OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ"

Transcription

1 BACCALAURÉAT BLANC Août 2014 MATHÉMATIQUES Série S OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation en vigueur Le sujet est composé de 4 exercices indépendants Chaque candidat doit traiter tous les exercices Dans chaque exercice, le candidat peut admettre un résultat précédemment donné dans le texte pour aborder les questions suivantes, à condition de l'indiquer clairement sur la copie Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies Page 1 sur 8

2 EXERCICE 1 : Commun à tous les candidats 4 points Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 35% des plants proviennent de l horticulteur H 1, 25% de l horticulteur H 2 et le reste de l horticulteur H 3 Chaque horticulteur livre deux catégories d arbres : des conifères et des arbres à feuilles La livraison de l horticulteur H 1 comporte 80% de conifères alors que celle de l horticulteur H 2 n en comporte que 50% et celle de l horticulteur H 3 seulement 30% Le gérant de la jardinerie choisit un arbre au hasard dans son stock On envisage les évènements suivants : H 1 : «l arbre choisi a été acheté chez l horticulteur H 1», H 2 : «l arbre choisi a été acheté chez l horticulteur H 2», H 3 : «l arbre choisi a été acheté chez l horticulteur H 3», C : «l arbre choisi est un conifère», F : «l arbre choisi est un arbre feuillu» a Construire un arbre pondéré traduisant la situation b Calculer la probabilité que l arbre choisi soit un conifère acheté chez l horticulteur H 3 c Justifier que la probabilité de l évènement C est égale à 0,525 d L arbre choisi est un conifère Quelle est la probabilité qu il ait été acheté chez l horticulteur H 1? On arrondira à 10-3 On choisit au hasard un échantillon de 10 arbres dans le stock de cette jardinerie On suppose que ce stock est suffisamment important pour que ce choix puisse être assimilé à un tirage avec remise de 10 arbres dans le stock On appelle X la variable aléatoire qui donne le nombre de conifères de l échantillon choisi a Justifier que X suit une loi binomiale dont on précisera les paramètres b Quelle est la probabilité que l échantillon prélevé comporte exactement 5 conifères? On arrondira à 10-3 c Quelle est la probabilité que cet échantillon comporte au moins deux arbres feuillus? On arrondira à 10-3 EXERCICE 2 : Candidats n ayant pas suivi l enseignement de spécialité 5 points Soit une suite ( u n) définie pour tout entier naturel n par: ì u0 = 1 ï í ï un+ 1 = ïî u n 2u + 1 n 1 Reproduire une table (obtenue à la calculatrice) des valeurs approchées à 0,001 près des dix premiers termes de cette suite Conjecturer le sens de variation de cette suite 2 Démontrer que, pour tout entier naturel n, u n > 0 3 Démontrer la conjecture établie à la première question 4 On construit une suite ( v n) de la façon suivante: Pour tout entier naturel n, v n 1 = u n Montrer que la suite ( v n) est arithmétique, on précisera la raison et le premier terme 5 Exprimer v n en fonction de n, en déduire une expression de u n en fonction de n 6 En déduire la limite de la suite ( u n) Exercice 3 Commun à tous les candidats 7 points Partie 1 Soit la fonction définie sur [ 0 ; + [ par ( ) 1 Déterminer la limite de en 2 Etudier les variations de la fonction 3 Donner le tableau de variations de la fonction 4 a Démontrer que l équation ( ) admet sur [0 ; + [ une unique solution notée b A l aide de la calculatrice, déterminer un encadrement de d amplitude c Démontrer que 5 Déterminer le signe de ( ) suivant les valeurs de Page 2 sur 8

3 Partie 2 Soit la fonction définie et dérivable sur [0 ;+ [ telle que ( ) 1 Démontrer que pour tout réel positif ou nul, ( ) a le même signe que ( ), où est la fonction définie dans la partie 1 2 En déduire les variations de la fonction sur [0 ;+ [ Partie 3 On considère la fonction définie sur [0 ;+ [ par ( ) On note ( ) sa courbe représentative dans un repère orthonormé (O ; ) La figure est donnée en annexe Pour tout réel positif, on note : le point de ( ) de coordonnées ( ( )) le point de coordonnées ( ) Q le point de coordonnées ( ( )) 1 Démontrer que l aire du rectangle OPMQ est maximale lorsque a pour abscisse On rappelle que le réel a été défini dans la partie 1 2 Le point a pour abscisse La tangente (T) en à la courbe ( ) est-elle parallèle à la droite ( )? Dans cette question, toute trace de recherche, même incomplète, ou d initiative, même non fructueuse, sera prise en compte dans l évaluation Exercice 4 Commun à tous les candidats 5 points Le plan complexe est muni d un repère orthonormé direct (O ; ) Pour tout entier naturel, on note le point d affixe défini par : et ( On définit la suite ( ) par pour tout entier naturel ) 1 Donner la forme exponentielle du nombre complexe 2 a Montrer que la suite ( ) est géométrique de raison b En déduire l expression de en fonction de c Que dire de la longueur lorsque tend vers? 3 On considère l algorithme suivant : Variables Entrée entier naturel réel réel strictement positif Demander la valeur de Traitement prend la valeur 1 prend la valeur 0 Tant que prend la valeur prend la valeur Fin tant que Sortie Afficher a Quelle est la valeur affichée par l algorithme pour? b Pour on obtient Quel est le rôle de cet algorithme? Page 3 sur 8

4 4 a Démontrer que le triangle est rectangle en b On admet que Déterminer les valeurs de pour lesquelles est un point de l axe des ordonnées c Compléter la figure donnée en annexe, à rendre avec la copie, en représentant les points Les traits de construction seront apparents Page 4 sur 8

5 Annexes à rendre avec la copie Annexe exercice 3 Annexe Exercice 4 Page 5 sur 8

6 EXERCICE 2 : Candidats ayant suivi l enseignement de spécialité 5 points Partie A : préliminaires 1 a) Soient n et N deux entiers naturels supérieurs ou égaux à 2, tels que : Montrer que : 2 n N N n n 3 1 modulo 1 modulo N b) Déduire de la question précédente un entier k1 tel que : 5k1 1 modulo 26 On admettra que l unique entier k tel que : 0 k 25 et 5k 1 modulo 26 vaut A 2 1 x1 y1 B X Y On donne les matrices : 3 4, x, 2 y2 et 2 a) Calculer la matrice 6A A 1 b) En déduire que A est inversible et que sa matrice inverse, notée A 1, peut s écrire sous la forme A I A, où et sont deux réels que l on déterminera 1 c) Vérifier que: B 5A d) Démontrer que si AX Y, alors 5X BY Partie B : procédure de codage Coder le mot «ET», en utilisant la procédure de codage décrite ci-dessous x1 Le mot à coder est remplacé par la matrice X x2, où x1 est l entier représentant la première lettre du mot et x 2 l entier représentant la deuxième, selon le tableau de correspondance ci-dessous : A B C D E F G H I J K L M N O P Q R S T Page 6 sur 8

7 U V W X Y Z y1 La matrice X est transformée en la matrice Y telle que : Y AX y2 r1 La matrice Y est transformée en la matrice R r2, où r est le reste de la division de 1 y1 par 26 et r 2 le reste de la division de y 2 Les entiers r 1 et r2 donnent les lettres du mot codé, selon le tableau de correspondance ci-dessus Exemple : «OU» (mot à coder) 14 X Y R 4 «YE» (mot codé) Partie C : procédure de décodage (on conserve les mêmes notations que pour le codage) y1 Lors du codage, la matrice X a été transformée en la matrice Y telle que : Y AX y2 1 5x1 2y1 y2 Démontrer que : 5x2 3y1 4y2 2 x1 16y1 5y2 En utilisant la question 1 b de la partie A, établir que : x2 15y1 6y2 modulo 26 3 Décoder le mot «QP» EXERCICE 3 : Commun à tous les candidats 6 points x On considère les fonctions f et g définies pour tout réel x par : f x e et g x 1 e x Les courbes représentatives de ces fonctions dans un repère orthogonal du plan, notées respectivement C f et C g, sont fournies en annexe Partie A Ces courbes semblent admettre deux tangentes communes Tracer aux mieux ces tangentes sur la figure ci-dessous Partie B Dans cette partie, on admet l existence de ces tangentes communes On note D l une d entre elles Cette droite est tangente à la courbe C f au point A d abscisse a et tangente à la courbe C g au point B d abscisse b 1 a Exprimer en fonction de a le coefficient directeur de la tangente à la courbe C f au point A b Exprimer en fonction de b le coefficient directeur de la tangente à la courbe C g au point B c En déduire que b a x 2 x1 e Démontrer que le réel a est solution de l équation x 2 x 1 e x 1 Partie C On considère la fonction définie sur par 1 a Calculer les limites de la fonction en et b Calculer la dérivée de la fonction, puis étudier son signe c Dresser le tableau de variation de la fonction sur Préciser la valeur de 0 2 a Démontrer que l équation x 0 admet exactement deux solutions dans b On note la solution négative de l équation x 0 et la solution positive de cette équation À l aide d une calculatrice, donner les valeurs de et arrondies au centième Partie D Dans cette partie, on démontre l existence de ces tangentes communes, que l on a admise dans la partie B On note E le point de la courbe C f d abscisse a et F le point de la courbe C g d abscisse a ( a est le nombre réel défini dans la partie C) 1 Démontrer que la droite (EF) est tangente à la courbe C f au point E 2 Démontrer que (EF) est tangente à C g au point F Page 7 sur 8

8 Page 8 sur 8

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Baccalauréat ES Amérique du Nord 30 mai 2013

Baccalauréat ES Amérique du Nord 30 mai 2013 Baccalauréat ES Amérique du Nord 30 mai 03 EXERCICE 4 points Cet exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles. Pour chacune de ces questions,

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Baccalauréat S Centres étrangers 12 juin 2014

Baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Baccalauréat S Centres étrangers juin 04 A. P. M. E. P. Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse,

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Corrigé, bac S, mathématiques

Corrigé, bac S, mathématiques Corrigé, bac S, mathématiques jeudi juin 0 Eercice 4 points Le plan est muni d un repère orthonormé (O; ı ; j) On considère une fonction f dérivable sur l intervalle [ 3; ] On dispose des informations

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

CONCOURS POUR LE RECRUTEMENT DE :

CONCOURS POUR LE RECRUTEMENT DE : CONCOURS POUR LE RECRUTEMENT DE : Techniciens supérieurs de la météorologie de première classe, spécialité «instruments et installations» (concours interne et externe). ***************** SESSION 205 *****************

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Commun à tous les candidats

Commun à tous les candidats BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.

Plus en détail

Baccalauréat L spécialité Métropole La Réunion septembre 2008

Baccalauréat L spécialité Métropole La Réunion septembre 2008 Baccalauréat L spécialité Métropole La Réunion septembre 2008 L usage d une calculatrice est autorisé Ce sujet ne nécessite pas de papier millimétré 3 heures EXERCICE 1 4 s Un magasin de matériels informatiques

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 5 pages numérotées de 1 à 5. Du papier millimétré est mis à la disposition des

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Baccalauréat L Enseignement de spécialité Asie Juin 2010

Baccalauréat L Enseignement de spécialité Asie Juin 2010 Baccalauréat L Enseignement de spécialité Asie Juin 2010 EXERCICE 1 Il s agit de remplir la grille suivante dont chaque case blanche doit contenir exactement un chiffre (entre 0 et 9). 1. Pour y parvenir,

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

BACCALAURÉAT GÉNÉRAL Hiver 2015

BACCALAURÉAT GÉNÉRAL Hiver 2015 BACCALAURÉAT GÉNÉRAL Hiver 2015 Épreuve : MATHÉMATIQUES Séries SCIENCES ÉCONOMIQUES ET SOCIALES, toutes spécialités LITTÉRAIRE, spécialité Mathématiques Classes TES1, TES2, TES3, TES ET TL1ES Durée de

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

Epreuve de spécialité de Mathématiques Série L

Epreuve de spécialité de Mathématiques Série L Epreuve de spécialité de Mathématiques Série L Durée de l'épreuve: 3 heures. Le candidat doit traiter tous les exercices. La qualité de la rédaction, la clarté et la précision des raisonnements entrent

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

MATHEMATIQUES TES 2013-2014 Sujets des devoirs

MATHEMATIQUES TES 2013-2014 Sujets des devoirs MATHEMATIQUES TES 203-204 Sujets des devoirs DS 25 /09/203 page2 DV 08/0/203 page 5 DS 3//203 page 6 DV 28//203 page 0 DS 8/2/203 page BBlanc 6/0/204 page 5 DV 29/0/204 page 20 DV 8/02/204 page 2 DS 9/03/204

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

( ) Exercice 1 : On donne le programme de calcul suivant :

( ) Exercice 1 : On donne le programme de calcul suivant : Exercice : On donne le programme de calcul suivant : ) Montrer que si le nombre choisi au départ est, on obtient comme résultat 8. ) Calculer la valeur exacte du résultat obtenu lorsque : a) Le nombre

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

B A C C A L A U R E A T G E N E R A L

B A C C A L A U R E A T G E N E R A L B A C C A L A U R E A T G E N E R A L SESSION 2006 MATHÉMATIQUES SERIE : ES DUREE DE L EPREUVE: 3 heures - COEFFICIENT : 7 Ce sujet comporte 6 pages dont feuille ANNEXE L utilisation d une calculatrice

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Session 2015 Jeudi 18 juin 2015 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficient : 4 Calculatrice

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité Fiche d eercices : Continuité, Dérivabilité et Etude de fonctions Continuité Eercice On considère la fonction f définie sur [ ; + [ par : f() E() pour [ ; 4[ f() 4 + 4 pour [ 4 ; + [ a. Tracer la représentation

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

3. La suite ( un)a pour terme général un

3. La suite ( un)a pour terme général un NOM : Terminale ES Devoir n vendredi 9 octobre 0 Eercice : sur.5 points Des questions indépendantes. Résoudre l équation ² + 4 = 0. Calculer la dérivée de f dans chacun des cas suivants : a) f ( ) 4 8

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE LIBAN 2014 On considère la fonction f définie sur l intervalle [0 ; 5] par f(x) = x+1+e

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014 BA BLAN DE MATHÉMATIQUES TERMINALES ES et L ORRETION SUINTE oefficients, ou Année scolaire - Durée heures Page sur 8 pages Année EXERIE. ommun à tous les candidats sur points Un club de remise en forme

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficient : 2 Dès que le sujet

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE. MATHÉMATIQUES Séries STI2D et STL spécialité SPCL ÉPREUVE DU JEUDI 18 JUIN 2015

BACCALAURÉAT TECHNOLOGIQUE. MATHÉMATIQUES Séries STI2D et STL spécialité SPCL ÉPREUVE DU JEUDI 18 JUIN 2015 BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 MATHÉMATIQUES Séries STI2D et STL spécialité SPCL ÉPREUVE DU JEUDI 18 JUIN 2015 Durée de l épreuve : 4 heures Coefficient : 4 Ce sujet comporte 8 pages numérotées

Plus en détail

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A Épreuve de Mathématiques - sujet A Exercice Une société de location de voitures possède trois agences, une à Rennes, une à Lyon, une à Marseille. Lorsqu un client loue une voiture, un jour donné, dans

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SESSION 014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL STS DURÉE DE L ÉPREUVE : heures COEFFICIENT : 3 Ce sujet comporte 5 pages numérotées de 1

Plus en détail

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 7 JANVIER 202 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les suites ; Page 2 Deu eercices intitulés

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Métropole juin 2008..................................... 3 La Réunion 18 juin 2008................................. 6 Polynésie juin 2008......................................

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : heures Coefficient : Dès que le sujet lui

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1 Exemple de sujet n 1 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 1 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2013. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2013. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2013 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

Terminale ES BAC blanc N 1 ( janvier 2014)

Terminale ES BAC blanc N 1 ( janvier 2014) Terminale ES BAC blanc N 1 ( janvier 2014) Epreuve de mathématiques N anonymat :... Durée : 3 heures Calculatrice autorisée Exercice 1 ( pour tous les candidats ) Cet exercice est un QCM Une seule bonne

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Ministère de l éducation nationale Session 2013 PE2-13-PG2 Repère à reporter sur la copie CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Vendredi 28 septembre 2012 - de 9h 00 à 13h 00 Deuxième épreuve

Plus en détail