Limites de suites. Révisions

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Limites de suites. Révisions"

Transcription

1 Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2 Dans chaque cas préciser si la suite ( ) est arithmétique, géométrique, oi l un ni l autre Exprimer alors, lorsque cela est possible, en fonction de n Pour tout n N, = n 2 2 u 0 = 2 et pour tout entier naturel n, + = 5 3 Pour tout n N, = 2n2 + 5n + 3 n + 4 = 32n+ 2 n pour tout n N, 5 u 0 = 3 et pour tout entier naturel n, + = Soit ( ) la suite définie pour tout entier naturel n non nul par = n + n 2 + Déterminer la fonction f telle que = f(n) 2 Étudier le sens de variation de f et en déduire celui de ( ) 3 Calculer u 0, u 00, u 0 000, u 0 8 et u 0 6 Que peut-on dire des valeurs de lorsque n devient de plus en plus grand? 4 Même exercice avec les suites ( ) définies pour tout entier naturel n par a) = n2 n 2 + b) = 3n 2 + 4n 5 c) = n 3 + 6n 2 9n Soit la suite ( ) définie par u 0 = et pour tout entier n, + = + Déterminer la fonction f telle que + = f( ), puis tracer C f et placer u 0, u, u 2, u 3 et u 4 sur l axe des abscisses 6 ( ) est la suite définie par u 0 = 3 et, pour tout entier n, + = Pour tout entier n, on pose v n = 3 Démontrer que (v n ) est une suite arithmétique 2 En déduire une expression de v n, puis de en fonction de n 7 ( ) est la suite définie par u 0 = et, pour tout entier n, + = Pour tout entier n, on pose v n = 2 + Démontrer que (v n ) est une suite géométrique 2 En déduire une expression de v n, puis de en fonction n

2 2 Principe de récurrence TS Limites de suites Exemple Montrer que, pour tout n 0, 2 n 00n Pour commencer, on peut déjà vérifier cette inégalité pour n = 0 : 2 0 = = 000 Pour n =, on peut soit faire le calcul complet, soit remarquer que 2 = 2 0 2, et donc, comme d après le calcul précédent, 2 = (00 0) 2 = Ainsi cette inégalité est aussi vraie pour n = Pour traiter le problème d une manière plus général que précédemment, on peut remarquer que, si l inégalité 2 n 00n est vraie pour un certain entier n, alors 2 n+ = 2 n 2 (00n) 2 = 00n + 00n 00n + 00 = 00(n + ) Ainsi, si cette inégalité est vraie pour un certain entier n, elle est aussi vraie pour l entier n + suivant Or, on a vu que l inégalité est vraie pour n = 0, elle est donc aussi vraie pour n + =, puis pour n = 2, n = 3, On a finalement bien montrer que, pour tout entier n 0, 2 n 00n Ce raisonnement s appelle un raisonnement par récurrence Principe du raisonnement par récurrence Soit P (n) une proposition qui dépend d un entier naturel n Pour démontrer que P (n) est vraie pour tout entier n n 0, il suffit de : Initialisation : vérifier que pour le premier entier n 0, P (n 0 ) est vraie ; 2 Hérédité de la propriété : montrer que, si on suppose que P (n) est vraie pour un certain entier n (hypothèse de récurrence), alors P (n + ) est encore vraie 3 Conclusion : On conclut alors que, d après le principe de récurrence, la propriété P (n) est vraie pour tout entier n n 0 Exemple Soit la suite ( ) définie par u 0 = 0 et, pour tout entier n, + = + 5 Montrer que, pour tout entier n, 0 3 La proposition que l on souhaite démontrer est ici P (n) : "0 < < 3" Initialisation : Pour n =, u = 5 2, 2 < 3, donc P () est vraie Hérédité : Hypothèse de récurrence : supposons que pour un entier n, P (n) est vraie, c est-à-dire 0 < < 3 Alors, 5 < + 5 < 8, et donc, 5 < + 5 < 8 car la fonction racine carrée est strictement croissante sur R + On en déduit que, comme + = + 5, 0 < 5 < + < 8 < 3, et donc que P (n + ) est vraie Conclusion : D après le principe de récurrence, on vient de démontrer que pour tout n, 0 < < 3 2

