) Métropole STLB 2015 Partie A : détermination de la vitesse du véhicule Procès-verbal des enquêteurs : L accident s est produit sur une portion de route départementale goudronnée dont la vitesse est

Plus en détail

Chapitre 5. Le ressort. F ext. F ressort

Chapitre 5. Le ressort. F ext. F ressort Chapitre 5 Le ressort Le ressort est un élément fondamental de plusieurs mécanismes. Il existe plusieurs types de ressorts (à boudin, à lame, spiral etc.) Que l on comprime ou étire un ressort, tel que

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!!

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! Brenda Semeda-Moreiro, une élève de, décide de passer tout son week-end à réviser le contrôle de physique prévu pour lundi.

Plus en détail

ENERGIE MECANIQUE ET SECURITE ROUTIERE

ENERGIE MECANIQUE ET SECURITE ROUTIERE ENERGIE MECANIQUE ET SECURITE ROUTIERE I- Energie cinétique d'un objet. 1- Rappel: Calcul de la vitesse d'un objet. La vitesse d'un objet en chute libre augmente avec la hauteur de la chute. (Existence

Plus en détail

Travail d une force Correction

Travail d une force Correction Travail d une force Exercice 1 : Deux jumeaux de même masse m=75,0 kg montent au 5ème étage d'un immeuble en partant du rez-de-chaussée. Le jumeau A emprunte l'ascenseur et le jumeau B l'escalier. La distance

Plus en détail

Concours Blanc N 1 Enoncé

Concours Blanc N 1 Enoncé Concours Blanc N 1 Enoncé Physique 20 QCM Durée de l épreuve : 60 min 20 pts Physique 1 QCM 1 Une bille, de masse m = 140 g, est accrochée à un fil inextensible de longueur l = 30 cm, de masse négligeable.

Plus en détail

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre Chapitre P 9 : Travail d une force constante et énergie Correction Dans le chapitre précédent, nous avons étudié l évolution temporelle de différents systèmes mécaniques en exploitant la seconde loi de

Plus en détail

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011 EPFL, Physique Générale I SIE & SMX, 200-20 Examen 4.0.20 Nom :... Prénom :... Section :... No :... Les seuls objets autorisés sont: Le formulaire "résumé mécanique" disponible sur le moodle une feuille

Plus en détail

Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique

Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique Document du professeur 1/7 Niveau 3 ème Physique - Chimie Energie de position- Energie cinétique Energie mécanique Conservation de l énergie mécanique Programme C. De la gravitation à l énergie mécanique

Plus en détail

Lien entre l énergie cinétique, l énergie de position (potentielle) et l énergie mécanique.

Lien entre l énergie cinétique, l énergie de position (potentielle) et l énergie mécanique. Lien entre l énergie cinétique, l énergie de position (potentielle) et l énergie mécanique. Relation entre le poids et la masse d un corps Formule : P = m. g Avec p : poids en newton (N) m : masse en kilogramme

Plus en détail

TS Physique D Aristote à aujourd hui Exercice résolu

TS Physique D Aristote à aujourd hui Exercice résolu P a g e 1 TS Physique Eercice résolu Enoncé -34 avant JC : Aristote déclare qu une masse d or, de plomb ou de tout autre corps pesant tombe d autant plus vite qu elle est plus grosse et, en particulier,

Plus en détail

Un petit rien... qui peut tout changer! Octobre 2014

Un petit rien... qui peut tout changer! Octobre 2014 Un petit rien... qui peut tout changer! Octobre 2014 Présentation de l outil Présentation de l outil Vous êtes : 1 enseignant au collège. 2 enseignant au lycée. 3 les deux. 4 aucune des réponses précédentes.

Plus en détail

III Univers / IV. Le Sport

III Univers / IV. Le Sport III Univers / IV. Le Sport Mouvements et forces Exercice n 1 : Dynamomètre Exercice n 2 : Une petite voiture dans un train Un enfant est assis dans un train qui circule sur une voie rectiligne et horizontale.

Plus en détail

Recherche sur les collisions à une dimension : la relation entre la masse et le son

Recherche sur les collisions à une dimension : la relation entre la masse et le son Recherche sur les collisions à une dimension : la relation entre la masse et le son Recherche Le but de cette expérience est de faire une recherche sur la relation entre la masse et le son produit dans

Plus en détail

Puissance = 7.4 La puissance mécanique

Puissance = 7.4 La puissance mécanique Nous avons vu comment le travail effectué par une force peut faire varier l énergie cinétique d un objet. La puissance mécanique développée par une force est une autre grandeur physique qui est reliée

Plus en détail

Partiel PHY121 Mécanique du point

Partiel PHY121 Mécanique du point Université Joseph Fourier Grenoble Licence Partiel PHY2 Mécanique du point Vendredi 23 mars 202 Durée h30 Calculatrices et documents non-autorisés Pour chaque question, 4 réponses sont proposées dont ou

Plus en détail

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS

EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS ANNÉE 2013 EXAMEN PROBATOIRE D ADMISSION DANS LES ECOLES D OFFICIERS CSEA 2013 ÉPREUVE DE PHYSIQUE Durée : 4 heures Coefficient : 1 - L usage de la calculatrice est autorisé ; - Les exercices sont indépendants

Plus en détail

EPREUVE DE SCIENCES PHYSIQUES

EPREUVE DE SCIENCES PHYSIQUES EPREUVE DE SCIENCES PHYSIQUES Exercice 1 : Question de cours. Q1 : Que faut-il pour que la troisième loi de Newton s applique à deux corps A et B en interaction? Q2 : Qu observe t-on lorsque l on réalise

Plus en détail

1 Exercices d introduction

1 Exercices d introduction Université Paris 7 - Denis Diderot 2013-2014 TD 4 : accélération, mouvement parabolique, mouvement oscillant 1 Exercices d introduction 1. Evolution de la population mondiale Année (1er janvier) 1500 1600

Plus en détail

10. Transforme l équation : a = V f - V i, pour trouver : t a) le temps; b) la vitesse finale; c) la vitesse initiale. Vitesse initiale (m/s)

10. Transforme l équation : a = V f - V i, pour trouver : t a) le temps; b) la vitesse finale; c) la vitesse initiale. Vitesse initiale (m/s) Physique 51211(2) Nom : Module 2 : Chapitre 5 Mouvement uniformément accéléré 1. La nouvelle voiture de Claude peut passer de 0 m/s à 36 m/s en 9 secondes. Trouve l accélération de cette voiture. ( 4 m/s

Plus en détail

Les tours de chute libre : DISCOVERY et COLUMBIA Traduit par Anne-Claire Guesdon

Les tours de chute libre : DISCOVERY et COLUMBIA Traduit par Anne-Claire Guesdon Les tours de chute libre : DISCOVERY et COLUMBIA Traduit par Anne-Claire Guesdon Observations et mesures à bord Sensations et mesures de l accéléromètre à ressort 1) Pour les deux positions indiquées par

Plus en détail

2. CONCEPTION MÉCANIQUE DES SYSTÈMES. 2.2 Comportement d un mécanisme et/ou d une pièce CINÉMATIQUE : MOUVEMENTS DE TRANSLATION

2. CONCEPTION MÉCANIQUE DES SYSTÈMES. 2.2 Comportement d un mécanisme et/ou d une pièce CINÉMATIQUE : MOUVEMENTS DE TRANSLATION Page:1/8 CINÉMATIQUE : MOUVEMENTS DE TRANSLATION QCM ET EXERCICES D APPLICATION QCM Pour chaque QCM, quelles sont les bonnes affirmations ou conclusions parmi celles proposées? Les points d un solide en

Plus en détail

CHAPITRE III : Travail et énergie

CHAPITRE III : Travail et énergie CHPITRE III : Travail et énergie III. 1 En principe, les lois de Newton permettent de résoudre tous les problèmes de la mécanique classique. Si on connaît les positions et les vitesses initiales des particules

Plus en détail

Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements. 1 Relativité du mouvement en classe de Seconde :

Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements. 1 Relativité du mouvement en classe de Seconde : Utiliser DYNAMIC pour étudier des enregistrements vidéo de mouvements 1 Relativité du mouvement en classe de Seconde : 1.1 Programme : Exemples d activités Contenus Connaissances et savoir-faire exigibles

Plus en détail

Energie Mécanique. On dit qu'un système possède de l'énergie lorsqu'il peut fournir du travail. Ressort tendu de flipper pouvant lancer une bille.

