Changements de bases.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Changements de bases."

Transcription

1 Chapitre Changements de bases Changement de coordonnées Matrice de passage Soit E un K espace vectoriel de dimension n Soit (e,, e n ) une base de E, qu on notera B Si u est un vecteur de E on notera en colonne le n uplet des coordonnées de u dans la base (e,, e n ) On l appelera la colonne des coordonnées de u dans la base (e,, e n ) Attention : Si u a pour coordonnées u = dans la base (e,, e n ), on n écrit pas En effet, d abord u est un vecteur de l espace vectoriel E, qui n est pas toujours K n Ensuite si on prend une autre base (e,, e n) de E, la colonne des coordonnées de u dans cette nouvelle base ne sera pas la même que dans l ancienne base (e,, e n ) Attention : Il y a une eception à l avertissement donné ci-dessus Si u est un vecteur de K n, alors c est un n uplet d éléments de K, soit u = (,, ) Les coordonnées de u dans la base canonique de K n sont eactement ses composantes,, Dans ce cas (mais seulement dans ce cas), il n est pas fau d écrire le vecteur u en colonne, c est à dire d écrire : u = Soient e,,e n n vecteurs de E On se pose la question suivante : à quelle condition les vecteurs e,,e n forment-ils une base de E? Réponse : comme ils sont en nombre égal à la dimension de E, ils forment une base de E si et seulement si ils forment une famille libre Appelons C la colonne des coordonnées du vecteur e dans la base (e,, e n ), et C n la colonne des coordonnées du vecteur e n dans la base (e,, e n ) Alors on sait que les vecteurs e,,e n forment une famille libre de E si et seulement si C,,C n forment une famille libre de K n Enfin, on sait que les vecteurs C,,C n forment une famille libre de K n si et seulement si la matrice dont les colonnes sont C,,C n est une matrice n n inversible Ceci montre la proposition suivante : Proposition Soient e,,e n n vecteurs de E Soient C,,C n les colonnes des coordonnées de e,,e n dans la base (e,, e n ) Soit P M n (K) la matrice dont la jème colonne!

2 2 CHAPITRE CHANGEMENTS DE BASES est C j Alors les vecteurs e,,e n forment une base de E si et seulement si la matrice P est inversible Définition 2 Quand la matrice P définie ci-dessus est inversible, on l appelle la matrice de passage de la base (e,, e n ) à la base (e,, e n) La base (e,, e n ) sera appelée l ancienne base et la base (e,, e n) sera appelée la nouvelle base Soit u E et soit X = la colonne des coordonnées de u dans la base (e,, e n ) On se pose la question suivante : comment calculer les coordonnées de u dans la nouvelle base (e,, e n)? Théorème 3 Soient (e,, e n ) d une part et (e,, e n) d autre part, deu bases de E Soit P la matrice de passage de la base (e,, e n ) à la base (e,, e n) Si la colonne des coordonnées du vecteur u dans la base (e,, e n ) est X =, alors la colonne X de ses coordonnées dans la base (e,, e n) se déduit de la formule : X = P X C est à dire : = P n On a la formule équivalente : X = P X Preuve : u = e + + e n et u = e + + ne n Or on a, par la définition de la matrice P : e = p, e + + p n, e n (ère colonne de P ) e n = p,n e + + p n,n e n (nième colonne de P ) On remplace les e i par leurs décompositions sur la base des e j, dans la deuième formule donnant u ci-dessus On trouve : ce qui donne : u = (p, e + p 2, e p n, e n ) + + n(p,n e + p 2,n e p n,n e n ), u = (p, +p,2 2+ +p,n n)e +(p 2, +p 2,2 2+ +p 2,n n)e 2 + +(p n, +p n,2 2+ +p n,n n)e n Or il n y a qu une seule décomposition de u sur la base e,,e n Donc les scalaires qui apparaissent comme coefficients des vecteurs e i dans la formule ci-dessus sont les coordonnées de u dans la base e,,e n On a donc : Autrement dit : X = P X = p, + p, p,n n 2 = p 2, + p 2, p 2,n n = p n, + p n, p n,n n,