3 8 Soit la suite v définie par v 0 = 2, puis pour tout entier n, v n+ = + v n 3 Montrer que pour tout entier naturel n, 2 v n 2 TS Limites de suites 9 Montrer que, pour tout entier naturel non nul n, n 2 n(n + )(2n + ) = 6 2 Montrer que, pour tout entier naturel non nul n, n 3 = [ n ] 2 n 2 (n + ) 2 = 0 Soit n un entier naturel non nul, et S n la somme : S n = n p= p(p + ) Écrire un algorithme permettant de calculer S n où n est un entier naturel non nul choisi par l utilisateur 2 Montrer par récurrence que pour tout entier n, S n = n n + 3 a) Vérifier que p(p + ) = p p + b) Retrouver alors le résultat du par une autre méthode 4 Soit a un réel strictement positif Démontrer par récurrence que pour tout entier naturel n, ( + a) n + na 2 Soit u la suite définie par u 0 = 3, et pour tout entier n, par + = 2( ) Calculer les premiers termes de cette suite, et conjecturer une expression de Démontrer alors cette conjecture 3 Soit la suite u définie par u 0 = 5, et pour tout entier n, + = 3 + Démontrer que cette suite est monotone 3 Limite d une suite 3 Définition et exemples Définition La suite numérique ( ) converge vers le réel l si et seulement si tout intervalle ouvert contenant l contient tous les termes à partir d un certain rang On note : = l ou encore = l Remarque Cette condition : "tout intervalle ouvert" est très forte car elle permet, entre autre, que l intervalle puisse être arbitrairement petit Exemple Soit la suite ( ) définie pour n par = n + 3

4 TS Limites de suites Intervalle ouvert contenant l l = O n Soit par exemple l intervalle ouvert I =]0, 99 ;, 0[ contenant l = Alors, I 0, 99 < <, 0 0, 99 < n + <, 0 0, 0 < n Ainsi, dès que n > 00, tous les termes sont dans l intervalle ouvert I =]0, 99 ;, 0[ On note = < 0, 0 n > 0, 0 = 00 Définition 2 On dit que la suite ( ) tend vers + lorsque tout intervalle ouvert de la forme ]A; + [, avec A R, contient tous les termes de la suite à partir d un certain rang On dit que la suite ( ) tend vers lorsque tout intervalle ouvert de la forme ] ; A[, avec A R, contient tous les termes de la suite à partir d un certain rang > A pour n N A O N n 3 2 Limites usuelles Propriété n = + ; n = + ; n2 = + ; n3 = + et plus généralement, pour tout entier p non nul np = + Preuve Par exemple pour la suite ( ) définie sur N par = n 2 Soit I un intervalle ouvert quelconque de la forme I =]A; + [, avec A un réel strictement positif I =]A; + [ n 2 > A n > A (car A > 0) Soit n 0 un entier tel que n 0 > A, alors, pour tout entier n n 0, on a I, et donc = + 4

5 TS Limites de suites Propriété 2 = 0 ; n n = 0 ; et plus généralement, pour tout entier p non nul n 2 = 0 ; n p = 0 n 3 = 0 Preuve Par exemple pour la suite = n Soit I un intervalle ouvert quelconque de la forme ] ε; +ε[, avec ε > 0 I ε < < ε 0 < < ε n > n n ε n > ε 2 tout entier n n 0, I, et donc la suite ( ) converge vers 0 : = 0 Théorème 3 3 Opérations sur les ites ( ) et (v n ) sont deux suites, et L et L sont deux réels Le point d interrogation correspond à une forme indéterminée, c est-à-dire un cas où on ne peut pas conclure directement Limite de la somme + v n = L L L + + v n = L v n = L + L + +? Exemple Soit ( ) la suite définie sur N par = 3 + 2n n 3 On a : 3 = 3 2n = + n 3 = 0 Par addition des ites = + Théorème 2 Limite du produit v n = L L 0 + ou 0 v n = L + ou + ou + ou + ou + ou v n = L L (règle des signes du (règle des signes du? produit) produit) Exemple Soit ( ) la suite définie sur N par = ( Par ite des sommes, 2 + ) n ( 2 + n) ( + n 2 ) ( = 2, et + n 2 ) = + 5