Energie Mécanique. On dit qu'un système possède de l'énergie lorsqu'il peut fournir du travail. Ressort tendu de flipper pouvant lancer une bille. Energie Mécanique 1 - Energie Exemples : On dit qu'un système possède de l'énergie lorsqu'il peut fournir du travail. Eau d'un barrage pouvant faire tourner une turbine. Ressort tendu de flipper pouvant

Plus en détail

Etude d un véhicule électrique

Etude d un véhicule électrique Etude d un véhicule électrique Sa masse M est de 1400kg Sa vitesse maximale Vmax=150km/h Autonomie de 250km à 90km/h Batterie Lithium-ion Les deux roues avant sont motrices Le diamètre D d un pneu sous

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB MODÉLISATION D UNE SUSPENSION ET ÉTUDE DE SON COMPORTEMENT DYNAMIQUE La suspension d une automobile est habituellement assurée par quatre systèmes

Plus en détail

Chapitre 6P : ENERGIE CINETIQUE ET ENERGIE POTENTIELLE

Chapitre 6P : ENERGIE CINETIQUE ET ENERGIE POTENTIELLE Chapitre 6P : ENERGIE CINETIQUE ET ENERGIE POTENTIELLE Dans le chapitre précèdent, nous avons étudié l expression du travail et de la puissance d une force constante. Ce travail correspond à un transfert

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

Chapitre 4: Les 3 principes de Newton

Chapitre 4: Les 3 principes de Newton e B et C 4 Les 3 principes de Newton 38 Chapitre 4: Les 3 principes de Newton 1. Rappels sur les forces Rappel 1 : On appelle force toute cause capable de: modifier le mouvement d un corps; de déformer

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

Energie, puissance et production d énergie

Energie, puissance et production d énergie Energie, puissance et production d énergie Le skateur Un skateur part, à l arrêt du haut de la rampe d un skate parc de hauteur 5 m. La masse du skateur est de 50 kg (on prendra g=10 pour l accélération

Plus en détail

Exercice 1 : 3 points

Exercice 1 : 3 points BACCALAUREAT PROFESSIONNEL MAINTENANCE de VEHICULES AUTOMOBILES MATHEMATIQUES (15 points) Exercice 1 : 3 points PARTIE 1 : Détermination du diamètre de la roue La géométrie des trains roulants, désigne

Plus en détail

Exercices sur les forces et le principe d inertie

Exercices sur les forces et le principe d inertie Exercices de mécanique Exercices sur les forces et le principe d inertie 1 Équilibre d un système constitué de deux boules Dans le dispositif représenté ci-dessous, plusieurs éléments sont attachés à un

Plus en détail

X X X. Verre. Remarque : Les interactions à distance peuvent être :

X X X. Verre. Remarque : Les interactions à distance peuvent être : Physique : 2 nde Chapitre.7 : Forces et mouvements I. Modèles et interactions 1. Interactions entre deux objets : L énoncé suivant s applique à des objets au repos ou en mouvement. Quand un objet agit

Plus en détail

Corrigés de la séance 5 Chap 5 et 7: Gravitation et frottements

Corrigés de la séance 5 Chap 5 et 7: Gravitation et frottements Corrigés de la séance 5 Chap 5 et 7: Gravitation et frottements Questions pour réfléchir Q4. p.262. Jupiter a une masse 318 fois plus grande que celle de la Terre. Pourtant, l accélération de la pesanteur

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

L utilisation de la calculatrice est autorisée. Ce sujet comporte 5 pages numérotées de 1 à 5.

L utilisation de la calculatrice est autorisée. Ce sujet comporte 5 pages numérotées de 1 à 5. DEVOIR COMMUN n 1 Année scolaire 014-015 Épreuve de : MATHÉMATIQUES Durée : heures Le 16/01/015 L utilisation de la calculatrice est autorisée. Ce sujet comporte 5 pages numérotées de 1 à 5. Le sujet est

Plus en détail

15 exercices corrigés d Electrotechnique sur la machine à courant continu

15 exercices corrigés d Electrotechnique sur la machine à courant continu 15 exercices corrigés d Electrotechnique sur la machine à courant continu Sommaire Exercice MCC01 : machine à courant continu Exercice MCC02 : machine à courant continu à excitation indépendante Exercice

Plus en détail

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test Navigation PY401os (2011-2012) Collège École de Commerce PER Université Impressum Connecté sous le nom «Bernard Vuilleumier» (Déconnexion) Réglages Outils de travail Outils de travail Accueil Cours Collège

Plus en détail

ÉPREUVE DE SCIENCE PHYSIQUE TRAVAUX DIRIGES DURES : 02 heures COEFFICIENT :

ÉPREUVE DE SCIENCE PHYSIQUE TRAVAUX DIRIGES DURES : 02 heures COEFFICIENT : ÉPREUVE DE SCIENCE PHYSIQUE Thème : moteur à piston A- Question : 1- Définis : a) Gaz frais b) Gaz brulés 2- Donne le rôle de chaque phase d un moteur à explosion. - Donne, dans un moteur à explosion,

Plus en détail

Test d auto-évaluation 2010

Test d auto-évaluation 2010 SwissPhO Olympiade Suisse de Physique 2010 Test d auto-évaluation 2010 Ce test permet aux intéressés d évaluer leurs capacités à résoudre des problèmes et de reconnaître des lacunes dans certaines notions.

Plus en détail

Série S Durée de l épreuve : 4 heures

Série S Durée de l épreuve : 4 heures Série S Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice est autorisée. Le candidat doit traiter les quatre exercices. Le candidat est invité

Plus en détail

Exercice 5. Calculer la somme des dix premiers termes de chacune des suites de l exercice 3

Exercice 5. Calculer la somme des dix premiers termes de chacune des suites de l exercice 3 Exercice. On considère les suites u, v et w définies sur N par : u n = n + ; v n = n n + ; w n = n + n Calculer les cinq premiers termes de chaque suite. Exercice. On considère les suites u, v et w définies

Plus en détail

Energie Travail Puissance Cours

Energie Travail Puissance Cours Energie Travail Puissance Cours. Introduction Les problèmes liés à l énergie sont d une grande importance : l énergie est en effet à l origine de tous les mouvements du monde de la technologie. Il existe

Plus en détail

Mécanique 3. Cours. L énergie mécanique. Troisièmes. Intro. Qu est-ce que l énergie mécanique? Calculer une énergie cinétique

Mécanique 3. Cours. L énergie mécanique. Troisièmes. Intro. Qu est-ce que l énergie mécanique? Calculer une énergie cinétique Mécanique 3 L énergie mécanique Qu est-ce que l énergie mécanique? Calculer une énergie cinétique Objectifs Reconnaître une énergie de position Expliquer une conversion d énergie mécanique Départ Mécanique

Plus en détail

ARISTOTE, GALILÉE ET NEWTON (6 points)

ARISTOTE, GALILÉE ET NEWTON (6 points) ARISTOTE, GALILÉE ET NEWTON (6 points) Pour cet exercice, l'utilisation de la calculatrice est autorisée Trois siècles avant notre ère, le célèbre savant grec Aristote affirmait qu "une masse d or, de

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

EXEMPLE DE CALCUL D UNE MISSION AVION

EXEMPLE DE CALCUL D UNE MISSION AVION EXEMPLE DE CALCUL D UNE MISSION AVION On considère un Boeing 747 dont la masse maxi au décollage est de 383000 kg. Il est propulsé par quatre turboréacteurs et réalise quotidiennement des missions de type

Plus en détail

Comment les forces agissent sur le mouvement?

Comment les forces agissent sur le mouvement? SP. 5 forces et principe d inertie cours Comment les forces agissent sur le mouvement? 1) notion d action et de force : a) Actions exercées sur un système : Actions de contact : Solide posé sur une table

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

Campus Saint-Jean (consolidé avec la Faculty of Engineering) PHYSQ 131 Examen Final Samedi, 21 avril, 2012; 14h 16h30 MCM 3-18

Campus Saint-Jean (consolidé avec la Faculty of Engineering) PHYSQ 131 Examen Final Samedi, 21 avril, 2012; 14h 16h30 MCM 3-18 Campus Saint-Jean (consolidé avec la Faculty of Engineering) PHYSQ 131 Examen Final Samedi, 21 avril, 2012; 14h 16h30 MCM 3-18 1. Vous n avez droit ni aux notes, ni au manuel. 2. Des feuilles de formules

Plus en détail

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies

Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies 1 Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 24 : Travail d une force-energies I. Les forces travaillent. 1. Effets d une force. Les forces appliquées à un système peut : - Déformer

Plus en détail

Groupe : (h, k) ( 5, 12)

Groupe : (h, k) ( 5, 12) Fiche de soutien Les propriétés de la fonction racine carrée PROPRIÉTÉ FONCTION SOUS FORME CANONIQUE f(x) = a + k (ou f(x) = a 1 + k et a 1 = a ) EXEMPLE f(x) = 2 12 (ou f(x) = 6 12) Coordonnées du sommet

Plus en détail

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES CHAPITRE Le mouvement en deux dimensions CORRIGÉ DES EXERCICES Exercices. Les vecteurs du mouvement SECTION. 5. Une montgolfière, initialement au repos, se déplace à vitesse constante. En 5 min, elle

Plus en détail

Concours d entrée - mai 2012. A remplir par le candidat : Nom :.. Prénom :.. Centre de passage de l examen : N de place :.

Concours d entrée - mai 2012. A remplir par le candidat : Nom :.. Prénom :.. Centre de passage de l examen : N de place :. A remplir par le candidat : Nom : Prénom :.. Centre de passage de l examen : N de place :. Note : Concours filière Technicien Supérieur et er cycle filière Ingénieur Concours nd cycle filière Ingénieur

Plus en détail

Parmi les formules suivantes, lesquelles permettent de calculer celle d un véhicule :

Parmi les formules suivantes, lesquelles permettent de calculer celle d un véhicule : EXERCICE 1 Parmi les formules suivantes, lesquelles permettent de calculer celle d un véhicule : 1) Ec = m v 2) Ec = ½ m v 3) Ec = ½ m v² 4) Ec = ½ v² 5) Ec = mv² EXERCICE 2 1) Rappelez la formule permettant

Plus en détail

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

CONSERVATOIRE NATIONAL DES ARTS ET METIERS CONSERVATOIRE NATIONAL DES ARTS ET METIERS Centre de préparation au diplôme d'état d'audioprothésiste Epreuve de Physique (Durée: heures) 7 juillet Exercice : LA BALANCOIRE ( points) Une balançoire constituée

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail

Principe de fonctionnement d un véhicule à roues

Principe de fonctionnement d un véhicule à roues Mécanique «Chapitre» 4 Principe de fonctionnement d un véhicule à roues Parties du programme de PCSI à revoir Notions et contenus Lois de Coulomb du frottement de glissement dans le seul cas d un solide

Plus en détail

Vitesse et distance d arrêt

Vitesse et distance d arrêt Vitesse et distance d arrêt Mathématiques 3e Compétences du Répertoire des connaissances et des comportements des usagers de l espace routier Connaître les risques liés aux conditions météo (freinage,

Plus en détail

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES

Concours AVENIR 8 mai 2011 EPREUVE DE PHYSIQUE. DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES NOM :. PRENOM : NUMERO DE CANDIDAT :... EPREUVE DE PHYSIQUE DUREE : 1h30mn Coefficient 5 CONSIGNES SPECIFIQUES Lire attentivement les consignes afin de vous placer dans les meilleures conditions de réussite

Plus en détail

Effet d une onde électromagnétique sur un atome à deux niveaux

Effet d une onde électromagnétique sur un atome à deux niveaux Université Pierre et Marie Curie Master de sciences et technologie Interaction matière-rayonnement Effet d une onde électromagnétique sur un atome à deux niveaux Introduction On considère un système atomique

Plus en détail

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison.

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison. Énoncés Exercice 1 Le tableau ci-contre indique des grandeurs physiques et démographiques des territoires constituant la Mélanésie. 1. Rédiger une phrase commençant par «Il y a» et contenant le nombre

Plus en détail

Test : principe fondamental de la dynamique et aspect énergétique

Test : principe fondamental de la dynamique et aspect énergétique Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de

Plus en détail

1 ère S La petite voiture Physique Mécanique

1 ère S La petite voiture Physique Mécanique Page 1 sur 5 1 ère S Physique Mécanique - Enoncé - Remarques préliminaires : - n prendra g = 9,8 N.kg -1. - n traaille dans un référentiel terrestre supposé galiléen. Un jouet, une «petite oiture», est

Plus en détail

TD 8 Dynamique. 1 Nacelle à flèche téléscopique H21 TX 1. Compétences travaillées :

TD 8 Dynamique. 1 Nacelle à flèche téléscopique H21 TX 1. Compétences travaillées : Compétences travaillées : Déterminer tout ou partie du torseur cinétique d un solide par rapport à un autre. Déterminer tout ou partie du torseur dynamique d un solide par rapport à un autre. Déterminer

Plus en détail

1. Réponse a : Si la masse de l'objet est multipliée par deux, son énergie cinétique est multipliée par 2. En effet, Ec2 2mv mv 2 Ec1

1. Réponse a : Si la masse de l'objet est multipliée par deux, son énergie cinétique est multipliée par 2. En effet, Ec2 2mv mv 2 Ec1 Correction de l'exercice p 68. L'énergie cinétique est une énergie de "mouvement", car dès qu'un objet est en mouvement (dans un référentiel), on peut définir une vitesse de l'objet v. Comme l'énergie

Plus en détail

Partie II les outils, page 38, 31 : Abaque de Devilliers

Partie II les outils, page 38, 31 : Abaque de Devilliers LA PHYSIQUE DANS LES STAGES "PERMIS À POINTS" Les stages permis à points rencontrent un grand succès. Au programme de ces stages, une séquence est obligatoirement consacrée aux lois physiques de l automobile.

Plus en détail

PHYSIQUE - MATHÉMATIQUES

PHYSIQUE - MATHÉMATIQUES SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE - MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche à alimentation autonome, sans imprimante et sans document d accompagnement

Plus en détail

Suspension arrière de la Voxan 1000 V2 ROADSTER

Suspension arrière de la Voxan 1000 V2 ROADSTER Partie 1 Suspension arrière de la Voxan 1000 V2 ROADSTER On utilise pour cela un modèle simplifié plan. 1.1. Colorié le document 1 pour faire apparaître les différentes classes d équivalence. 1.2. Réaliser

Plus en détail

Etude d un véhicule électrique

Etude d un véhicule électrique Etude d un véhicule électrique Sa masse M est de 1,4 tonne. Sa vitesse maximale Vmax = 150 km/h. Autonomie : 250 km à 90 km/h. Batteries Lithium-ion. Les deux roues avant sont motrices. Le diamètre D d

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section : i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section : i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section : i-prépa annuel - 61 Chapitre 7 : Chute d une bille dans un fluide I. Deux nouvelles forces : a) la Poussée d Archimède : Tout corps

Plus en détail

PHYSQ 124 LEC A1 : Particules et ondes Examen final Automne 2011. Nom SOLUTIONS. Numéro de l étudiant.e

PHYSQ 124 LEC A1 : Particules et ondes Examen final Automne 2011. Nom SOLUTIONS. Numéro de l étudiant.e PHYSQ 124 LEC A1 : Particules et ondes Examen final Automne 2011 Nom SOLUTIONS Numéro de l étudiant.e Professeur Marc de Montigny Horaire Vendredi, 16 décembre 2011, de 9 h à midi Lieu Gymnase du Campus

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL Session 2012 PHYSIQUE-CHIMIE Série S Enseignement de Spécialité Durée de l épreuve : 3 heures 30 Coefficient : 8 L usage des calculatrices est autorisé. Ce sujet ne nécessite pas de

Plus en détail

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES CHAPITRE Le mouvement en une dimension CORRIGÉ DES EXERCICES Exercices. Le mouvement rectiligne uniforme SECTION. 5. Le graphique suivant représente la vitesse d une cycliste en fonction du temps. Quelle

Plus en détail

Fonctions numériques, exercices

Fonctions numériques, exercices Première L Fonctions numériques, exercices 1. Amérique du Sud, novembre 2002, 9 points 1 2. Amérique du Nord, juin 2004, 8 points 2 3. Antilles, juin 2004, 8 points 3 4. Pondichéry, avril 2002, 8 points

Plus en détail

Comment battre Milos Raonic?

Comment battre Milos Raonic? Comment battre Milos Raonic? Milos Raonic est un jeune joueur de tennis professionnel Canadien. Il dispose de capacités physiques impressionnantes avec une taille de 1,96 m pour 90 kg. Depuis le début

Plus en détail

TD 10 : Énergie cinétique, travail d une force et théorème de l énergie cinétique

TD 10 : Énergie cinétique, travail d une force et théorème de l énergie cinétique Université Paris 7 - Denis Diderot 2013-2014 TD 10 : Énergie cinétique, travail d une force et théorème de l énergie cinétique 1 Introduction Exercice 1 1. Donner des situations ordinaires (i.e. de la

Plus en détail

8 + 12 1 + 3 = 20 4 = 5. 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes

8 + 12 1 + 3 = 20 4 = 5. 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes Exercice 1 3pts 1. Calculer le nombre A = 8 + 3 x 4 1 + 2 x 1,5 = 8 + 12 1 + 3 = 20 4 = 5 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes Expliquer pourquoi il

Plus en détail

Chapitre P8 : Le travail : un mode de transfert de l'énergie. 1 ere S Chapitre P8 2008-2009

Chapitre P8 : Le travail : un mode de transfert de l'énergie. 1 ere S Chapitre P8 2008-2009 Chapitre P8 : Le travail : un mode de transfert de l'énergie I) Comment le travail du poids peut-il modifier la vitesse d'un corps : -) Relation entre le travail du poids et la vitesse : Voir TP 7 de physique

Plus en détail

Un automobiliste roulant à 120 km/h effectue un parcours de 300 km. Quelle est la durée du trajet en heures et minutes?

Un automobiliste roulant à 120 km/h effectue un parcours de 300 km. Quelle est la durée du trajet en heures et minutes? EXERCICES SUR LE MOUVEMENT RECTILIGNE UNIFORME Exercice 1 Un automobiliste roulant à 120 km/h effectue un parcours de 300 km. Quelle est la durée du trajet en heures et minutes? (D après sujet de Dominante

Plus en détail

EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante.

EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante. EVALUATION DIAGNOSTIQUE : - 1- L énergie cinétique d un solide est proportionnelle à sa masse proportionnelle à sa vitesse toujours constante - 2- L énergie potentielle de pesanteur du wagon dépend : du

Plus en détail

Utilisation de python pour le calcul numérique

Utilisation de python pour le calcul numérique Utilisation de python pour le calcul numérique Résumé L objectif de ce TP est de découvrir quelques possibilités de python pour le calcul numérique. Il pourra également vous servir de référence si vous

Plus en détail

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant

Plus en détail

Oscillateurs et mesure du temps

Oscillateurs et mesure du temps Oscillateurs et mesure du temps Qu est-ce que le temps? «Qui pourra le définir [le temps]? et pourquoi l'entreprendre, puisque tous les hommes conçoivent ce qu'on veut dire en parlant du temps sans qu'on

Plus en détail

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828

La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 La détermination de l accélération d une sphère métallique à l aide de 21 mesures pendant un parcours dans le plan incliné enregistré par le MOTU 828 de Dr Franz Raemy septembre 2010 Introduction de l

Plus en détail

Chapitre 4 Statique des fluides

Chapitre 4 Statique des fluides Chapitre 4 Statique des fluides Un fluide est corps liquide (état compact et désordonné) ou gazeux (état dispersé et désordonné). On ne s intéresse ici qu à une partie de la statique des fluides : la notion

Plus en détail

k_bodet_lycée_heinrich_haguenau 1

k_bodet_lycée_heinrich_haguenau 1 k_bodet_lycée_heinrich_haguenau 1 STI2D-STL CH. N..MECANIQUE DES FLUIDES 1. INTRODUCTION : Un fluide peut être considéré comme étant formé d'un grand nombre de particules matérielles, très petites et libres

Plus en détail