3 CHANGEMENT DE COORDONNÉES MATRICE DE PASSAGE 3 Attention : Un vecteur u de E étant donné, la matrice de passage P permet de calculer les anciennes coordonnées de u (ou coordonnées de u dans l ancienne base) en fonction des nouvelles coordonnées de u (ou coordonnées de u dans la nouvelle base) Comment s en souvenir? On teste la formule X = P X sur le premier vecteur de la nouvelle base, e On sait que la première colonne de P est formée des coordonnées du vecteur e dans la base (e,, e n ) Or on sait que pour n importe quelle matrice A, le produit de A par la colonne colonne de A On a donc P = ère colonne de P = p, p 2, p n, est la première Or la colonne est la colonne des coordonnées du vecteur e dans la nouvelle base La p, p 2, colonne est la colonne des coordonnées du même vecteur e dans l ancienne base On p n, a donc bien vérifié la formule X = P X, quand X et X sont les colonnes des coordonnées du vecteur e Eemple : Soit R 4 muni de la base canonique (e,, e 4 ) Soient les vecteurs e,,e 4 de R4 donnés par leurs composantes (qui sont aussi leurs coordonnées dans la base canonique) : e = 2 e 2 = e 3 = 2 et e 4 = 2 Vérifions que les vecteurs e, e 2, e 3, e 4 forment une base de R4 On remarque que les coordonnées de ces vecteurs sont presque échelonnées On raisonne suivant la manière habituelle pour des vecteurs de coordonnées échelonnées D abord on voit que e 4 et e 3 ne sont pas colinéaires, donc ils sont linéairement indépendants Puis on voit que e 2 n est pas combinaison linéaire de e 3 et e 4, sinon sa deuième coordonnée serait nulle Comme e 3 et e 4 sont linéairement indépendants, cela prouve que e 2, e 3, e 4 sont linéairement indépendants Alors e,,e 4 sont liés si et seulement si e s écrit comme combinaison linéaire de e 2, e 3, e 4 Or e n est pas combinaison linéaire de ces trois vecteurs, sinon sa première composante serait nulle Donc les quatre vecteurs e, e 2, e 3, e 4 sont linéairement indépendants Comme leur nombre est 4, ils forment une base de R4 Soit u le vecteur de R 4 donné par ses 4 composantes : u = La colonne est le vecteur u, mais c est aussi la colonne des coordonnées du vecteur u dans la base canonique de R 4 Cherchons les coordonnées de u dans la nouvelle base (e, e 2, e 3, e 4 ) Ecrivons la matrice de passage P de la base canonique (ancienne base) à la nouvelle base

4 4 CHAPITRE CHANGEMENTS DE BASES P = e e 2 e 3 e 4 e e 2 e 3 e 4 Les coordonnées X de u dans la nouvelle base sont données par la formule X = P X, c est à dire : = = = = = Il reste à résoudre ce système On trouve 2 = = 3 4 = /3 /3 Les nouvelles coordonnées de u sont donc données par la colonne = d où 2 = 3 = /3 4 = /3 Attention : Le vecteur u n est pas égal à cette colonne On a seulement : u = e e e e 4 (Formule qu on peut vérifier pour détecter d éventuelles erreurs de calcul) On aurait pu résoudre le problème autrement D abord prouver que P est inversible et calculer P Alors le fait que P soit inversible montre que (e, e 2, e 3, e 4 ) est une base de R4 Puis on calcule les nouvelles coordonnées de u par la formule X = P X 2 Formule de changement de base pour une application linéaire Théorème 2 Soit f : E F une application linéaire Soient (u,, u p ) et (u,, u p) deu bases de E et soient (v,, v n ) et (v,, v n) deu bases de F Soit A la matrice de f dans les bases (u,, u p ) et (v,, v n ) et soit A la matrice de f dans les bases (u,, u p) et (v,, v n) Appelons P la matrice de passage de la base (u,, u p ) à la base (u,, u p) et Q la matrice de passage de la base (v,, v n ) à la base (v,, v n) Alors on a la formule suivante : A = Q AP Preuve : La preuve est à connaître, car il faut être capable de retrouver la formule On va donner deu preuves différentes (retenir celle qui semble la plus simple!) Première démonstration Montrons que QA = AP Pour cela, on calcule de deu manières la matrice de f dans les bases (u,, u p) et (v,, v n ) D une part on écrit : f = id F f La matrice Q est la matrice de id F dans les bases (v,, v n) et (v,, v n ) La matrice A est la matrice de f dans les bases (u,, u p) et (v,, v n) Par le théorème de composition, la matrice de f = id F f dans les bases (u,, u p) et (v,, v n ) est QA D autre part, on écrit : f = id E f La matrice P est la matrice de id E dans les bases (u,, u p) et (u,, u p ) La matrice A est la matrice de f dans les bases (u,, u p ) et (v,, v n ) Donc la matrice de la fonction composée f = id E f dans les bases (u,, u p) et (v,, v n ) est AP On a donc calculé la matrice de f dans les bases (u,, u p) et (v,, v n ) de deu manières différentes Comme il n y a qu une seule matrice, on a AP = QA Deuième démonstration (Nécessite de connaître la formule de changement de base pour les vecteurs) On donne un vecteur u de E Soit X la colonne de ses coordonnées dans la base (u,, u p ) et X la colonne de ses coordonnées dans la base (u,, u p) Le vecteur f(u) appartient à F Appelons Y la colonne de ses coordonnées dans la base (v,, v n ) et Y la colonne de ses coordonnées dans la base (v,, v n) On : Y = AX et Y = A X Or X = P X et Y = QY On substitue P X à X et QY à Y dans la formule Y = AX On trouve QY =

5 2 FORMULE DE CHANGEMENT DE BASE POUR UNE APPLICATION LINÉAIRE 5 AP X, donc Y = Q AP X Comme cela est vrai pour tout vecteur u de E, on en déduit que A = Q AP Eemple : Soit f : R 2 R 3 (, y) (2 + 3y,, y) Appelons (e, e 2 ) la base canonique de R 2 et (ẽ, ẽ 2, ẽ 3 ) la base canonique de R 3 La matrice de f dans les bases canoniques de R 2 et R est On donne u = (, 2) et u 2 = (, ) deu vecteurs de R 2 Ils forment une base de R 2 car ils ne sont pas colinéaires On donne trois vecteurs de R 3 : v = (,, ), v 2 = (, 2, ) et v 3 = (,, 2) On voit que v et v 2 sont linéairement indépendants Donc v, v 2, v 3 ne peuvent être liés que si v 3 est une combinaison linéaire de v et v 2, c est à dire si il = α + β eiste des réels α et β tels que = α + 2β 2 = β et ce système n a pas de solution, donc v, v 2, v 3 sont linéairement indépendants Ils forment une ( base ) de R 3 La matrice de passage de la base canonique de R 2 à la base (u, u 2 ) est P = et la matrice de passage de la 2 base canonique de R 3 à la base (v, v 2, v 3 ) est Q = 2 On inverse la matrice Q On trouve Q = Le produit Q AP donne A = Ceci signifie que f(u ) = 5 (2v + 9v 2 2v 3 ) et f(u 2 ) = 5 (8v + 7v 2 6v 3 ) Définition 22 Soient A et A deu matrices de M n,p (K) Si il eiste deu matrices inversibles P M p (K) et Q M n (K) telles que A = Q AP, on dit que A et A sont des matrices équivalentes Si A et A M p (K) et s il eiste une matrice inversible P M p (K) telle que A = P AP, on dit que A et A sont des matrices semblables Eercice : La relation R définie sur M n,p (K) par ARA s il eiste deu matrices inversibles P M p (K) et Q M n (K) telles que A = Q AP est une relation d équivalence

Vecteurs et applications linéaires

Vecteurs et applications linéaires Vecteurs et applications linéaires (1) (1) () Vecteurs et applications linéaires 1 / 41 1 Familles de vecteurs de R n 2 Sous-espace vectoriels dans R n 3 Base d un sous-espace vectoriel (1) () Vecteurs

Plus en détail

Chapitre 4 : Applications linéaires

Chapitre 4 : Applications linéaires Chapitre 4 : Applications linéaires I. Applications Dans ce paragraphe, on s intéresse à des applications allant d un ensemble à un autre (sans aucune structure d espace vectoriel). Un ensemble est un

Plus en détail

1. Familles de vecteurs

1. Familles de vecteurs Compléments d algèbre linéaire 1-1 Sommaire 1 Familles de vecteurs 1 11 Famille libre 1 1 Famille génératrice 1 13 Base 14 Propriétés Sous-espaces vectoriels 1 Somme de sous-espaces vectoriels Base adaptée

Plus en détail

( ) dx t dt. ( ) B( t) Le principe de la résolution se base sur la diagonalisation de la matrice A ou à défaut sa trigonalisation.

( ) dx t dt. ( ) B( t) Le principe de la résolution se base sur la diagonalisation de la matrice A ou à défaut sa trigonalisation. Equations différentielles linéaires du premier ordre à coefficients constants (ou système d équation différentielles linéaires scalaire à coefficients constants du premier ordre) dx t dt B( t) + AX t x

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices Chapitre 6 Algèbre matricielle En plus d être des tableaux de nombres susceptibles d être manipulés par des algorithmes pour la résolution des systèmes linéaires et des outils de calcul pour les applications

Plus en détail

Exercices du chapitre 6 avec corrigé succinct

Exercices du chapitre 6 avec corrigé succinct Eercices du chapitre 6 avec corrigé succinct Eercice VI Ch6-Eercice On veut résoudre t + bt t + ctt =, b et c étant des fonctions réelles Transformer cette équation différentielle du second ordre en un

Plus en détail

Calcul matriciel : rappels et compléments

Calcul matriciel : rappels et compléments CHAPITRE 5 Calcul matriciel : rappels et compléments 5 L ensemble M n,p (K) 5 Structure d espace vectoriel Définition Soit K = R ou C On note M n,p (K) l ensemble des matrices ayant n lignes et p colonnes

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

IUT Louis Pasteur Mesures Physiques Mathématiques 2ème semestre Damien JACOB

IUT Louis Pasteur Mesures Physiques Mathématiques 2ème semestre Damien JACOB IUT Louis Pasteur Mesures Physiques Mathématiques 2ème semestre Damien JACOB 08-09 Chapitre 1 : Espaces vectoriels I. Définitions et exemples Soit un ensemble et soit =R C. est un espace vectoriel sur

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université Nice Sophia-Antipolis SL2SF 2012-13 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère

Plus en détail

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3 Table des matières I Matrices à coefficients dans K............................ 3 I.1 Généralités.................................. 3 I.2 Matrices particulières............................. 3 I.3 Matrices

Plus en détail

3.2. SOUS-ESPACES DE IR n, BASES ET

3.2. SOUS-ESPACES DE IR n, BASES ET .. SOUS-ESPACES DE IR n, BASES ET INDÉPENDANCE LINÉAIRE On a vu dans la section. que l image et le noyau d une application linéaire avaient en commun : ils contiennent le vecteur nul (du domaine pour le

Plus en détail

Fiche méthodologique Rang d une matrice et applications

Fiche méthodologique Rang d une matrice et applications Fiche méthodologique Rang d une matrice et applications BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deu définitions du rang d une matrice Le rang d une matrice M M n,p (K) est défini de deu manières

Plus en détail

Dimension des espaces vectoriels

Dimension des espaces vectoriels Dimension des espaces vectoriels (2) (2) () Dimension des espaces vectoriels 1 / 22 Plan 1 Matrices (2) () Dimension des espaces vectoriels 2 / 22 Propriétés de l ensemble des matrices Proposition Pour

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 1 : Espaces vectoriels ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 1 Espaces vectoriels 1.1 Espaces vectoriels, généralités..........................

Plus en détail

Chapitre 2 : Les matrices

Chapitre 2 : Les matrices Chapitre 2 : Les matrices I. Définitions On appelle matrice à lignes et colonnes N, N à coefficients dans =R C un tableau à lignes et colonnes contenant un élément de à l intersection de chaque ligne et

Plus en détail

Exercices du chapitre XI avec corrigé succinct

Exercices du chapitre XI avec corrigé succinct Exercices du chapitre XI avec corrigé succinct Exercice XI. Soient : 3 2 6 2 A, B et C 2 4 3 3 2 4 4 2 2 x, y, y 2 et z 3. Calculer Ax et Bx, que remarque t-on par rapport à la multiplication usuelle dans

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Bibliothèque d exercices Énoncés L Feuille n 9 Espaces vectoriels de dimension finie Base Exercice Montrer que les vecteurs {,, 0 } forment une base de R. Calculer les coordonnées respectives des vecteurs

Plus en détail

Commutant d une matrice

Commutant d une matrice Énoncé On désigne par n un entier naturel supérieur ou égal à 2, et par M n (IK) l algèbre sur IK des matrices carrées d ordre n à coefficients dans IK, avec IK = IR ou lc. La matrice identité de M n (IK)

Plus en détail

ESPACES VECTORIELS CHAPITRE Espaces vectoriels. 1.1 Définition. Dans tout ce chapitre, K désignera R ou C. Définition 10.1

ESPACES VECTORIELS CHAPITRE Espaces vectoriels. 1.1 Définition. Dans tout ce chapitre, K désignera R ou C. Définition 10.1 CHAPITRE 10 ESPACES VECTORIELS Dans tout ce chapitre, K désignera R ou C. 1 Espaces vectoriels 1.1 Définition Définition 10.1 On appelle K-espace vectoriel un ensemble E muni d une addition + : E E E (x,

Plus en détail

Applications linéaires

Applications linéaires Chapitre 4 Applications linéaires I) Généralités sur les applications linéaires 1) Définitions Définition 1 Soient E et F deux R-espaces vectoriels On appelle application linéaire de E dans F toute application

Plus en détail

Formes quadratiques. 1. Formes bilinéaires symétriques et formes quadratiques

Formes quadratiques. 1. Formes bilinéaires symétriques et formes quadratiques Agrégation interne UFR MATHÉMATIQUES Formes quadratiques On se place sur un R-espace vectoriel E de dimension finie n. 1. Formes bilinéaires symétriques et formes quadratiques 1.1. Formes bilinéaires symétriques

Plus en détail

Espaces vectoriels. Soit E un ensemble muni d une opération d addition notée + et d une opération de multiplication par

Espaces vectoriels. Soit E un ensemble muni d une opération d addition notée + et d une opération de multiplication par Algèbre : Chapitre 1 Espaces vectoriels Dans ce chapitre nous allons étudier des ensembles qui ont des propriétés particulières et que nous allons appeler espaces vectoriels. Tous les ensembles dont nous

Plus en détail

Chapitre 5. Applications linéaires et. 5.1 Applications linéaires Définitions

Chapitre 5. Applications linéaires et. 5.1 Applications linéaires Définitions Chapitre 5 Applications linéaires et géométrie On rappelle qu un espace vectoriel est une structure qui permet d écrire des combinaisons linéaires de vecteurs ; les coefficients peuvent être réels ou complexes

Plus en détail

Chapitre V. Chapitre V : Bases et dimension

Chapitre V. Chapitre V : Bases et dimension Chapitre V Chapitre V : Bases et dimension Introduction On avait vu au Chapitre IV qu une base pour un espace vectoriel V est une partie à la fois libre et génératrice de V. Les bases constituent un outils

Plus en détail

4 Base & dimension d un espace vectoriel

4 Base & dimension d un espace vectoriel 4 Base & dimension d un espace vectoriel Famille génératrice Une famille finie F = (e e... e n ) de vecteurs d un espace vectoriel E est dite génératrice si E = e e... e n, c est-à-dire si tout vecteur

Plus en détail

MATRICES. 1. Définition. 2. Matrices carrées particulières. ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K)

MATRICES. 1. Définition. 2. Matrices carrées particulières. ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K) 21-10- 2007 JFC Mat p 1 MATRICES I GÉNÉRALITÉS 1 Définitions 2 Matrices carrées particulières II ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K) 1 Structure d espace vectoriel de M n,p (K) 2 Base canonique

Plus en détail

Feuille 3 : Espaces vectoriels et sous espaces vectoriels

Feuille 3 : Espaces vectoriels et sous espaces vectoriels Feuille : Espaces vectoriels et sous espaces vectoriels Eercice. (Sous-espace vectoriels de R. Les sous-ensembles suivants de R sont ils des sous-espaces vectoriels? Faire des dessins!. {(, R + = }.. {(,

Plus en détail

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2.

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Chapitre 3 Les angles 3.1 Angles orientés de vecteurs du plan 3.1.1 Groupe des rotations Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Définition 3.1 On appelle

Plus en détail

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées.

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées. 0 0 3 3 EXERCICE Soit les matrices A = et B = 2 3 0 0. Calculer le déterminant de A. En déduire le rang de cette matrice. 0 0 0 Dét(A) = dét = dét 0 0 car (propriété P ) le déterminant d une matrice ne

Plus en détail

Fonctions de plusieurs variables : calcul différentiel On parle parfois de dérivée partielle première.

Fonctions de plusieurs variables : calcul différentiel On parle parfois de dérivée partielle première. Fonctions de plusieurs variables : calcul différentiel 13-1 Sommaire 1 Fonctions R p R, Dérivées Premières 1 11 Application de classe C 1 sur U 1 12 Différentielle 2 13 Développement limité à l ordre 1

Plus en détail

Déterminants. Chapitre 23. Objectifs. Plan

Déterminants. Chapitre 23. Objectifs. Plan Chapitre 23 Déterminants Objectifs Étudier le groupe des permutations de [[1n]] Définir les notions : de cycles, de transpositions, de décomposition en produit de cylces, de signature Définir les notions

Plus en détail

Systèmes linéaires et échelonnement

Systèmes linéaires et échelonnement Systèmes linéaires et échelonnement 1 Systèmes linéaires, résolution de systèmes échelonnés. 1 1.1 Équations linéaires........................................... 1 1.2 Systèmes linéaires...........................................

Plus en détail

Devoir 1 pour le 12 Mars Corrigé

Devoir 1 pour le 12 Mars Corrigé Université Claude Bernard Lon 27-2 L2 MASS4 Algèbre Devoir pour le 2 Mars Corrigé Eercice Soit B (e, e 2, e 3 ) une base de R 3. Soit f L(R 3 ) tel que mat B (f). Déterminons Kerf Soit X R 3. 9 3 X Kerf

Plus en détail

1. Déterminant d une matrice carrée

1. Déterminant d une matrice carrée Déterminants 2-1 Sommaire 1. Déterminant d une matrice carrée 1 1.1. Déterminant d une matrice carrée A.. 1 1.2. Interprétation en dimensions 2 et 3... 2 1.3. Propriétés élémentaires.......... 2 1.4. Déterminant

Plus en détail

3. SYSTEMES LINEAIRES

3. SYSTEMES LINEAIRES 3 SYSTEMES LINEAIRES 31 Définition Un système linéaire est un ensemble de m équations linéaires à n variables Il a la forme générale suivante : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x

Plus en détail

j=1 ( 1) 1+j a 1j deta j On dit qu on développe le déterminant ( ) suivant la première ligne de A. a11, a En particulier, si n = 2, dét 12

j=1 ( 1) 1+j a 1j deta j On dit qu on développe le déterminant ( ) suivant la première ligne de A. a11, a En particulier, si n = 2, dét 12 Déterminants 1 Définition Soit A = (a ij ) 1 i,j n une matrice carrée d ordre n Le déterminant est une application dét: Mat n (K) K défini par récurrence sur n de façon suivante: - Si n = 1, det(a 11 )

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Calculer les déterminants suivants : a b c d, 3a 3b c d, 4 2 3 0 3 4 0 0 5, 4 2 3 0 1 2 4 1 2, 4 3 2 0 2 1 4 2 1, 1 2 2 3 1 1

Plus en détail

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets ENSI 98 - Filière MP - MATHÉMATIQUES 2 Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets PARTIE I - CONSTRUCTION D UNE MATRICE INVERSE A GAUCHE On suppose dans cette partie que

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 5 : Espaces euclidiens ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 5 Espaces Euclidiens et applications 5.1 Produit scalaire, norme, espace euclidien....................

Plus en détail

Espaces vectoriels euclidiens. () Espaces vectoriels euclidiens 1 / 40

Espaces vectoriels euclidiens. () Espaces vectoriels euclidiens 1 / 40 Espaces vectoriels euclidiens () Espaces vectoriels euclidiens 1 / 40 1 Produit scalaire, norme, espace euclidien 2 Orthogonalité Dans tout ce cours, E désigne un R espace vectoriel. () Espaces vectoriels

Plus en détail

Matrices et applications linéaires

Matrices et applications linéaires Matrices et applications linéaires Vidéo partie Rang d'une famille de vecteurs Vidéo partie Applications linéaires en dimension finie Vidéo partie Matrice d'une application linéaire Vidéo partie 4 Changement

Plus en détail

Espaces vectoriels. I Espaces vectoriels. λ x = 0 E λ = 0 ou x = 0 E. (λ x 1,λ x 2,...,λ x n )

Espaces vectoriels. I Espaces vectoriels. λ x = 0 E λ = 0 ou x = 0 E. (λ x 1,λ x 2,...,λ x n ) Espaces vectoriels Notations du chapitre Dans ce chapitre désigne ou. I Espaces vectoriels Propriété 1.2 Soit E un espace vectoriel. 1) Pour tout vecteur x de E : 0. x = 0 E. 2) Pour tout scalaire λ :

Plus en détail

Dimension des espaces vectoriels. () Dimension des espaces vectoriels 1 / 36

Dimension des espaces vectoriels. () Dimension des espaces vectoriels 1 / 36 Dimension des espaces vectoriels () Dimension des espaces vectoriels 1 / 36 1 Familles libres, génératrices et bases 2 Espaces vectoriels de dimension finie 3 Sous-espaces vectoriel de dimension finie

Plus en détail

ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé December 5, 2008 Table des Matières Espaces euclidiens Orthogonalité - Espaces euclidiens..............................

Plus en détail

7. Base et dimension

7. Base et dimension 7. Base et dimension Sections 3.5 et 3.6 MTH1007 J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2017 (v1) MTH1007: algèbre linéaire 1/17 Plan 1. Indépendance, base et dimension

Plus en détail

Déterminants. Théorème 3 On suppose que F est une somme directe de n sous-espaces vectoriels F i. Alors. i=1

Déterminants. Théorème 3 On suppose que F est une somme directe de n sous-espaces vectoriels F i. Alors. i=1 Déterminants Dans tout le chapitre, K représente un corps commutatif 1 Applications et formes multilinéaires Soient E 1,, E p et F des espaces vectoriels sur K et ϕ une application de E 1 E p dans F Définition

Plus en détail

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier Calcul matriciel Dans ce qui suit, K désigne R ou C. 1 Petite visite au zoo matriciel 1.1 matrices générales notion de matrice : une matrice à coefficients dans K est une liste d éléments de K disposés

Plus en détail

Géométrie dans l espace à trois dimensions

Géométrie dans l espace à trois dimensions Géométrie dans l espace à trois dimensions Prof. Vladimir Roubtsov vladimir.roubtsov@univ-angers.fr 4 février 2016 1. Vecteurs Soit E 3 l espace à trois dimensions. En tant qu ensemble, il s agit de R

Plus en détail

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc :

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof A Abdulle EPFL Série 7 Corrigé Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : a b c 3 1 0 4 1 2 1 1 2 2 1 1 2 1

Plus en détail

MAT 1200: Introduction à l algèbre linéaire

MAT 1200: Introduction à l algèbre linéaire MAT 1200: Introduction à l algèbre linéaire Saïd EL MORCHID Département de Mathématiques et de Statistique Chapitre 4: Les espaces vectoriels Références Espaces vectoriels s Exemples Théorème Sous-espaces

Plus en détail

Plan du cours d algèbre

Plan du cours d algèbre Plan du cours d algèbre Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Semaine 1 Espaces vectoriels réels Applications s Semaine 2 Produit scalaire, projections, interprétations géométriques Réductions

Plus en détail

L espace vectoriel n. 1. Vecteurs de n Opérations sur les vecteurs

L espace vectoriel n. 1. Vecteurs de n Opérations sur les vecteurs L espace vectoriel n Vidéo partie Vecteurs de n Vidéo partie Eemples d'applications linéaires Vidéo partie Propriétés des applications linéaires Ce chapitre est consacré à l ensemble n vu comme espace

Plus en détail

Chapitre VIII Calcul matriciel

Chapitre VIII Calcul matriciel Chapitre VIII Calcul matriciel Dans ce cours, désigne, ou un corps commutatif quelconque. I Matrices et applications Les matrices sont un outil de calcul et de représentation des applications linéaires.

Plus en détail

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22...

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22... Chapitre 3 Matrices 1 Définitions et généralités Définition 11 Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a 12 a 1q a 21 a 22 a 2q A a p1 a p2 a ps Les coefficients a ij,

Plus en détail

Matrices antisymétriques

Matrices antisymétriques [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1 Matrices antisymétriques Exercice 1 [ 02503 ] [Correction] Soit M M n (R) telle que M + t M soit nilpotente. Montrer que M est antisymétrique.

Plus en détail

Exercices corrigés. Exercice 6 Considérons les vecteurs de R 4 suivants : 1 e 1 = 1 1, e 2 = 1. , e 4 = 2, e 3 = 1 1

Exercices corrigés. Exercice 6 Considérons les vecteurs de R 4 suivants : 1 e 1 = 1 1, e 2 = 1. , e 4 = 2, e 3 = 1 1 Eercices corrigés Algèbre linéaire Enoncés Eercice On rappelle que (E, +, est un K-espace vectoriel si (I (E, + est un groupe commutatif ; (II-, y E, α K, α ( + y = α + α y ; (II- E, α, β K, (α + β = α

Plus en détail

MAT 1200: Introduction à l algèbre linéaire

MAT 1200: Introduction à l algèbre linéaire MAT 1200: Introduction à l algèbre linéaire Saïd EL MORCHID Département de Mathématiques et de Statistique Chapitre 6: Les transformations linéaires (partie 2) Références Définitions-Exemples Définitions

Plus en détail

Montrer qu il s agit d un produit scalaire, et trouver une base orthogonale pour ce produit scalaire. (x e k ).e k

Montrer qu il s agit d un produit scalaire, et trouver une base orthogonale pour ce produit scalaire. (x e k ).e k Ex 1 Facile Soit un espace préhilbertien réel E et deux vecteurs x,y E. a) Développer l expression y 2.x (x y).y b) Retrouver l inégalité de Cauchy-Schwarz ainsi que le cas d égalité. Ex 2 Cours, à faire

Plus en détail

Indépendance linéaire Bases Dimension

Indépendance linéaire Bases Dimension Indépendance linéaire Bases Dimension Combinaison linéaire Définition Dans l espace vectoriel V le vecteur w est combinaison linaire des vecteurs v, v,, v r, s il existe des scalaires k, k,, k r tels que

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Donner une base de M 2 (R) qui soit formée de matrices inversibles Exercice 2 [ Indication ] [ Correction ] 1 a 0 0 0 1 a 0 Calculer

Plus en détail

Contrôle continu - 5 décembre 2011

Contrôle continu - 5 décembre 2011 Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Contrôle continu - décembre 011 Le sujet comporte 1 page. L épreuve dure 1 heure 30. Les documents, calculatrices et téléphones portables sont

Plus en détail

Matrices. 1 Structure d espace vectoriel sur l ensemble des matrices

Matrices. 1 Structure d espace vectoriel sur l ensemble des matrices Matrices Structure d espace vectoriel sur l ensemble des matrices Soient K un corps (i.e. R où C), m,n N. Une matrice de type (m,n) à coefficients dans K est la donnée de mn éléments de K. On représentera

Plus en détail

Méthode. Montrer qu une famille est libre. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Méthode. Montrer qu une famille est libre. Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS DE DIMENSION FINIE 1 Familles de vecteurs 1.1 Opérations sur une famille engendrant un sous-espace vectoriel Lemme 1.1 Soient E un K-espace vectoriel, A et B deux parties de E. Alors

Plus en détail

Exercices Corrigés Applications linéaires. Exercice 1 On considère l application linéaire :

Exercices Corrigés Applications linéaires. Exercice 1 On considère l application linéaire : Exercices Corrigés Applications linéaires Exercice 1 On considère l application linéaire : f : R 4 R 2, x 1, x 2, x 3, x 4 x 1 + x 2 + x 3 + x 4, x 1 + 2x 2 + 3x 3 + 4x 4 1 Quelle est la matrice de f dans

Plus en détail

Orsay IFIPS S2 Mathématiques (M160). Table des matières

Orsay IFIPS S2 Mathématiques (M160). Table des matières Orsay 2008-2009 IFIPS S2 Mathématiques (M60). COURS DE MATHÉMATIQUES : ALGÈBRE LINÉAIRE III. Table des matières. Opérations sur les matrices... Somme..2. Produit par un réel. 2.3. Produit de deux matrices.

Plus en détail

Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications

Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications 16 Orientation d un espace euclidien de dimension 3. Produit mixte, produit vectoriel. Applications E est un espace euclidien voir le chapitre 15 pour des rappels). 16.1 Orientation d un espace euclidien

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Corrigé du Devoir 4 MT23 - Printemps 2008

Corrigé du Devoir 4 MT23 - Printemps 2008 Corrigé du Devoir 4 MT - Printemps 8 Eercice de TD n Soit E un espace euclidien et, E.. On a () + = +, + =, +, +,, () =, =, +, +, =,, +,. Donc, + = + = puisqu une norme est toujours positive ou nulle,

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université de Nice SL2M 2009-10 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère l ensemble

Plus en détail

Problèmes de Mathématiques Matrices et carrés magiques

Problèmes de Mathématiques Matrices et carrés magiques Dans tout le problème, n est un entier supérieur ou égal à 2. On désigne par M n (IR) l algèbre des matrices carrées d ordre n à coefficients réels. Pour tout A de M n (IR), on note a ij le coefficient

Plus en détail

Module Complémentaire Poursuites études

Module Complémentaire Poursuites études 1/39 Diagonalisation Suites numériques Series Intégrales curvilignes Intégrales de surface Module Complémentaire Poursuites études Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/

Plus en détail

Compléments d algèbre linéaire

Compléments d algèbre linéaire Chapitre Compléments d algèbre linéaire Le physicien et mathématicien anglais John William Strutt, baron de Rayleigh, élabore une théorie mathématique de l optique et des systèmes vibratoires. Par la suite

Plus en détail

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année Calcul matriciel Bernard Ycart Ce chapitre est essentiellement technique

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application Chapitre X Chapitre X : Matrice inverse et réciproque d une application Introduction Dans ce chapitre, on fera le lien entre la matrice d une application linéaire et l inverse d une matrice (notion vue

Plus en détail

Systèmes d équations linéaires, Résumé

Systèmes d équations linéaires, Résumé Systèmes d équations linéaires, Résumé ycée Berthollet, PCSI1 2016-17 Exemple introductif (fil rouge) Exemple 1 On considère le système suivant : (S) x +2y 2z +3t = 2 2x +4y 3z +4t = 5 5x +10y 8z +11t

Plus en détail

Résumé 01 : Algèbre Linéaire (I)

Résumé 01 : Algèbre Linéaire (I) http://mpbertholletwordpresscom Résumé 1 : Algèbre Linéaire (I) Dans tout ce chapitre, K sera le corps R ou C, et E sera un espace vectoriel sur K Vous remarquerez les grandes similitudes qui existent

Plus en détail

M = b d. a b ou M =. b a

M = b d. a b ou M =. b a Ce texte est extrait du cours optionnel de géométrie de l année universitaire 1999/2000. B.Ingrao Étude du groupe orthogonal dans le cas du plan. Dans ce qui suit, l espace est de dimension 2 ; en conséquence

Plus en détail

Les ensembles de solutions des systèmes linéaires Algèbre linéaire I MATH 1057 F

Les ensembles de solutions des systèmes linéaires Algèbre linéaire I MATH 1057 F Les ensembles de solutions des systèmes linéaires Algèbre linéaire I MATH 157 F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne Sudbury, 16 janvier 211 Les systèmes

Plus en détail

PROBLÈME 1 - Un calcul d intégrale Partie I - Une intégrale auxiliaire

PROBLÈME 1 - Un calcul d intégrale Partie I - Une intégrale auxiliaire PCSI 03-0 CORRECTION DS n 0 Lycée de L essouriau PROBLÈME - Un calcul d intégrale Partie I - Une intégrale auiliaire Soit g la fonction définie pour tout t ]0, [ par g(t = ln t t ln t g est continue sur

Plus en détail

TD-COURS 5 REVISIONS D ALGÈBRE 2 : MATRICES

TD-COURS 5 REVISIONS D ALGÈBRE 2 : MATRICES 22-10- 2011 JFC Mat p 1 TD-COURS 5 REVISIONS D ALGÈBRE 2 : MATRICES 2011-2012 LES NOTIONS Généralités (définition, matrices particulières) Opérations sur les matrices Matrice d une application linéaire

Plus en détail

Résumé 02 : Matrices & Déterminants

Résumé 02 : Matrices & Déterminants http://mpbertholletwordpresscom Résumé 02 : Matrices & Déterminants Dans tout ce chapitre, K sera le corps R ou C 1 LES BASES 1 L opérateur L A Toute application linéaire de R p dans R n est l application

Plus en détail

Ecricome 2008 Correction

Ecricome 2008 Correction Ecricome 2008 Correction Exercice 1 + 2 2, = 2 4 + 3 =,, réels} 1. 0,0 =, donc. Soit,. On peut écrire 1 0 0 2 1 2, = 0 1 0 + 2 1 4 0 0 1 1 1 3 1 0 0 L ensemble apparaît comme l ensemble des combinaisons

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1.1) Famille génératrice (rappel) Exemple 1 On considère par exemple l'espace vectoriel R² et les vecteurs 1,1, 1, et,3. Soit un élément quelconque de R²,,. Peut-on

Plus en détail

Examen d algèbre. L1S2. Licences PSI.

Examen d algèbre. L1S2. Licences PSI. VERSION A Examen d algèbre. LS2. Licences PSI. Nom, prénom, groupe : Consignes (à lire absolument). Tout document et appareil électronique (notamment votre téléphone portable) doivent rester dans votre

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

Résumé de Math Sup : Matrices

Résumé de Math Sup : Matrices Résumé de Math Sup : Matrices I - Opérations dans M n,p (K) Une matrice à n lignes et p colonnes (n et p entiers naturels non nuls) est une application de 1, n 1, p dans K qui à un couple d indices (i,

Plus en détail

Matrice et espaces vectoriel de dimension finies MPSI

Matrice et espaces vectoriel de dimension finies MPSI Matrice et espaces vectoriel de dimension finies MPSI 27 mai 2008 Table des matières 1 Matrice 3 1.1 Définition............................. 3 1.2 Matrice carrée........................... 3 1.3 Vecteur

Plus en détail

Table des matières. Cours PCSI ( ) Les matrices Lycée Baimbridge

Table des matières. Cours PCSI ( ) Les matrices Lycée Baimbridge Table des matières Introduction...2 I- Opérations sur les matrices...3 1- s et ensembles de matrices...3 2- Structure d'espace vectoriel de Mnp(K)...4 a- Somme de deux matrices de même dimension...4 b-

Plus en détail

Eléments de calcul matriciel

Eléments de calcul matriciel Eléments de calcul matriciel Définition et propriétés des matrices Définition Une matrice (l x c) (lire l croix c) est un ensemble de l fois c nombres, réels ou complexes, regroupés sous la forme d un

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉTERMINANTS Dans tout ce chapitre, n désigne un entier naturel non nul. 1 Groupe symétrique 1.1 Permutation Définition 1.1 Permutation, groupe symétrique On appelle permutation de 1, n toute bijection

Plus en détail

CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1

CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1 CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1 Déterminer les matrices élargies des systèmes S1, S2, S5 et S6 du chapitre précédent. La matrice élargie

Plus en détail

La caractérisation des matrices inversibles Algèbre linéaire I MATH 1057 F

La caractérisation des matrices inversibles Algèbre linéaire I MATH 1057 F La caractérisation des matrices inversibles Algèbre linéaire I MATH 1057 F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne Sudbury, 31 janvier 2012 Le théorème de

Plus en détail

La distance euclidienne d dans E est définie par d(x, y) = x y. Le produit scalaire est déterminé par la norme associée:

La distance euclidienne d dans E est définie par d(x, y) = x y. Le produit scalaire est déterminé par la norme associée: 2 Produit scalaire Espaces Euclidiens 21 Soit E un R-espace vectoriel Un produit scalaire dans E est une forme bilinéaire symétrique définie positive, noté La norme associée est définie par x 2 =

Plus en détail

DÉTERMINANTS I. Déterminant d une matrice carrée

DÉTERMINANTS I. Déterminant d une matrice carrée DÉTERMINANTS I Déterminant d une matrice carrée a Définition Proposition admise) et définition Il existe une unique application f : M n IK) IK vérifiant les trois propriétés suivantes : 1): fi n ) = 1

Plus en détail

Formes bilinéaires et quadratiques

Formes bilinéaires et quadratiques Formes bilinéaires et quadratiques 0 Prolégomènes Caractéristique d un corps Si K, +, est un corps commutatif, alors l application ϕ : n n K, où K est l élément neutre de K pour le produit, est un morphisme

Plus en détail