6 Ainsi, par ite de produit, = + TS Limites de suites Théorème 3 Limite de l inverse = L 0 0 par valeurs positives 0 par valeurs négatives + ou = + 0 L Exemple Soit ( ) la suite définie sur N par = Par ite de somme, n2 + n = +, et donc, n 2 + n = 0 Théorème 4 Limite du quotient un v n = L L + ou L 0 ou + ou 0 + ou v n = L 0 + ou L ou + ou L = v n L 0 + ou (règle des signes du?? produit) Méthode en cas de forme indéterminée : On essaye dans ce cas de lever l indétermination en transformant l expression (factorisation, développement, ) Par exemple, soit la suite ( ) définie sur N par = n 2 2n + 4 On a : somme n2 = +, et ( Néanmoins, = n 2 2n n n 2 et ( 2n + 4n ) 2 2n =, donc on a une forme indéterminée pour la ite de la ) = n 2 ( 2n + 4n 2 ), avec n2 = +, =, d où, par produit des ites = + Remarque n 2 est le terme dominant en + dans l expression de C est lui qui impose son comportement en +, ce qui apparaît clairement quand on le factorise 4 Dans chacun des cas suivants, déterminer la ite de la suite ( ) : a) = n 3 + n b) = (3n + )( 7n + 5) c) = d) = n 3 n 2 + 3n e) = 2n2 + n g) = n n + 3 n n h) = ( 2n + 3) n 2 + n + 6 j) = 9 n 2 (n + )(2n + ) 3 4 n 2 n 2 f) = n2 + 3n 5 n 3 6n 2 + i) = n n + n k) = 3 n (2n + ) 2 l) = 2 3n 2n n 2 + n + 6

7 3 4 Autres théorèmes de convergence Théorèmes de comparaison TS Limites de suites Théorème 5 Théorème des gendarmes pour les suites Soit ( ), (v n ) et (w n ) trois suites telles que, pour tout entier n, v n w n Si de plus n = n = l, alors n = l Corollaire Soit ( ) et (v n ) deux suites telles que, pour tout entier n, v n Si v n = +, alors = + Si =, alors v n = 5 D après BAC ( ) est une suite définie par u 0 = et, pour tout entier naturel n, + = + 2n + 3 Étudier le sens de variation de ( ) 2 Démontrer par récurrence que, pour tout entier n, = (n + ) 2 3 En déduire que, pour tout entier n, n 2 4 La suite ( ) est-elle minorée? majorée? Justifier 5 Donner la ite de ( ) 2 Suites minorées, majorées et bornées Définition 3 Une suite ( ) est dite minorée lorsqu il existe un réel m tel que, pour tout entier n, m Une suite ( ) est dite majorée lorsqu il existe un réel M tel que, pour tout entier n, M Une suite ( ) est dite bornée lorsqu elle est à la fois minorée et majorée, c est-à-dire qu il existe deux réels m et M tels que, pour tout entier n, m M Exemple Soit ( ) la suite définie par = sin(n) + n Alors, pour tout entier n, comme sin(n), = sin(n) + n + n + 0 = Ainsi, cette suite ( ) est minorée par m = De plus, pour tout entier n, = sin(n) + n + n, ce qui montre que la suite ( ) n est pas majorée, et donc n est pas bornée non plus Remarque Tout nombre inférieur à m est aussi un minorant En effet, pour tout entier n on a aussi par exemple, n, 0 20 Exemple ( ) définie pour n par = 3 sin n, 5 ( ) + 2, alors ( ) est bornée : n 7

8 (v n ) définie par v n = n est bornée, car, n 0, 0 v n 3 2 TS Limites de suites Théorème 6 Toute suite monotone et bornée est convergente : Toute suite croissante et majorée est convergente Toute suite décroissante et minorée est convergente Remarque Ce théorème permet de montrer qu une suite converge, mais ne fournit aucun moyen pour déterminer cette ite 6 Soit la suite u définie par u 0 = 5 et + = 3 + Montrer que ( ) est décroissante 2 Montrer que la suite ( ) est minorée 3 En déduire que la suite ( ) est convergente 3 Point fixe Théorème 7 Point fixe Si une suite est définie par une relation de récurrence du type + = f( ), alors, si elle converge vers un réel l, on a f (l) = l l s appelle un point fixe pour la fonction f 7 Soit la suite ( ) définie par u 0 = 0 et + = + 5 Montrer que cette suite est croissante 2 Montrer que pour tout entier n, 0 3 En déduire que la suite ( ) converge vers une ite l 3 Déterminer la ite l de la suite ( ) 8 Soit la suite u définie par u 0 = 2 et, pour tout entier n, par + = 4 3 a Dans un repère orthonormal (unité graphique 4cm), tracer la droite d équation y = x et la courbe C f représentant la fonction f définie sur ]0; + [ par l expression f(x) = 4 3 x b Placer sur l axe des abscisses, et sans effectuer aucun calcul, les termes u 0, u, u 2 et u 3 c Quelle conjecture peut-on faire sur la suite u 2 a Démontrer par récurrence que pour tout n N, 2 3 b Démontrer que la suite u est croissante, et en déduire qu elle converge c Déterminer alors la ite de la suite u 3 5 Suites arithmétiques et géométriques Propriété 3 Soit ( ) une suite arithmétique de premier terme u 0 et de raison r Alors pour tout entier n, = u 0 + nr et : si r > 0, alors = + si r < 0, alors = 8

9 TS Limites de suites 9 ( ) est la suite définie par u 0 = 3 et, pour tout entier n, + = Pour tout entier n, on pose v n = 3 Démontrer que (v n ) est une suite arithmétique 2 Déterminer la ite de la suite ( ) 20 Soit a un réel strictement positif Démontrer par récurrence que pour tout entier n, ( + a) n + na 2 Soit (v n ) une suite géométrique de premier terme v 0 > 0 et de raison q > Montrer que v n = + Théorème 8 Soit q un réel, alors Si < q <, alors la suite (q n ) converge vers 0 : qn = 0 Si q >, alors la suite (q n ) diverge vers + : qn = + Si q, alors la suite (q n ) n a pas de ite Si q =, alors la suite (q n ) est constante, q n = pour tout entier n, et donc aussi, qn = 2 On considère la suite ( ) définie par u 0 = 2 et, pour tout entier n, + = et la suite (v n ) définie sur N par v n = 8 Démontrer que la suite (v n ) est géométrique 2 En déduire l expression de v n, puis de en fonction de n 3 Déterminer les ites des suites (v n ) et ( ) 22 Soit la suite u définie par u 0 = 2 et, pour tout entier n, + = ère méthode a) vérifier que pour tout n N, + = b) Montrer que, pour tout n N, [; 2] c) Établir la relation + = ( ) 2, et en déduire le sens de variation de u + 3 d) Démontrer que u converge et déterminer sa ite l 2 ème méthode On considère la suite v définie pour tout n N par v n = a) Prouver que v est une suite arithmétique de raison 4 b) Exprimer pour tout n, v n puis en fonction de n c) En déduire la convergence de u et sa ite 9

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée

Plus en détail

Suites. 1.1 Définition Variations Représentation graphique d une suite Suite arithmétiques et géométriques...

Suites. 1.1 Définition Variations Représentation graphique d une suite Suite arithmétiques et géométriques... Lycée Paul Doumer 3-4 TS- Cours Suites Contents Généralités. Définition........................................ Variations........................................3 Représentation graphique d une suite.........................4

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2 Limite de suites Table des matières I Introduction II s Limite finie............................................ 2 Limite infinie.......................................... III Limites usuelles 2 IV Opérations

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie.

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie. TS Limites de suites Cours I. Définitions 1. Limite infinie Définition Dire qu une suite (u n ) a pour limite + signifie que tout intervalle ouvert de la forme [A ; + [ contient tous les termes de la suite

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites Lycée la Folie Saint James T ale S Fiche de cours : Généralités sur les suites Notion de suite. Définitions Une suite numérique réelle est une fonction u définie sur l ensemble N ou sur une partie de N

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Suites et récurrence

Suites et récurrence Suites et récurrence 1 Suites arithmétiques et géométriques 1.1 Définitions * On dit que la suite (u n ) est arithmétique s il existe un réel r appelé raison tel que, pour tout n dans N, on ait : u n+1

Plus en détail

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites,

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, Généralités sur les suites Cours maths Terminale S Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, la monotonie, la convergence des suites,

Plus en détail

Etude de limites de suites monotones

Etude de limites de suites monotones Etude de ites de suites monotones I) Définition On dit que la suite ( ) est majorée lorsqu il existe un nombre réel M tel que, pour tout entier naturel n, M. On dit que M est un majorant de la suite (

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: Montrons par récurrence que pour tout n Initialisation : pour n = 1 RAISONNEMENT PAR RECURRENCE i=1 i =1 et i=1 N i=n *, P (n) : i = 1 + + 3 +...+ ( n -1) + n = n n 1 i=1 n n 1 Hérédité : supposons

Plus en détail

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée SUITE I ) Rappels et dénition 1. N est l'ensemble des entiers naturels : 0,1,2... Une suite numérique est une fonction de N (ou une partie de N) dans R u : N R n u n Exemple : suite de Fibonnacci : 1,

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

Les suites - Partie II : Les limites

Les suites - Partie II : Les limites Terminale S Les suites - Partie II : Les limites 1.0 OLIVIER LECLUSE Juillet 2013 Table des matières 3 Limites et comparaison I - Limites et comparaison 5 A. Théorème d'encadrement dit "des gendarmes"...5

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite Exercices 2 octobre 2014 Raisonnement par récurrence. Limite d une suite Raisonnement par récurrence Exercice 1 Prouver que pour tout entier n, 4 n + 5 est un multiple de 3. Exercice 2 Prouver que pour

Plus en détail

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel ISEL - Année Mathématiques Suites - Rappel Raisonnement par récurrence Soit une propriété P (n) dépendant d'un entier naturel n. Pour montrer que cette propriété est vraie à partie de l'entier n 0 :. on

Plus en détail

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2 Suites numériques Z, auctore 4 octobre 005 1 Suites arithmétiques Définition. Une suite de nombres (u n ) n N est arithmétique lorsqu il existe un nombre r tel que pour tout entier n on ait Ce nombre r

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Les Suites ( En première S )

Les Suites ( En première S ) 2010 2011 Les Suites ( En première S ) Dernière mise à jour : Jeudi 31 Mars 2011 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) 1 2010 2011 J aimais et j aime encore les mathématiques

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TS - Chap2 1 Limites de suites et de fonctions 1 Limite d une suite u est une suite notée aussi (u n ) ; u n est son terme général ou terme d indice n. 1.1 Limite finie Soit l un nombre réel. Dire que

Plus en détail

Chapitre 2 : Limites de suites

Chapitre 2 : Limites de suites Chapitre 2 : Limites de suites I Suite convergeant un réel l Définition Soient (u n ) une suite numérique et l un nombre réel. On dit que (u n ) admet pour limite l (ou converge vers l) lorsque tout intervalle

Plus en détail

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple Classe : 11 ème Sciences CHAPITRE 5 SUITES NUMÉRIQUES Domaine : Sciences, Mathématiques et Technologies Compétences : Résoudre une situation problème Composantes : Diagnostiquer la situation problème,

Plus en détail

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011.

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011. Université MONTPELLIER 3 UFR 4 Notes de Cours Mathématiques M1 MRHDS 2011-2012 Laurent Piccinini version du 5 octobre 2011. M1 MRHDS 1 Table des matières I Les suites numériques 2 I.1 Généralités..............................................

Plus en détail

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés Chapitre I Suites Exercices 8, 9, 0, 3, 4, 6, 3, 3, 34 page 34 pour revoir les notions de première sur les suites (récurrence, sens de variation...) Suite géométrique. Définition Définition Une suite u

Plus en détail

Exercices : Suites réelles

Exercices : Suites réelles Exercices : Suites réelles Exercice : Démontrer par récurrence les résultats suivants : n+. n N, k k = n n+ + n. n N, (k +) = n. Soit a R + fixé, n N, (+a) n +na 4. n, n! n Analyse : Chapitre Exercices

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

Principe d une démonstration par récurrence :

Principe d une démonstration par récurrence : Chapitre Suites 1 Démonstration par récurrence Exemples introductif : Imaginons que des ouvriers construisant un immeuble aient toutes les instructions nécessaires pour construire un étage d immeuble sur

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

Suites numériques Raisonnement par récurrence

Suites numériques Raisonnement par récurrence Chapitre Suites numériques Raisonnement par récurrence I. Suites numériques : rappels et coméments 1. Modes de génération d une suite Soit n 0 un entier naturel. Une suite numérique u une fonction qui

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS

LIMITES DE SUITES ET DE FONCTIONS LIMITES DE SUITES ET DE FONCTIONS I. Définitions des ites en l infini. - Limite infinie. a) Limite de suites. Définition : On dit que la suite (U n ) tend vers + lorsque pour tout réel A, l intervalle

Plus en détail

Raisonnement par récurrence 2

Raisonnement par récurrence 2 1 sur 9 25/10/2015 09:38 Raisonnement par récurrence 2 DATE DE CRÉATION DE L'ARTICLE :16 NOVEMBRE 2010 DATE DE RÉDACTION ANTÉRIEURE : N.C. LANGUE DE L'ARTICLE (français) Cet article est une traduction

Plus en détail

Suites de nombres réels

Suites de nombres réels Suites de nombres réels I Généralités 1.1 propriété vraie à partir d un certain rang Définition 1.1 On dit qu une propriété P (n) est vraie à partir d un certain rang N N si et seulement s il existe un

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

Giuseppe Peano ( )

Giuseppe Peano ( ) Giuseppe Peano (1858-1932) Mathématicien et philosophe italien, il est l'un des premiers à avoir compris l'importance de fonder les mathématiques sur quelques axiomes précis, et d'en déduire ensuite théorèmes...

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

Chapitre 2 - Suites et récurrence

Chapitre 2 - Suites et récurrence Lycée Jaufré RUDEL - BLAYE 14 septembre 016 Les suites, c'est quoi déjà? Suites arithmétiques Suites géométriques Suites arithmétiques Dénition Terme général Somme de N termes consécutifs Sommes Suite

Plus en détail

CORRECTION - FX 0. ab a b + 1 1

CORRECTION - FX 0. ab a b + 1 1 Lycée Thiers CORRECTION - FX 0 Exercice. Somme et produit... qui est le plus grand? On considère deux entiers a, b >. Comparer et ab. On constate que : ab a b + = a ) b ) > 0 Or, si p, q sont entiers,

Plus en détail

Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-2015/2016

Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-2015/2016 Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-205/206 Limite d une fonction. Limite à l infini.. Limite finie d une fonction à l infini Définition Soit f une fonction

Plus en détail

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt :

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt : Terminale SSI 1 Chapitre 3 : Suites numériques 1 1 Introduction 1.1 s On rappelle que IN est On appelle suite numérique une fonction définie sur L image d un entier naturel n par une suite u n est en général

Plus en détail

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par EXERCICE (6 points ) Commun à tous les candidats Le graphique de l annexe sera complété et remis avec la copie Soit la fonction f définie sur l intervalle [0; ] par f(x) x + x + ) Etudier les variations

Plus en détail

Exercices type bac sur les suites.

Exercices type bac sur les suites. Exercices type bac sur les suites Corrigés NB : On ne donne dans ce document que des indices, la preuve complète reste à faire Exercice D après sujet du baccalauréat Centres étrangers, juin 003 On définit,

Plus en détail

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation Chapitre 8 Suites numériques La notion de suite numérique a été déjà introduite en classe de Première. On rappelle ici la définition d une suite numérique et complète les connaissances déjà acquises. On

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

1 RECURRENCE - SUITES BORNEES

1 RECURRENCE - SUITES BORNEES I - Rappels - Généralités 1. Définitions 1 RECURRENCE - SUITES BORNEES Une suite est une application de IN dans IR qui associe à tout entier n un unique réel. On note (u n ) la suite et u n le terme de

Plus en détail

Exercice n 114 page 128

Exercice n 114 page 128 Jeudi 28 Février 2013 DM de Maths Exercice n 114 page 128 1) a) Voir papier millimétré 1) b) D après la représentation graphique des premiers termes de la suite (u n ), on peut conjecturer qu elle est

Plus en détail

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie SUITES NUMERIQUES 2 ème partie I- Limite d une suite a) Limite finie Définition Soit (U n ) une suite de nombres réels. On dit que la suite (U n ) admet pour limite, si tout intervalle ]a ;b[ contenant

Plus en détail

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n.

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n. Les suites 1 Suites généralités 1.1 Définition Une suite u est une fonction de l ensemble des entiers naturels N dans l ensemble des nombres réels R : Le terme u(n) est plus souvent noté u n. 1. Soit la

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

Chapitre 6 Comportement asymptotique et limites de fonctions Limites de suites

Chapitre 6 Comportement asymptotique et limites de fonctions Limites de suites Chapitre 6 Comportement asymptotique et ites de fonctions Limites de suites 1. Limite d une fonction en ou en. 1.1 Limite infinie d une fonction en ou en Cadre : Soit I=]a ; [, où a est un réel fixé (NB

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS LIMITES DE FONCTIONS I- Limites à l infini. Limites infinies Définition Soit f une fonction définie sur un intervalle ]A; + [. On dit que f a pour ite + quand x tend vers + lorsque pour tout réel M, fx)

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES.

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. 1 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. I) RAPPELS DE COURS : Caractérisation par une relation de récurrence Caractérisation par une formule explicite Représentation graphique sur un axe Suites

Plus en détail

Suites Réelles. Aptitudes à développer :

Suites Réelles. Aptitudes à développer : Suites Réelles Aptitudes à développer : Suites * Reconnaître qu un réel est un majorant ou un minorant d une suite du programme. * Etudier les variations d une suite du programme. * Représenter graphiquement

Plus en détail

GÉNÉRALITÉS. f étant définie sur un intervalle de borne, f(x) = L si tout intervalle ouvert contenant L contient toutes les

GÉNÉRALITÉS. f étant définie sur un intervalle de borne, f(x) = L si tout intervalle ouvert contenant L contient toutes les 1 Limites GÉNÉRALITÉS Définitions Dans les énoncés suivants, L et a sont deux réels. f étant définie sur un intervalle de borne +, f(x) = L si tout intervalle ouvert contenant L contient toutes les valeurs

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

Intégration Encadrement d intégrale Exercices corrigés

Intégration Encadrement d intégrale Exercices corrigés Intégration Encadrement d intégrale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : encadrer une intégrale Exercice 2 : donner un encadrement

Plus en détail

3 Limites de suites. Manuel Repères p.12.

3 Limites de suites. Manuel Repères p.12. 3 Limites de suites Manuel Repères p.12. Objectifs : Comprendre les notions de suites divergentes, convergentes Savoir déterminer un rang à partir duquel les termes d une suite dépassent un certain seuil

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales Partie A a est un nombre réel appartenant à l intervalle [0 ;π]. On considère la suite géométrique (u n ) de premier terme u 0 cos a et de raison sin a. 1) Exprimer u n en fonction de n et déterminer la

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé Compléments sur les suites - Récurrence Exercices - Corrigé Exercice Pour n N nn + ), on pose Hn) : k := + + 3 + + n =. k= Pour n =, les deux membres de l égalité valent et donc H) est vraie. Soit ensuite

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Suites numériques (1 re partie)

Suites numériques (1 re partie) Chapitre 1 Suites numériques (1 re partie) I Prérequis I.1 Définition d une suite Définition. Une suite numérique est une liste de nombres réels «numérotés» par les nombres entiers naturels. N R On peut

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention.

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention. ) GENERALITES A ) DEFINITION et NOTATIONS SUITES NUMERIQUES On appelle suite numérique toute application de IN dans IR. Une suite se note u, ( ) n IN, ( ) n 0 ou ( ), qui est la notation la plus utilisée.

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Ph DEPRESLE septembre 05 Table des matières Limites à l infini. Limites infinies............................................ Limites finies-asymptotes horizontales.............................

Plus en détail

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES Suites 1 Généralité 1.1 Définition Une suite u est une fonction définie dans l ensemble des entiers naturels N : La suite u peut être notée (u) n N, u : N R n u(n) Le terme u(n), image de n par u, est

Plus en détail

Enseignement obligatoire

Enseignement obligatoire Wallis et Futuna Cours de MATHÉMATIQUES Fabien PUCCI Classe de Terminale S Enseignement obligatoire Année 05 Table des matières Suites - Raisonnement par récurrence 7 I Démonstration par récurrence..................................

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Soient α et u 0 deux réels donnés. Soit alors (u n ) une suite géométrique définie par u n = αu n 1. Donner le terme général de

Plus en détail

1.1 Rappels de 1re S, suites arithmétiques et géométriques

1.1 Rappels de 1re S, suites arithmétiques et géométriques CHAPITRE 1. SUITES Chapitre 1 Suites I Exercices 1.1 Rappels de 1re S, suites arithmétiques et géométriques Les exercices suivants permettent de revoir ce qui a été étudié sur les suites en première S.

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

SUITES ET RÉCURRENCE

SUITES ET RÉCURRENCE SUITES ET RÉCURRENCE En première : une suite ( ) est une fonction particulière : son ensemble de définition est constitué d'entiers, on peut donc parler (contrairement aux fonctions en général) de l'image

Plus en détail

Etude de suites définies par différents types de récurrence

Etude de suites définies par différents types de récurrence Etude de suites définies par différents types de récurrence F.Gaudon 22 juillet 2005 Table des matières 1 Suites arithmétiques 2 2 Suites géométriques 2 3 Suites arithmético-géométriques 3 4 Suites récurrentes

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

1 Introduction sur les suites numériques

1 Introduction sur les suites numériques ISEL - Année Mathématiques SUITES NUMERIQUES Introduction sur les suites numériques. Dénition Dénition On appelle suite réelle toute application U d'une partie A de IN dans IR. A IR U : avec A IN. L'image

Plus en détail

TS Feuille de révision n 1 novembre 2017

TS Feuille de révision n 1 novembre 2017 TS Feuille de révision n 1 novembre 017 Exercice 1 Dans un pays de population constante égale à 10 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail