Quantité de mouvement Les systèmes de masse variable

Dimension: px
Commencer à balayer dès la page:

Download "Quantité de mouvement Les systèmes de masse variable"

Transcription

1 3 ème os DYNAMIQUE Théoie Quantité de mouvement Les systèmes de masse vaiable Intoduction À pati du Moyen Âge, on s'est endu compte que la vitesse ne suffisait pas à explique toutes les caactéistiques d'un mouvement. Pouquoi pa exemple, est-il péféable de se faie pecute pa une mouche volant à 60 km/h plutôt que pa un camion oulant à la même vitesse? Ves 1330, un Paisien nommé Jean Buidan eut l'intuition que la gandeu cuciale à pende en considéation pou décie le mouvement, était le poduit de la vitesse pa la quantité de matièe. Il fallut donc faie appel à une nouvelle quantité fondamentale, le poduit de la masse pa la vitesse ( mv ). C'est cette gandeu qu'isaac Newton ( ) appela momentum, qui se taduit en fançais pa quantité de mouvement (symbole p ) et qu'il utilisa dans la fomulation de sa théoie du mouvement : p = mv. Quantité de mouvement et foce Pou modifie la quantité de mouvement d'un objet, il faut exece une foce su celui-ci. C'est en teme de quantité de mouvement que Newton fomula sa deuxième loi (ou pincipe fondamental de la dynamique). Dans un langage modene, cette loi peut s'énonce comme suit : La ésultante des foces execées su un cops est égale à la vaiation de sa quantité de mouvement, divisée pa la duée de cette vaiation. Il est possible que la foce ésultante vaie pendant l'intevalle de temps où elle est appliquée, aison pou laquelle cette loi concene une foce ésultante moyenne : F m = p t - F m : foce ésultante moyenne, en N. - p : vaiation de la quantité de mouvement, en kg m/s. - t : intevalle de temps pendant lequel la foce agit, en s. La elation (1) peut ête considéée comme une définition dynamique de la foce, ca m, v et t peuvent ête mesués. Pa conséquent, 1 Newton est défini comme la foce qui, agissant su un cops quelconque, poduit une vaiation de sa quantité de mouvement égale à 1 kg m/s en 1 s, soit : 1 N = 1 kg m/s 2 En faisant tende la duée t ves 0, on obtient la deuxième loi de Newton pou une foce ésultante instantanée : (1) P. Rebetez/systèmes de masse vaiable.doc/

2 3 ème os DYNAMIQUE Théoie F = d p (2) Remaquons que cette denièe elation englobe les situations dans lesquelles la masse peut vaie, ca : où dm d p = d (m v ) = v dm + m d v 0 si la masse du cops su lequel s'exece la foce, vaie au cous du temps. Dans le cas paticulie où la masse m est constante, dm = 0 et la deuxième loi de Newton pend sa fome la plus couamment utilisée : F = d p = md v { a = m a La loi (2) s'applique à une unique paticule de masse m, mais on peut monte qu'elle este valable pou un système de n paticules de masses espectives m 1, m 2,, m n : - - F ext = d P F ext : ésultante des foces extenes execées su le système. P = p 1 + p p n = m 1 v 1 + m 2 v m n v n : quantité de mouvement totale du système. L'équation (3) est l'expession mathématique de la deuxième loi de Newton s'appliquant aux systèmes de paticules. (3) La fusée, un exemple de système de masse vaiable Los de sa populsion, une fusée consomme son cabuant et éjecte pa ses éacteus le gaz ésultant de cette combustion. Sa masse diminue au fu et à mesue de cette consommation. Nous supposons que la fusée éjecte des gaz avec un débit massique D constant ( D = m t, en kg/s) et une vitesse (mesuée pa appot à la fusée) constante. Nous chechons à expime la foce de populsion de la fusée (foce execée pa les gaz su la fusée). Notons m, la masse de la fusée et v 1 sa vitesse à l'instant t, m * sa masse et v 1 * sa vitesse apès un intevalle de temps t (où m * < m puisque la fusée a éjecté des gaz et donc diminué de masse pendant cet intevalle de temps). P. Rebetez/systèmes de masse vaiable.doc/

3 3 ème os DYNAMIQUE Théoie Système isolé Dans un pemie temps, supposons que le système gaz-fusée soit isolé (la fusée est pa exemple loin de tout aste) et le mouvement de la fusée, ectiligne. Nous pouvons dans ce cas applique à ce système le pincipe de consevation de la quantité de mouvement : P = P * p 1 = p 1* + p 2 * où p 1 est la quantité de mouvement de la fusée à l'instant t, p 1 * sa quantité de mouvement à l'instant t + t et p 2 * la quantité de mouvement des gaz éjectés à l'instant t + t, dont la masse m m * est égale à la diminution de masse de la fusée pendant l'intevalle de temps t. D'où : = m * v * 1 + ( m m * * )v 2 La vaiation de masse m de la fusée pendant l'intevalle de temps t est égale à m * m, d'où m < 0 (c.f. fig. ci-dessous). m m m On peut donc écie m * = m + m et m m * = m. L'équation ci-dessus devient alos : = ( m + m)v * * 1 mv 2 De plus, d'apès la définition du débit massique D donnée plus haut, on peut écie m = D t, ce qui donne : ( ) = mv * 1 v * * 2 v D t 1 où le teme v 2 * v 1 * v el est la difféence ente la vitesse des gaz éjectés et la vitesse de la fusée, autement dit la vitesse des gaz mesuée elativement à la fusée (dans le éféentiel de la fusée), supposée constante appelons-le. On peut écie : v el = * v el D t P. Rebetez/systèmes de masse vaiable.doc/

4 3 ème os DYNAMIQUE Théoie En notant v 1 v 1 * v 1 et en éaangeant les temes de cette denièe équation, on obtient : La division de cette équation pa t, donne : m v 1 = v el D t m v 1 { t a 1m = v el D Le teme a 1m v 1 est l'accéléation moyenne de la fusée. En faisant tende ves 0 l'intevalle t de temps t, on obtient son accéléation instantanée et l'équation ci-dessus devient : ma { = v 1 eld F es où le teme ma 1 est, en vetu de la deuxième loi de Newton, la ésultante des foces F es qui s'execent su la fusée. Le teme v el D a pou unité le m s kg s = kg m s 2, qui est l'unité d'une masse multipliée pa une accéléation, c'est-à-die une foce, toujous en vetu de la deuxième loi de Newton. Cette foce est execée pa les gaz su la fusée los de leu éjection, c'est donc la foce de populsion. Cette foce ésulte de l'inteaction ente les gaz et la fusée constituant tous deux le système considéé. On dit pou cette aison, que c'est une foce intene au système. On voit que la ésultante des foces execées su la fusée (l'un des deux objets du système fusée-gaz) est une foce intene : F es = F int. L'intensité de la foce de populsion de la fusée est égale au poduit du débit massique des gaz éjectés pa leu vitesse d'éjection : F pop = v el D (4) Remaquons que cette foce ne dépend ni de la masse, ni de la vitesse de la fusée et qu'elle est de plus constante si la vitesse d'éjection et le débit massique des gaz sont constants. Système non-isolé Considéons maintenant le cas où le système gaz-fusée n'est pas isolé (la fusée est pa exemple entain de décolle d'une planète et subit sa foce gavitationnelle (c.f. fig. cidessous)). P. Rebetez/systèmes de masse vaiable.doc/

5 3 ème os DYNAMIQUE Théoie Le pincipe de consevation de la quantité de mouvement n'est plus valable dans cette situation. Nous pouvons cependant applique la 2 ème loi de Newton (équation (3) pou un intevalle de temps t fini) : F ext m = P t où P P * P avec P = et P * = * v el D t, comme nous l'avons vu plus haut. En utilisant les ésultats obtenus dans le cas du système isolé, on obtient : D'où : P = m v 1 v el D t P t = m v 1 t v eld En substituant cette denièe elation dans la deuxième loi de Newton, on obtient : F ext m = m v 1 t v eld En penant la limite t 0, cela donne finalement : F ext = ma 1 v el D où F ext est la ésultante des foces extenes (instantanées) execée su la fusée, a 1 l'accéléation (instantanée) de la fusée. En éaangeant les temes de l'équation ci-dessus, on obtient : ma { = F 1 ext + v { el D (5) F es On voit cette fois que la ésultante des foces execée su la fusée (l'un des deux objets du système fusée-gaz) est la somme des foces extenes et des foces intenes : F int P. Rebetez/systèmes de masse vaiable.doc/

6 3 ème os DYNAMIQUE Théoie et que, comme dans le cas du système isolé : F es = F ext + F int (6) L'intensité de la foce de populsion de la fusée est égale au poduit du débit massique des gaz éjectés pa leu vitesse d'éjection : F populsion = v el D P. Rebetez/systèmes de masse vaiable.doc/

Leçon Force normale. L applet Force normale simule les forces qui s exercent sur un bloc qui se déplace verticalement. Préalables

Leçon Force normale. L applet Force normale simule les forces qui s exercent sur un bloc qui se déplace verticalement. Préalables Leçon Foce nomale L applet Foce nomale simule les foces qui s execent su un bloc qui se déplace veticalement. Péalables L élève devait connaîte les concepts d accéléation et de foce, et le lien qui existe

Plus en détail

La mécanique des fluides est l étude du comportement des fluides (liquides et gaz) et des forces internes associées.

La mécanique des fluides est l étude du comportement des fluides (liquides et gaz) et des forces internes associées. I- PREAMBULE : La mécanique des fluides est l étude du compotement des fluides (liquides et gaz) et des foces intenes associées. Elle se divise en statique des fluides, l étude des fluides au epos, qui

Plus en détail

Chapitre 6: Moment cinétique

Chapitre 6: Moment cinétique Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae

Plus en détail

CHAPITRE VI : Le potentiel électrique

CHAPITRE VI : Le potentiel électrique CHPITRE VI : Le potentiel électiue VI. 1 u chapite III, nous avons vu ue losu'une foce est consevative, il est possible de lui associe une énegie potentielle ui conduit à une loi de consevation de l'énegie.

Plus en détail

La troisième loi de Newton

La troisième loi de Newton 6 CHAPITRE La toisième loi de Newton CORRIGÉ DES EXERCICES Execices SECTION 6. La loi de l action et de la éaction 6.. Pou se déplace los de leus soties dans l espace, les astonautes se sevent de populseus

Plus en détail

11.5 Le moment de force τ (tau) : Production d une accélération angulaire

11.5 Le moment de force τ (tau) : Production d une accélération angulaire 11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces

Plus en détail

L3 PAPP Physique Quantique et applications UE A302 Chapitre VII PLAN Moment cinétique de spin Addition de moments cinétiques

L3 PAPP Physique Quantique et applications UE A302 Chapitre VII PLAN Moment cinétique de spin Addition de moments cinétiques L3 PAPP Physique Quantique et applications UE A3 Chapite VII PLAN Moment cinétique de spin Addition de moments cinétiques I) Expéience de ten et Gelach (9) ) L expéience ) Valeus numéiques 3) Matices de

Plus en détail

STATIQUE. Actions mécaniques extérieures = Actions Mécaniques de contact + Actions Mécaniques à distance

STATIQUE. Actions mécaniques extérieures = Actions Mécaniques de contact + Actions Mécaniques à distance STTIQUE 1.- Quel est l objectif de la statique? Pou étudie les conditions d équilibe des solides indéfomables. Remaques : - Un solide est considéé indéfomable tant que les défomations estent faibles. -

Plus en détail

INITIATION A LA MESURE ----

INITIATION A LA MESURE ---- INITIATION A LA MSUR ---- Le but de ce TP est : - de mesue la foce électomotice et la ésistance intene d'une pile, - d'évalue, en tenant compte des incetitudes de mesue et des caactéistiques de l'appaeil

Plus en détail

FINANCE Mathématiques Financières

FINANCE Mathématiques Financières INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.

Plus en détail

CHAPITRE 1 SUITES. 1. On dit plus simplement suite réelle si K = R et complexe si K = C.

CHAPITRE 1 SUITES. 1. On dit plus simplement suite réelle si K = R et complexe si K = C. CHAPITRE 1 SUITES Les suites sont un objet fondamental à la fois en mathématiques et dans l application des mathématiques aux autes sciences. Nous veons dans ce cous et les tavaux diigés dives exemples

Plus en détail

Chapitre I. Description des milieux continus

Chapitre I. Description des milieux continus Chapite I Desciption des milieu continus OBJET Ce chapite est consacé à la desciption des milieu continus. On intoduia les notions fondamentales de desciption du mouvement au sens de Lagange et d Eule,

Plus en détail

LPHY 1113 B & D, Physique générale 1 - Leçon 4 (Mécanique, Eric Deleersnijder, www.ericd.be) L4.1. Leçon 4: Frottement

LPHY 1113 B & D, Physique générale 1 - Leçon 4 (Mécanique, Eric Deleersnijder, www.ericd.be) L4.1. Leçon 4: Frottement LPHY 1113 B & D, Physique généale 1 - Leçon 4 (Mécanique, Eic Deleesnijde, www.eicd.be) L4.1 1. Intoduction (Benson 6.1) Leçon 4: Fottement On pose su une table hoizontale un objet de masse m. Si l'objet

Plus en détail

TRAVAUX DIRIGÉS DE M 6

TRAVAUX DIRIGÉS DE M 6 D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était

Plus en détail

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une

Plus en détail

Cours d électromagnétisme EM15-Champ magnétique

Cours d électromagnétisme EM15-Champ magnétique Cous d électomagnétisme EM15-Champ magnétique Table des matièes 1 Intoduction 2 2 Action d un champ électomagnétique su une paticule chagée 2 2.1 Foce de Loentz.................................. 2 2.2

Plus en détail

F O R C E C E N T R A L E C O N S E R V A T I V E. A P P L I CA T I O N A U X O R B I T E S C I R C U L A I R E S

F O R C E C E N T R A L E C O N S E R V A T I V E. A P P L I CA T I O N A U X O R B I T E S C I R C U L A I R E S MECA NI QUE L yc ée F.B UISS N PTS I MUVEMENT D UNE PARTICULE SUMISE A UNE F R C E C E N T R A L E C N S E R V A T I V E. A P P L I CA T I N A U X R B I T E S C I R C U L A I R E S PRELUDE Dans ce chapite,

Plus en détail

III Enonce du principe fondamental de la statique (ou P.F.S)

III Enonce du principe fondamental de la statique (ou P.F.S) Rèf : st Pincipe fondamental de la statique STI G.E. I Hypothèse de la statique En statique, les solides sont supposés géométiquement pafaits, indéfomables, homogènes et isotopes. Géométie : les aspéités,

Plus en détail

CIRCUITS COUPLES PAR MUTUELLE INDUCTANCE

CIRCUITS COUPLES PAR MUTUELLE INDUCTANCE CIRCUITS COUPLES PAR UTUELLE INDUCTANCE Philippe ROUX 4 CIRCUITS RLC COUPLES PAR UTUELLE INDUCTANCE PARTIE : PRESENTATION DES CIRCUITS COUPLES ) LES FLUX DES CHAPS AGNETIQUES DANS DEUX BOBINAGES COUPLES

Plus en détail

Exercices sur le chapitre «Les combustions» Exercice n 1 : Lire l extrait de texte ci-dessous avant de répondre aux questions posées.

Exercices sur le chapitre «Les combustions» Exercice n 1 : Lire l extrait de texte ci-dessous avant de répondre aux questions posées. Execices su le chapite «Les combustions» Execice n 1 : Lie l extait de texte ci-dessous avant de éponde aux questions posées. Essence et envionnement De nombeuses activités humaines sont susceptibles de

Plus en détail

ELECTRICITE. 1. Electrostatique. Electricité

ELECTRICITE. 1. Electrostatique. Electricité ELECTRICITE 1. Electostatique 1.1 Chage électique La matièe est globalement neute, mais si l'on fotte un bâton de vee avec une peau de chat ou un bâton de bakélite avec de la soie - deux pami beaucoup

Plus en détail

Chaînes énergétiques

Chaînes énergétiques Chapite 7 Chaînes énegétiques Découvi Activité expéimentale n 1 Comment fonctionne une voitue utilisant une pile à combustible? Expéience n 1 Au niveau des ésevois, on obseve la fomation de bulles : des

Plus en détail

Chapitre 5 Les condensateurs 1. Définitions

Chapitre 5 Les condensateurs 1. Définitions hapite 5 Les condensateus. Définitions a. ondensateu. Si on elie chacune des bones + et - d une pile (ou aute souce de difféence de potentiel) à un conducteu, on obtient un condensateu. Les deux conducteus

Plus en détail

CHAPITRE 1 L ÉLECTROSTATIQUE

CHAPITRE 1 L ÉLECTROSTATIQUE L électostatique Chapite 1 CHAPITE 1 L ÉLECTOSTATIQUE 1.1 Intoduction La chage est une popiété de la matièe qui lui fait poduie et subi des effets électiques et magnétiques. On distingue : - l'électostatique

Plus en détail

Pour repérer la position d'un objet, on choisit une origine et on mesure la distance x de l'objet à cette origine x en fonction du temps t.

Pour repérer la position d'un objet, on choisit une origine et on mesure la distance x de l'objet à cette origine x en fonction du temps t. MECANIQUE 1. Cinématique La cinématique est la desciption géométique du mouvement mais ne taite pas de ses causes. La cinématique à une dimension pemet de taite tous les poblèmes dans lesquels le mouvement

Plus en détail

E S UE3 A C. Physique et biophysique. Toute la physique en 1 volume. Dounia Drahy

E S UE3 A C. Physique et biophysique. Toute la physique en 1 volume. Dounia Drahy P MÉDECINE PHARMACIE DENTAIRE SAGE-FEMME UE3 A C Physique et biophysique Dounia Dahy E S Toute la physique en 1 volume Rappels de cous + de 300 QCM et execices Tous les coigés détaillés Table des matièes

Plus en détail

Microéconomie B Interrogation du Mercredi 24 Novembre 2010 Durée : 1h30

Microéconomie B Interrogation du Mercredi 24 Novembre 2010 Durée : 1h30 Univesité Pais Ouest Nantee La Défense Année univesitaie 010-011 UFR SEGMI L Economie-Gestion Micoéconomie B Inteogation du Mecedi 4 Novembe 010 Duée : 1h30 Aucun document n est autoisé et les calculatices

Plus en détail

CONCOURS INTERNE POUR LE RECRUTEMENT D INGENIEUR(E)S DES TRAVAUX DE LA METEOROLOGIE SESSION 2015

CONCOURS INTERNE POUR LE RECRUTEMENT D INGENIEUR(E)S DES TRAVAUX DE LA METEOROLOGIE SESSION 2015 CONCOURS INTERNE POUR LE RECRUTEMENT D INGENIEUR(E)S DES TRAVAUX DE LA METEOROLOGIE SESSION 2015 ************************************************************************************************* EPREUVE

Plus en détail

PSI Brizeux Ch. DF3 : Dynamique locale des fluides parfaits 29 CHAPITRE DF3 D DYNAMIQUE LOCALE DES FLUIDES PARFAITS

PSI Brizeux Ch. DF3 : Dynamique locale des fluides parfaits 29 CHAPITRE DF3 D DYNAMIQUE LOCALE DES FLUIDES PARFAITS PSI Bizeux Ch. DF3 : Dynamique locale des fluides pafaits 9 CHAPITRE DF3 D DYNAMIQUE LOCALE DES FLUIDES PARFAITS Dans ce chapite, nous allons elie l écoulement d un fluide aux actions qu il subit. Nous

Plus en détail

Choc élastique en 2 dimensions

Choc élastique en 2 dimensions Choc élastique en dimensions Pa Pascal Rebetez Juillet 008. Intoduction Nous étudions le choc élastique ente deux disques glissant sans fottement su un plan hoizontal. Cette étude est menée dans le cade

Plus en détail

ONDES. Partie I. , on négligera les effets de bord. L espace entre les conducteurs sera assimilé au vide sauf explicitation contraire.

ONDES. Partie I. , on négligera les effets de bord. L espace entre les conducteurs sera assimilé au vide sauf explicitation contraire. Spé ψ 1-13 Devoi n 6 ONDES Des données et un fomulaie sont donnés à la fin du sujet Les câbles coaxiaux sont utilisés comme moyen de tansmission d infomations. Ils sont conçus pou tansmette des signaux

Plus en détail

Actionneurs Electriques

Actionneurs Electriques Plan Actionneus éluctants Actionneus électodynamiques Actionneus électomagnétique Actionneus hybides ou éluctants polaisés Actionneus classiques 1 Actionneus éluctants ou machine à éluctance vaiable Pas

Plus en détail

Université 08 mai 1945 Guelma - Algérie. cours de MODELISATION DE LA PHYSIQUE DES FLUIDES ) par. Hisao FUJITA YASHIMA

Université 08 mai 1945 Guelma - Algérie. cours de MODELISATION DE LA PHYSIQUE DES FLUIDES ) par. Hisao FUJITA YASHIMA Univesité 8 mai 1945 Guelma - Algéie cous de MODELISATION DE LA PHYSIQUE DES FLUIDES pofessé pa Hisao FUJITA YASHIMA 29-21 - Le cous a été dédié à des modèles mathématiques de phénomènes atmosphéiques

Plus en détail

Chapitre 3 LE MOMENT CINÉTIQUE : UN EXEMPLE DE SYSTÈME QUANTIQUE

Chapitre 3 LE MOMENT CINÉTIQUE : UN EXEMPLE DE SYSTÈME QUANTIQUE Chapite 3 LE MOMENT CINÉTIQUE : UN EXEMPLE DE SYSTÈME QUANTIQUE Se epote à la bibliogaphie pou le détail des démonstations et la desciption de l expéience de Sten et Gelach. 3.1 Définitions a- Considéons

Plus en détail

INSA de LYON Dép. Génie Civil et Urbanisme 3GCU CONDUCTION - - 53 - - [J. Brau], [2006], INSA de Lyon, tous droits réservés

INSA de LYON Dép. Génie Civil et Urbanisme 3GCU CONDUCTION - - 53 - - [J. Brau], [2006], INSA de Lyon, tous droits réservés INSA de LYON Dép. Génie Civil et Ubanisme 3GCU CONDUCION - - 53 - - [J. Bau], [006], INSA de Lyon, tous doits ésevés INSA de LYON Dép. Génie Civil et Ubanisme 3GCU INRODUCION - 56 CHAPIRE - 57 GENERALIES

Plus en détail

SUR L INTRODUCTION DU CONCEPT D ENERGIE EN CLASSE DE PREMIERE SCIENTIFIQUE

SUR L INTRODUCTION DU CONCEPT D ENERGIE EN CLASSE DE PREMIERE SCIENTIFIQUE SUR L INTRODUCTION DU CONCEPT D ENERIE EN CLASSE DE PREMIERE SCIENTIFIQUE Quelques emaques elatives à l énegie Bien que le mot énegie fasse patie du langage couant, le concept scientifique d énegie est

Plus en détail

COMPRESSEUR DE CLIMATISATION AUTOMOBILE SANDEN 508

COMPRESSEUR DE CLIMATISATION AUTOMOBILE SANDEN 508 TSI Sciences Industielles GM DL N 1 COMPRESSEUR DE CLIMATISATION AUTOMOBILE SANDEN 508 1.MISE EN SITUATION : L étude ci-apès pote su un compesseu de climatisation de véhicule automobile de maque SANDEN.

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2004-2005 Devoi n 6 CONVERSION DE PUISSANCE Une alimentation de d odinateu de bueau est assez paticulièe, elle doit founi des tensions de +5, +12, 5 et 12 volts avec une puissance moyenne de quelques

Plus en détail

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0. 7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test

Plus en détail

Problèmes de dynamique du point, avec énergie

Problèmes de dynamique du point, avec énergie Polèmes de dynamique du point, aec énegie I 5 Dans le plan hoiontal ( Oy) d'un éféentiel galiléen, un moile modélisé pa un point matéiel P de masse m est asteint à se déplace su le cecle de cente O et

Plus en détail

Mécanique du point : forces Newtoniennes (PCSI)

Mécanique du point : forces Newtoniennes (PCSI) écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante

Plus en détail

Equipement Electrique

Equipement Electrique Equipement Electique TEEM 1 èe Année Equipement Electique, TEEM 1 ee année, uno FRAÇO 1 ntoduction 2 Le pogamme * Champ magnétique, flux, induction électomagnétique, chages électiques et foces * La machine

Plus en détail

ANTENNES INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE TOULOUSE CORRECTIONS DES TRAVAUX DIRIGES. 4 ème Année Informatique et Réseau

ANTENNES INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE TOULOUSE CORRECTIONS DES TRAVAUX DIRIGES. 4 ème Année Informatique et Réseau INSTITUT NATIONAL DS SCINCS APPLIQUS D TOULOUS 4 ème Année Infomatique et Réseau ANTNNS CORRCTIONS DS TRAVAUX DIRIGS Alexande Boye alexande.boye@insa-toulouse.f http://www.alexande-boye.f Antennes Octobe.

Plus en détail

Construire une image médicale

Construire une image médicale Vol. 10 hive pintemps 2015 6 Autefois, on passait des adiogaphies. Maintenant, on va aussi passe un examen pa scanne : la technique s appelle la tomodensitométie axiale. Dans les deux cas, ce sont des

Plus en détail

Equation de la Chaleur en Axisymétrique & en 3D

Equation de la Chaleur en Axisymétrique & en 3D P.-Y. Lagée, Equation de la Chaleu en Axi & en 3D Equation de la Chaleu en Axisymétique & en 3D Dans ce chapite nous faisons un bilan d énegie pou établi l équation de la chaleu en axisymétique. On pouait

Plus en détail

APPROCHE DESCRIPTIVE DES ÉCOULEMENTS ; RÔLE DE LA VISCOSITÉ. NOTION DE COUCHE LIMITE.

APPROCHE DESCRIPTIVE DES ÉCOULEMENTS ; RÔLE DE LA VISCOSITÉ. NOTION DE COUCHE LIMITE. CASSIFICATION DS ÉCOUMNTS APPOCH DSCIPTIV DS ÉCOUMNTS ; Ô D A VISCOSITÉ NOTION D COUCH IMIT Objectifs Connaîte l expession de la foce de taînée execée su un cops solide en mouement ectiligne unifome dans

Plus en détail

Système d ouverture de porte de TGV

Système d ouverture de porte de TGV Le sujet se compose de : TD MP-PSI REVISION CINEMATIQUE Système d ouvetue de pote de TGV 6 pages dactylogaphiées ; 2 pages d annexe ; 2 pages de document éponse Objet de l étude Le tanspot feoviaie, concuencé

Plus en détail

Exercices : 19 - Champ électrostatique

Exercices : 19 - Champ électrostatique 1 Execices : 19 - Champ électostatique Sciences Physiques MP 2015-2016 Execices : 19 - Champ électostatique A. Calculs de champ et de potentiel 1. Théoème de supeposition Une sphèe de ayon b pote une chage

Plus en détail

Année universitaire 2012/2013

Année universitaire 2012/2013 Année univesitaie 1/13 Examen Electomagnétisme PEIP Aix-Maseille Univesité 15 janvie 13 5 poblèmes - ecto veso / Duée e l épeuve heues alculettes stanas autoisées / Fomulaie Page A4 autoisée 1. (4pts Quate

Plus en détail

CHAPITRE 1 L ÉLECTROSTATIQUE

CHAPITRE 1 L ÉLECTROSTATIQUE L électostatque Chapte 1 CHAPITRE 1 L ÉLECTROSTATIUE 1.1 Intoducton La chage est une popété de la matèe qu lu fat podue et sub des effets électques et magnétques. On dstngue : - l'électostatque qu est

Plus en détail

Mécanique du solide. (R ) est en rotation autour d un axe fixe de (R) : (O et O sont confondus) Composition des vitesses : r

Mécanique du solide. (R ) est en rotation autour d un axe fixe de (R) : (O et O sont confondus) Composition des vitesses : r Mécanique du solide Mécanique du solide I) Cinétique des systèmes matéiels : Rappel ; composition des vitesses et des accéléations : Soit (R) un pemie éféentiel (appelé «absolu», (y)) et (R ) un éféentiel

Plus en détail

OPTIQUE ONDULATOIRE. 1. Les équations de propagation de E r et B r en vide: r r. r E (1) t 1

OPTIQUE ONDULATOIRE. 1. Les équations de propagation de E r et B r en vide: r r. r E (1) t 1 OPTIQUE ONDULATOIRE Le caactèe ondulatoie de la luièe a été énoncé pou la peièe fois pa C. Huygens (678). Il a été ensuite lageent développé pa A. Fesnel (8) et elié plus tad, en 876, à l électoagnétise

Plus en détail

( Mecanique des fluides )

( Mecanique des fluides ) INSTITUT NTION GRONOMIUE ERTEMENT U GENIE RUR SECTION YRUIUE GRICOE YRUIUE GENERE ( Mecanique des fluides ) TRONC COMMUN ème NNEE atie : Statique des Fluides ( ydostatique ) atie : ynamique des Fluides

Plus en détail

L'atome et la mécanique de Newton : Ouverture au monde quantique

L'atome et la mécanique de Newton : Ouverture au monde quantique L'atome et la mécanique de Newton : Ouvetue au monde quantique Lod Kelvin affime en 1892 que "tous les concepts de la physique sont déteminés, et qu'il n'y a plus qu'à touve quelques décimales supplémentaies

Plus en détail

Chap. 6 PROBLEMES D'ELECTROMAGNETISME

Chap. 6 PROBLEMES D'ELECTROMAGNETISME Chap. 6 PROBLEMES D'ELECTROMAGNETISME Poblème 1 Condensateu en égime vaiable (extait de l'examen S3SMPE 2002-2003) On considèe un condensateu plan à amatues ciculaies, de ayon a, distantes de d, alimenté

Plus en détail

Chapitre 4.2a Trajectoire d une particule dans un champ magnétique

Chapitre 4.2a Trajectoire d une particule dans un champ magnétique hapite 4.a Tajectoie d une paticule dans un chap agnétique Moueent dans un chap agnétique unifoe onsidéons une chage positie q se déplaçant à itesse dans un chap agnétique unifoe B où la itesse est entièeent

Plus en détail

THEORIE DU CHAMP ELECTROMAGNETIQUE

THEORIE DU CHAMP ELECTROMAGNETIQUE Chapite : lectostatiue Cous de A.Tilmatine THOI DU CHAMP LCTOMAGNTIQU Cous édigé pa : D. TILMATIN AMA Faculté des sciences de l Ingénieu, univesité de sidi-bel-abbès. INTODUCTION Il existe tois égimes

Plus en détail

La science des fusées 1

La science des fusées 1 Mth1101 - TD - Application 9 : optimisation avec contraintes, multiplicateurs de Lagrange La science des fusées 1 Introduction Une fusée comporte plusieurs étages composés d un moteur et de son carburant.

Plus en détail

BACCALAUREAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Étude d un Système Technique Industriel BALISE MARITIME. Construction Mécanique

BACCALAUREAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Étude d un Système Technique Industriel BALISE MARITIME. Construction Mécanique BCCLURET SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité génie électonique Étude des Systèmes Techniques Industiels BLISE MRITIME Constuction Mécanique Duée Conseillée 1h30 Lectue du sujet : 5mn Patie

Plus en détail

Modélisation des actions mécaniques Statique des solides indéformables Puissance et rendement

Modélisation des actions mécaniques Statique des solides indéformables Puissance et rendement Modélisation des actions mécaniques, statique des solides indéfomables, puissance et endement Les actions mécaniques. Définition On appelle action mécanique toute cause susceptible de : 4modifie le mouvement

Plus en détail

Chapitre VIII Ondes électromagnétiques et fibres optiques

Chapitre VIII Ondes électromagnétiques et fibres optiques Chapite VIII Ondes électomagnétiques et fibes optiques I Les Ondes Electomagnétiques II Les lois de l optique géométique III La fibe optique : un guide de lumièe I Les Ondes Electomagnétiques I.1 Le champ

Plus en détail

Spé 2008-2009 Devoir n 8 OPTIQUE

Spé 2008-2009 Devoir n 8 OPTIQUE Spé 8-9 Devoi n 8 OPTIQUE ETRALE PSI 8 A Pou que deux ondes poduisent des inteféences, il faut qu elles soient cohéentes, c est-à-die igoueusement synchones Pou obteni expéimentalement cette condition

Plus en détail

Exercices de Mécanique

Exercices de Mécanique Eecices de écanique Cinéatique : epèes, bases, tajectoies et ouveents éthode 1. Une base locale (coe la base clindique) est définie : - en un point de l espace («localeent», donc!) - pa appot à tois diections

Plus en détail

Analyse hygrothermique d une structure tubulaire multicouche

Analyse hygrothermique d une structure tubulaire multicouche IM - ovembe Analyse hygothemique d une stuctue tubulaie multicouche A. Hocine (,. Boutiba (, F. Kaa Achia ( ( Dépatement de mécanique, Univesité Hassiba Benbouali hlef Email : hocinea_dz@yahoo.f, adhwane_cm@yahoo.f

Plus en détail

Monnaie et finance 1 : Les marchés financiers. Sommaire. 1.1. L équilibre financier. Chapitre 1 : Le système financier

Monnaie et finance 1 : Les marchés financiers. Sommaire. 1.1. L équilibre financier. Chapitre 1 : Le système financier Monnaie et finance 1 : Les machés financies Sommaie hapite 1 : Le système financie hapite 2 : Le maché des actions hapite 3 : Le maché obligataie hapite 4 : Le maché des poduits déivés Bibliogaphie : 1.

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.retronaut.com/2013/01/rotor-rides/

Voyez la réponse à cette question dans ce chapitre. www.retronaut.com/2013/01/rotor-rides/ Dans un manège tel que celui monté su la figue, quelle est la péiode de otation maximale que doit aoi le manège pou que les pesonnes ne glissent pas es le bas de la paoi si le coefficient de fiction ente

Plus en détail

Chapitre 4 : Le potentiel électrique

Chapitre 4 : Le potentiel électrique Chapite 4 : Le potentiel électique Execices E1. On donne q =30Cet V =10 8 V. (a) Dans cet execice, oute la éféence à l éclai, on ne founit aucun détail su la façon de déplace la chage ente le nuage et

Plus en détail

Gérard Debionne dimanche 20 mai 2012. Quasar 95. La Mesure de G. Présentation : 18 mai 2012

Gérard Debionne dimanche 20 mai 2012. Quasar 95. La Mesure de G. Présentation : 18 mai 2012 Géad Debionne dimanche 0 mai 01 Quasa 95 La Mesue de G Pésentation : 18 mai 01 La mécanique céleste pemet de calcule les mouvements des planètes autou d une étoile en unités elatives. Pou avoi des valeus

Plus en détail

puits artésien ou en nappe captive (TD1, exercice 1)

puits artésien ou en nappe captive (TD1, exercice 1) Hydogéologie_mise à jou/mp-es / Pilippe Belleudy octobe 4 puits atésien ou en nappe captive (TD, execice ) Détemine le débit d'un puits en nappe captive compte tenu des infomations suivantes : fonctionnement

Plus en détail

Matériel utilisée en plongée 10/08/2003 Niveau 2 Club de la Plaine Philippe Jugla. Le Matériel Niveau 2-1/ 1 -

Matériel utilisée en plongée 10/08/2003 Niveau 2 Club de la Plaine Philippe Jugla. Le Matériel Niveau 2-1/ 1 - Le Matéiel Niveau 2-1/ 1 - 1 MATEIEL NECESSAIE EN AUTONOMIE... 3 1.1 NIVEAU 2... 3 1.2 NIVEAU 3... 3 1.3 APPLICATION TIQUE... 3 1.4 MATEIEL INDISPENSABLE... 3 2 LES BOUTEILLES... 4 2.1 LE MAQUAGE DES BLOCS...

Plus en détail

LA DIFFUSION THERMIQUE & LA DIFFUSION de PARTICULES

LA DIFFUSION THERMIQUE & LA DIFFUSION de PARTICULES PSI Bizeux Ch. T4 : Phénomènes de diffusion - 36 - Etude de deux phénomènes de diffusion : LA DIFFUSION THERMIQUE & LA DIFFUSION de PARTICULES 1. LA DIFFUSION : UN MODE DE TRANSFERT SANS MOUVEMENT MACROSCOPIQUE

Plus en détail

Exemples d antennes (9)

Exemples d antennes (9) Exemples d antennes (9) II. Le pincipe des images : Pemet de considée le cas de souces placées au dessus d un sol qui peut ête assimilé à un conducteu pafait (en BF : σ >> ωε ). a) Cas d une antenne filaie

Plus en détail

Pôle Représentation Fédération Nationale des Etudiants en Kinésithérapie. Le Coût de la Rentrée : Du côté des Etudiants Kinés

Pôle Représentation Fédération Nationale des Etudiants en Kinésithérapie. Le Coût de la Rentrée : Du côté des Etudiants Kinés Le Coût de la Rentée : Du côté des Etudiants Kinés www.fnek.og Membe de la PROPOS LIMINAIRES En cette entée 2009, la Fédéation Nationale des Etudiants en Kinésithéapie, membe de la FAGE et epésentative

Plus en détail

ÉLÉMENTS DE CALCUL TENSORIEL

ÉLÉMENTS DE CALCUL TENSORIEL ÉLÉMENTS DE CALCUL TENSORIEL Roland FORTUNIER Cente Mico-électonique de Povence "Geoges Chapak" Avenue des anémones 13541 - GARDANNE Table des matièes Intoduction.........................................................

Plus en détail

Arbres et dérivée d une fonction composée

Arbres et dérivée d une fonction composée Abes et déivée d ue foctio composée Nous allos voi ici commet l o peut epésete les déivées successives d ue foctio composée pa u esemble d abes fiis. f et g désigeot deux foctio idéfiimet déivables, et

Plus en détail

GESTION DES STOCKS. Plan du cours. 1. Le rôle des stocks en gestion de production. 2. Le problème de Wagner-Whitin

GESTION DES STOCKS. Plan du cours. 1. Le rôle des stocks en gestion de production. 2. Le problème de Wagner-Whitin Cous ADP-CGP2 GESTION DES STOCKS Plan du cous 1. Le ôle des stocs en gestion de poduction 2. Le poblème de Wagne-Witin 3. La quantité économique optimale et les politiques déivées 4. Modèle de gestion

Plus en détail

Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques.

Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques. Cée un obsevatoie de la concuence poblématique I Quelle est l'étendue d'un maché? Quelle pat du maché, une entepise peut-elle espée pende? Quels sont les atouts des entepises pésentes su le maché? ntéêt

Plus en détail

Directives. Confidentiel une fois rempli

Directives. Confidentiel une fois rempli 200, chemin Sainte-Foy Québec (Québec) G1R 5T4 ENQUÊTE SUR L ADOPTION DU COMMERCE ÉLECTRONIQUE PAR LES ENTREPRISES QUÉBÉCOISES Coige le nom et l'adesse s'il y a lieu Nom Adesse Municipalité Povince Code

Plus en détail

Problème 1 LUNETTE ASTRONOMIQUE ACHROMATIQUE La vergence V dune lentille mince est donnée par la relation algébrique suivante

Problème 1 LUNETTE ASTRONOMIQUE ACHROMATIQUE La vergence V dune lentille mince est donnée par la relation algébrique suivante DM 7 pou le avil 01 OPTIQUE MÉCANIQUE Poblème 1 LUNETTE ASTRONOMIQUE ACHROMATIQUE La vegence V dune lentille mince est donnée pa la elation algébique suivante : 1 V = n 1) 1 ) R 1 R où n est l indice de

Plus en détail

Séance de TP n 2 du jeudi 10 décembre 2009. Manipulation Pré-requis Montages liés. Electrocinétique, modulation d amplitude diagramme de bode

Séance de TP n 2 du jeudi 10 décembre 2009. Manipulation Pré-requis Montages liés. Electrocinétique, modulation d amplitude diagramme de bode Tavaux Patiques Pépaation à l agégation intene de Sciences Physiques 009-010 Séance de TP n du jeudi 10 décembe 009 Manipulation Pé-equis Montages liés Etude d un cicuit passif passe bas application à

Plus en détail

INTRODUCTION AUX TRANSFERTS THERMIQUES

INTRODUCTION AUX TRANSFERTS THERMIQUES INTRODUCTION AUX TRANSFERTS THERMIQUES École des mines de Pais, 2008 60, boulevad Saint-Michel - 75272 Pais Cedex 06 - Fance email : pesses@ensmp.f http://www.ensmp.f/pesses ISBN : 978291176293 Dépôt légal

Plus en détail

Mathématiques appliquées à la topographie - niveau 1

Mathématiques appliquées à la topographie - niveau 1 VILLE DE LIEGE INSTITUT DE TRAVAUX PUBLICS Enseignement de pomotion sociale Mathématiques appliquées à la topogaphie - niveau 1 Notes de cous povisoies Jean-Luc Becke Tigonométie plane Mathématiques appliquées

Plus en détail

Statique, postures d équilibre, forces et moments aux articulations

Statique, postures d équilibre, forces et moments aux articulations Statique, postues d équilibe, foces et moments aux aticulations Chapite 1 L objet de toutes études biomécaniques est d analyse au taves d un double système de foces (foces intenes et extenes) les postues

Plus en détail

A. Étude d une installation électrique domestique

A. Étude d une installation électrique domestique Banque «go Véto» - 3 PHYSIUE Duée : 3 h 3 L usage d une calculatice est autoisé pou cette épeuve Il sea tenu le plus gand compte dans la notation de la qualité de la édaction Si, au cous de l épeuve, un

Plus en détail

CHAPITRE II MAGNETOSTATIQUE

CHAPITRE II MAGNETOSTATIQUE Chapite : Magnétostatique CAPTRE MAGNETOTATQUE Une chage électique immobile cée un champ électique seulement; Une chage en mouvement (un couant) cée un champ électique et un champ magnétique. Définition

Plus en détail

Master: Énergie et technologie des matériaux E.T.M

Master: Énergie et technologie des matériaux E.T.M UNIVESIÉ MOHAMMED V - AGDAL FACULÉ DES SCIENCES ABA Maste: Énegie et technologie des matéiaux E..M KAMAL GUEAOUI Poesseu de l Enseignement Supéieu et esponsable de l Equipe de Modélisation en Mécanique

Plus en détail

La Portance ou comment tuer un mythe.

La Portance ou comment tuer un mythe. La Potance ou comment tue un mythe. I Intoduction : Intenet est un outil meveilleux qui devait pemette de popage à tous la science sans bouge de chez soi puisque a pioi la science existait avant Intenet,

Plus en détail

CONSTANTES DIELECTRIQUES

CONSTANTES DIELECTRIQUES 9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques

Plus en détail

PROBLEME DE PHYSIQUE

PROBLEME DE PHYSIQUE SESSION 211 PSIP28 C O N C O U R S C O M M U N S P O LY T E C H N I Q U E S EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 2 Duée : 4 heues NB : Le candidat attachea la plus gande impotance à la claté, à la

Plus en détail

Performances d'un système frigorifique domestique avec stockage par chaleur latente

Performances d'un système frigorifique domestique avec stockage par chaleur latente Pefomances d'un système figoifique domestique avec stockage pa chaleu latente Kamel AZZOUZ 1*, Denis LEDUCQ 1, Jacques GUILPART 1, Dominique GOBIN 2 1 CEMAGREF Unité de Recheche Génie des Pocédés Figoifiques,

Plus en détail

Propriétés thermoélastiques des gaz parfaits

Propriétés thermoélastiques des gaz parfaits Themodynamque - Chapte opétés themoélastques des gaz pafats opétés themoélastques des gaz pafats LES CONNAISSANCES - Gaz pafat à l échelle macoscopque Défnton : Le gaz pafat assocé à un gaz éel est le

Plus en détail

Les Rencontres. Grands témoins. r Louis-Marie Pasquier :

Les Rencontres. Grands témoins. r Louis-Marie Pasquier : Gands témoins Louis-Maie Pasquie : L entepise a aujoud hui 40 ans (céation en 1974). 21% de son CA se fait à l intenational. Elle est divisée en 4 secteus d activité : Bioches, Pâtisseies, Biscottes, Intenational.

Plus en détail

NOMBRES COMPLEXES Cours

NOMBRES COMPLEXES Cours NOMBRES COMPLEXES Cous I. DEFINITIONS D UN NOMBRE COMPLEXE. Fome algébique. Repésetatio gaphique. Fome polaie 4. Fome tigoométique 5. Relatios fodametales ete les difféetes défiitios 6. Exemples II. PROPRIETES

Plus en détail

TABLEAUX DES MÉDICAMENTS PAR GROUPE D ÂGE (CANADA) Options de traitement médical pour les enfants

TABLEAUX DES MÉDICAMENTS PAR GROUPE D ÂGE (CANADA) Options de traitement médical pour les enfants DOCUMENTS DE SUPPORT 7A TABLEAUX DES MÉDICAMENTS PAR GROUPE D ÂGE (CANADA) Options de taitement médical pou les enfants Tableau 1. TRAITEMENT PHARMACOLOGIQUE DU TDAH NON COMPLIQUÉ CHEZ L ENFANT Liste des

Plus en détail

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM. Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en

Plus en détail

Démarche)Qualité)pour)Améliorer)la)Communication) Pluridisciplinaire)entre)les)Jeunes)Chercheurs)

Démarche)Qualité)pour)Améliorer)la)Communication) Pluridisciplinaire)entre)les)Jeunes)Chercheurs) Démache)Qualité)pou)mélioe)la)Communication) Pluidisciplinaie)ente)les)s)Checheus) Sommaie)! Intoction!...!1! 1.!Desciption!de!la!poblématique!...!1! 1.1.#Contexte#de#la#communication#ente#les#jeunes#s#...#1#

Plus en détail

VALORISATION ENERGETIQUE DE GRIGNONS D OLIVES ET ETUDE DE PERFERMANCE DE L INSTALLATION DE SECHAGE

VALORISATION ENERGETIQUE DE GRIGNONS D OLIVES ET ETUDE DE PERFERMANCE DE L INSTALLATION DE SECHAGE 9-2 Mas, 202, Hammamet, Tunisie VALORISATION ENERGETIQUE DE GRIGNONS D OLIVES ET ETUDE DE PERFERMANCE DE L INSTALLATION DE SECHAGE DARDOURI SANA ; HRAIECH IBTISSEM ; MHIMID ABDALLAH Ecole national d ingénieus

Plus en détail

Le Véhicule Hybride du LAMIH

Le Véhicule Hybride du LAMIH Le Véhicule Hybide du LAMIH Une éalisation collective Le pojet véhicule hybide a été éalisé pa une équipe tansvesale du LAMIH egoupant des automaticiens et des mécaniciens. Leus domaines de echeche sont

Plus en détail

guide de qualité d accès aux commerces Perpignan, une ville accessible aux citoyens handicapés

guide de qualité d accès aux commerces Perpignan, une ville accessible aux citoyens handicapés guide de qualité d accès aux commeces infomations à l usage des commeçants pepignanais Pepignan, une ville accessible aux citoyens handicapés Pepinyà, una ciutat accessible als ciutadans minusvàlids Un

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail