Nous considérons une petite portion de paroi de surface S. La pression est le quotient de l intensité moyenne de cette force par la surface S :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Nous considérons une petite portion de paroi de surface S. La pression est le quotient de l intensité moyenne de cette force par la surface S :"

Transcription

1 Comlémen VI. age /v Presson cnéque Nous allons rerendre le calcul de la resson cnéque en consdéran un modèle mons smlse que celu du chare VI. C es-à-dre en ne smlfan as l agaon moléculare. Nous commençons ar raeler l nerréaon cnéque qualave de la resson. Pus nous ermons la resson en foncon de la force ressane moyenne sube ar une ee oron de aro. Cee force moyenne se dédu de la force eercée ar chaque molécule au cours d un choc. Ce calcul ulse la lo des acons récroques e la lo fondamenale de la Dynamque. Le choc es suosé élasque ce qu erme d ermer les varaons des quanés de mouvemen des molécules au cours des chocs. Le décome des chocs condu fnalemen { l eresson de la resson cnéque. Ce comlémen s achève sur deu remarques concernan d une ar l hyohèse du choc élasque e d aure ar les hénomènes hysques qu se déroulen lors de l neracon d une molécule avec la aro. 1. Inerréaon cnéque Rerenons l nerréaon cnéque de la resson : Elle es engendrée ar la force eercée sur la aro ar les molécules au momen des chocs. Ils son à la fos rès nombreu e rrégulers à cause de l agaon moléculare. La resson observée es donc due à la moyenne au cours du ems de cee force. gaz aro de surface S ' Fgure 1: Un aerçu de l agaon moléculare. Nous consdérons une ee oron de aro de surface S. La resson es le quoen de l nensé moyenne de cee force ar la surface S : F molécules/aro S L eérence monre que cee force moyenne es erendculare { la aro. Donc cee moyenne es égale à sa comosane normale :

2 Comlémen VI. age /v F molécules/aro S. Eresson de la force ressane moyenne La comosane F molécules/aro de la force oale eercée ar les molécules sur la aro es une foncon du ems égale à la somme des comosanes f molécule/aro des forces eercées ar chaque choc sur la aro. Sa moyenne sur l nervalle de ems Δ es l négrale de cee foncon dvsée ar la durée Δ : 1 1 F F ( ) d f ( ) d molécules/aro 1 L négrale d une somme es égale { la somme des négrales. De lus chaque force f () eercée ar une molécule sur la aro es nulle en dehors de la brève durée Δ choc du choc : 1 choc f() d S 1 Pour calculer la ème négrale, nous allons éuder le ème choc. 3. Eude du ème choc a) Lo des neracons récroques f() Fgure : L nensé de l neracon molécule-aro. Pour évaluer la force f () nous allons d abord éuder le choc d une molécule sur la aro. D arès la lo des neracons récroques, la force eercée ar une molécule sur la aro es l oosée de la force eercée ar la aro sur la molécule : f f molécule/aro aro/molécule

3 Comlémen VI. age /v b) Lo fondamenale de la Dynamque D arès la lo fondamenale de la Dynamque, cee force es égale à la dérvée de la quané de mouvemen de la molécule : f () aro/molécule d molécule d Nous en dédusons l négrale concernan le ème choc : choc f () d mv aro/molécule molécule molécule Seule nous néresse la comosane normale : choc f () d mv mv mv aro/molécule molécule molécule arès avan c) Hyohèse du choc élasque Nous fasons l hyohèse que le choc es élasque c es-à-dre que la molécule es réfléche ar la aro. Seules nous néressen les comosanes normales : v v v arès avan Nous avons noé v la comosane de la vesse avan le choc our alléger les noaons. Vor fgure 3 c-arès. y v avan v avan v y avan v arès = - v avan ' v y arès = + v y avan v arès y' Fgure 3 : Le choc élasque d une molécule conre la aro. D où la varaon de la quané de mouvemen : mv mv m v m v mv arès avan choc choc f ( ) d mv aro/molécule f ( ) d mv molécule/aro

4 Comlémen VI. age v/v La resson se récr donc : 1 choc 1 1 S 1 f ( ) d mv S 4. Décome des chocs à la vesse normale v Nous allons regrouer ous les ermes de la somme concernan une même valeur v de la comosane normale de la vesse : chocs à v 1 S valeurs de v mv N mv S Nous cherchons donc le nombre de chocs effecués à la vesse v de comosane v donnée enre deu nsans de daes e + Δ. Les molécules qu choquen la aro { l nsan de dae se rouven sur la aro { ce nsan. E les molécules qu choqueron la aro { l nsan de dae + Δ se rouven sur la secon S suée à la dsance v Δ de la aro. Vor fgure 4 c-arès. Donc les molécules qu heuren la aro enre les nsans de daes e + Δ se rouven à l nsan de dae dans un cylndre de base S e de haueur v Δ c es-à-dre de volume 1 S v Δ. gaz secon S' aro de surface S dsance v Fgure 4 : Décome des molécules de veceur-vesse v de comosane v donnée. Lorsqu on change de veceur-vesse v sans changer de comosane v le cylndre change d nclnason mas garde le même volume. Il suff donc de muller ce volume ar la densé arculare n,v des molécules ayan cee comosane de vesse v, our obenr le nombre de chocs : 1 Volume d un cylndre = surface de base haueur (mesurée erendcularemen au bases).

5 Comlémen VI. age v/v N n Sv chocs à v v 5. Concluson La resson se récr donc : N mv n Sv mv m n v S chocs à v v v valeurs de v S valeurs de v valeurs de v La dernère somme eu s écrre en foncon de la moyenne du carré de la comosane normale de la vesse e de la densé arculare n mas en se lman au valeurs osves car les molécules séleconnées se drgen vers la aro : valeurs de v n v n v v v 0 Or { cause de l soroe de la dsrbuon des vesses : v v C 6 v 0 Donc la resson se récr : Fnalemen : 1 n m v n m C 6 v 0 1 n mc 3 Nous rerouvons l eresson de la resson cnéque. Deu remarques :. L hyohèse du choc élasque n es en fa as nécessare (mas smlfe, un eu, les calculs) car les chocs dans un gaz { l équlbre hermodynamque ne modfen as en moyenne la réaron des vesses. Donc la somme des comosanes normales des quanés de mouvemen arès les chocs es l oosée de la somme des comosanes normales des quanés de mouvemen avan les chocs.. En réalé la molécule nerag avec la aro grâce à une adsoron (elle se fe sur la aro) suve d une désoron (elle que la aro). La varaon de quané de mouvemen a donc leu en deu ems, de la vesse v avan à la vesse nulle us de la vesse nulle à la vesse v arès.

TD 2 Cinétique chimique

TD 2 Cinétique chimique TD Cnéque chmque Exercce Oxydaon de l ammonac L ammonac peu s oxyder ; l équaon sœchomérque de la réacon peu s écrre : 4 NH + 5 O NO + 6 H O S a un momen donné, l ammonac dsparaî à la vesse de, mol.l -.s

Plus en détail

Interaction d un système quantique à deux états avec des ondes électromagnétiques

Interaction d un système quantique à deux états avec des ondes électromagnétiques Ineracon d un sysème quanque à deux éas avec des ondes élecromagnéques Exemple de l ammonac NH 3 - Influence d un champ élecrque saque sur les nveaux d énerge. - Influence d un champ élecrque nhomogène

Plus en détail

Chapitre 2. Le mouvement rectiligne

Chapitre 2. Le mouvement rectiligne Chapre Le mouvemen reclgne Objec nermédare 1. Employer les équaons du mouvemen reclgne unormémen accéléré (m.r.u.a.) à un corps lbre ou en chue lbre. Vesse moyenne La vesse moyenne v 1 (enre 1 e ) es déne

Plus en détail

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE LECON & : LES CRCS A CORAN ALERNAF MONOPHASE LES CRCS A CORAN ALERNAF MONOPHASE - Dfférens formes de courans (e de enson Dans l'ensemble des formes de courans, nous pouvons effecuer une premère paron :

Plus en détail

Chapitre 1.14 L intégrale en cinématique

Chapitre 1.14 L intégrale en cinématique Chapre.4 L négrale en cnémaque L négrale En mahémaque, on éfn l négrale une foncon f ( el que F( f ( e '( ( F F où F ( es la foncon qu onne la valeur e l are sous la courbe e la foncon f ( ans l nervalle

Plus en détail

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur :

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur : Formulare d élecrcé Pons de cours Condensaeur Explcaons ou ulsaons Un condensaeur es composé de deux armaures méallques séparé par un solan appelé délecrque. S une armaure se charge posvemen, l aure es

Plus en détail

Décomposition d une fraction rationnelle en éléments simples

Décomposition d une fraction rationnelle en éléments simples Décomposon d une fracon raonnelle en élémens smples I Premère éape Dvson eucldenne de polynômes On rappelle que procéder à la dvson eucldenne d un polynôme A par un polynôme B non nul, c es écrre A BQ

Plus en détail

DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE

DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE.- Hamlonen de spn On consdère une parcule de spn placée dans un champ magnéque saque B Bu e un champ ournan à la vesse angulare

Plus en détail

Chapitre 1.1a Les oscillations

Chapitre 1.1a Les oscillations Chapre 1.1a Les oscllaons La cnémaque La cnémaque es l éue u mouvemen un obje en foncon u emps. Pour ce fare, nous avons recours au conceps e poson, vesse e accéléraon : Poson : ( uné : m Vesse : v ( uné

Plus en détail

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les L essenel du cours proposé par Mahmoud Gazzah Le condensaeur, le dpôle Descrpon sommare d un condensaeur Défnon e symbole : Un condensaeur es consué de deux armaures méallques séparées par un solan appelé

Plus en détail

Licence Science de la Mer et de l Environnement. Physique Générale

Licence Science de la Mer et de l Environnement. Physique Générale Licence Science de la er e de l Enironnemen Physique Générale Chaire 9 :Dilaaion des gaz Raels mahémaiques : les dériées arielles Quand une foncion déend de lusieurs ariables, ar exemle f( x, x2, x3,...

Plus en détail

Chapitre 3.10 L impulsion et la conservation de la quantité de mouvement

Chapitre 3.10 L impulsion et la conservation de la quantité de mouvement Chapre 3.10 L pulson e la conseraon de la quané de oueen L pulson d une orce consane L pulson correspond au ranser de quané de oueen causé par une orce F applquée duran un neralle de eps : J F J F où J

Plus en détail

Laboratoire génie électrique 3Stech Série d exercices N 8 Moteur pas à pas Page 1 /10

Laboratoire génie électrique 3Stech Série d exercices N 8 Moteur pas à pas Page 1 /10 Laboraore géne élecrque ech ére d exercces Moeur pas à pas Page /0 Exercce Un moeur pas à pas à aman permanen ayan les caracérsques suvanes : phases au saor, deux pôles au roor, sa commuaon es bdreconnelle

Plus en détail

Régimes transitoires

Régimes transitoires ÉLECTOCINÉTIQUE chapre 3 égmes ransores En régme connu, les composanes capacves e nducves d un crcu son analogues respecvemen à un crcu ouver e à un cour-crcu. Elles n on donc aucun nérê. Cependan, s un

Plus en détail

Nombres premiers et décomposition primaire

Nombres premiers et décomposition primaire [htt://m.cgeduuydelome.fr] édté le 10 jullet 2014 Enoncés 1 ombres remers et décomoston rmare Exercce 1 [ 01219 ] [correcton] Montrer que les nombres suvants sont comosés : a) 4n 3 + 6n 2 + 4n + 1 avec

Plus en détail

TD2 Ener3 Exercices : hacheurs

TD2 Ener3 Exercices : hacheurs Exercces : hacheurs 1 217-218 Hacheur quare quadrans Une machne à couran connu es almenée par le conversseur don le schéma es représené cdessous. Les ordres d'ouverures e de fermeures des nerrupeurs commandés

Plus en détail

CORRECTION DU BAC BLANC 2015

CORRECTION DU BAC BLANC 2015 CORRECTION DU BAC BLANC 05 EXERCICE I (8 oins). Durée de isibilié de la fusée (4,5s) (0,5 g e rajecoire ).. Figure : Trajecoire de la fusée éclairane g.. On éudie le ssème comosé de la fusée éclairane

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

Techniques d extensométrie

Techniques d extensométrie TRAVAUX PRATIQUES DE DIMENSIONNEMENT DES STRUCTURES Technques d eensoére TP n 1 : Module d Young e Coeffcen de Posson TP n 1 : Module d Young e coeffcen de conranes 1 Module d Young e coeffcen de Posson

Plus en détail

AUTO INDUCTION ET BOBINES

AUTO INDUCTION ET BOBINES AUT INDUCTIN T BBINS I ) Inducon ) Mse en évdence du phénomène d'nducon e phénomène d nducon es l apparon d un couran élecrque à l néreur d un crcu ne comporan pas de généraeur. N S orsqu'on déplace un

Plus en détail

Courant continu et courants alternatifs

Courant continu et courants alternatifs Classe : 2ME BEP Méers de l élecroechnque Couran connu e couran alernaf Leu : Salle de cours & salle de mesures Objecf Dfférencer les caracérsques d un couran connu e d un couran alernaf,. Savors : S.2

Plus en détail

3. Potentiel et énergie

3. Potentiel et énergie 3. Poenel e énerge élecrosques ercce Poenel élecrque créé r une dsrbuon cubque de chrges oncuelles On consdère hu chrges oncuelles lcées u sommes d'un cube d'rêe (vor l fgure ).. Déermner le oenel élecrosque

Plus en détail

Chapitre 3.11a Les collisions élastiques frontales

Chapitre 3.11a Les collisions élastiques frontales Chatre.a Les collsons élastques rontales Les los de conseraton dans une collson élastque en une denson Chaque lo hysque nous aorte une équaton qu eut être utlsée our résoudre un roblèe. Dans le cas d une

Plus en détail

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression Modélsaon e smulaon de l hydroformage de lners méallques pour le sockage d hydrogène sous haue presson J.C. Geln, C. Labergère,. Boudeau, S. Thbaud Insu FEMTO-ST, Déparemen Laboraore de Mécanque Applquée

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

Correction examen Automates

Correction examen Automates Coecon exmen Auomes 011-01 1e jun 01 - heues Les documens son neds. Les execces son ndéendns. On ou dmee l éonse à une ueson ou sse à l ueson suvne. Execce 1. 1. Clcule l uome mnml du lngge comlémene de

Plus en détail

RESOLUTiON DE L'EQUATiON DU 2ème DEGRE. Calculer le discriminant Δ : Δ = 0. 1 solution double : compléter l'équation d'après l'énoncé

RESOLUTiON DE L'EQUATiON DU 2ème DEGRE. Calculer le discriminant Δ : Δ = 0. 1 solution double : compléter l'équation d'après l'énoncé a b c Δ 0 x 1 - b + Δ x - b - Δ x 1 x - b x - 4 x + 4 0 a 1 b -4 c 4 Δ ( -4 ) - 4 x ( 1 ) x ( 4 ) Δ 16 Δ 0-16 Δ 0 donc 1 solution double x1 x -( -4 ) x ( 1 ) x1 x 4 x1 x a b c Δ 0 x 1 - b + Δ x - b - Δ

Plus en détail

t = effectif de la partie 100 effectif total

t = effectif de la partie 100 effectif total Chapre I : Pourcenages Exra du programme : - Coecen mulplca assocé à un pourcenage - Iéraon de pourcenages - Analyse des varaons de pourcenages - Comparason de pourcenage - Approxmaon lnéare dans le cas

Plus en détail

Chapitre 1 Convertisseurs alternatif/continu

Chapitre 1 Convertisseurs alternatif/continu Lycée La Fayee Page CPGE AS cours de scences ndusrelles géne élecrque Chapre Conversseurs alernaf/connu. GENERALIES n conversseur alernaf/connu perme d almener une arge sous une enson connue évenuellemen

Plus en détail

Le Principe de PASCAL

Le Principe de PASCAL Hydraulique LES LOIS D HYDROSTATIQUE N 1/8 LA FORCE. On appelle FORCE oue acion qui end à modifier l éa d un corps. Elle s exprime en NEWTON (symbole N). La force es définie par son sens, son inensié,

Plus en détail

Chapitre 10 Les systèmes de particules

Chapitre 10 Les systèmes de particules 0.0 Introducton. Chaptre 0 Les systèmes de partcules Dans l expérence sur les collsons vous avez constaté que le centre de masse du système se déplace en lgne drote à vtesse constante. Pourquo? Parce que

Plus en détail

PRODUITS DE TAUX D INTERET Modèles de marché ENSAE - DEA MASE Université Paris IX Dauphine- Séance 7. Moez MRAD. Société Générale - R&D

PRODUITS DE TAUX D INTERET Modèles de marché ENSAE - DEA MASE Université Paris IX Dauphine- Séance 7. Moez MRAD. Société Générale - R&D PRODUIS DE AUX D IERE oèles e marché ESAE - DEA ASE Unversé Pars IX Dauphne- Séance 7 oez RAD Socéé Générale - R&D oez RAD / SG R&D Fxe Income 5//5 PA oèle bor Forwar ognormal G ou F. Défnon u moèle. Passage

Plus en détail

Circuits linéaires en régime transitoire

Circuits linéaires en régime transitoire MPSI - Élecrocnée I - rcs lnéares en régme ransore page 1/8 rcs lnéares en régme ransore 1 ondons nales e conné On va éder ce se passe enre enre dex régmes conns = régme ransore. es granders élecres ne

Plus en détail

E3 Régimes transitoires

E3 Régimes transitoires I Défnons E3 égmes ransores I.1 égme lbre, régme ransore e régme conn Défnon : On appelle réponse lbre o régme lbre d n crc, l évolon de cel-c en l absence de o généraer. e régme d crc es d conn o saonnare)

Plus en détail

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI UNIVERSIE PARIS OUES, NANERRE LA DEFENSE UFR SEGMI Année universiaire 202 203 Cours d économérie L3 Economie Cours de Valérie MIGNON D de Benoî CHEZE e David GUERREIRO Exercice : Données en coupe D Inroducion

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

Réponse d un dipôle RL à un échelon de tension

Réponse d un dipôle RL à un échelon de tension éonse d un diôle L à un échelon de ension Tire Descriion emarques 1- Le diôle L es une associaion en série d une bobine e d un conduceur ohmique (ou résisor) : I- Inroducion 2- L échelon de ension : es

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

MODELISATION DES TEMPS DE CYCLE D UN AS/RS A CONVOYEURS GRAVITATIONNEL A UNE SEULE MACHINE S/R

MODELISATION DES TEMPS DE CYCLE D UN AS/RS A CONVOYEURS GRAVITATIONNEL A UNE SEULE MACHINE S/R 8 e Conférence Inernaonale de Odélsaon e SIulaon - OSI - au a - Haae - unse «valuaon e osaon des sysèes nnovans de roducon de ens e de servces» ODLISAION DS PS D CYCL D UN AS/RS A CONVOYURS GRAVIAIONNL

Plus en détail

Bureaux d études en traitement des images

Bureaux d études en traitement des images Bureau d éudes en raemen des mages ESERB Fère Téécommuncaons 3 ème année Opon SC ESERB Fère Eecronque 3 ème année Opon TS AEE 4-5 M. DOAS Bureau d éudes en raemen des mages PARTE REDRESSEMET Dans cee pare

Plus en détail

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps.

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps. Modélisaion des sysèmes mécaniques LA CINÉMATIQUE DU POINT Dae : Inroducion : La cinémaique es la parie de la mécanique qui éudie le mouvemen des corps, indépendammen des effors qui les produisen. Les

Plus en détail

ANNEXE 1 - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS

ANNEXE 1 - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS ANNEXE - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS L'hypohèse d'une réparon des événemens démographques unforme sur l'année gnore la sasonnalé des décès e des nassances qu peu êre déermnée ans

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

Considérons la situation suivante où un bloc est appuyé contre un ressort comprimé:

Considérons la situation suivante où un bloc est appuyé contre un ressort comprimé: 7. Traval eectué par une orce varable Consdérons la stuaton suvante où un bloc est appuyé contre un sort comprmé: Que va-t-l se passer s nous lassons partr le bloc?? L énerge cnétque du bloc va augmenter

Plus en détail

Macroéconométrie II. Approche alternative aux mécanismes dynamiques : la modélisation VAR

Macroéconométrie II. Approche alternative aux mécanismes dynamiques : la modélisation VAR acroéconomérie II. Aroche alernaive aux mécanismes dynamiques : la modélisaion VAR Claudio Araujo CERDI, Universié d Auvergne Clermon-Ferrand, France www.cerdi.org h://www.cerdi.org/claudio-araujo/erso/.

Plus en détail

CINEMATIQUE : MOUVEMENTS PARTICULIERS

CINEMATIQUE : MOUVEMENTS PARTICULIERS Cinémaique Analyique CINEMATIQUE : MUVEMENTS PARTICULIERS 1. Mouvemen de ranslaion : Définiions 1.1. Translaion d un solide Tous les poins d'un solide en ranslaion on : - Des rajecoires ideniques - La

Plus en détail

Lycée Galilée Gennevilliers. chap. 2. Jallu Laurent

Lycée Galilée Gennevilliers. chap. 2. Jallu Laurent ycée Gallée Gennevllers e dpôle, sére chap. Jallauren I. e solénoïde... résenaon... uo nducon... 3 Tenson aux bornes du solénoïde... 3 Symbole... 3 II. e dpôle, sére... 4 échelon de enson... 4 Inerpréaon

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail

Chapitre 3 Analyse statistique de données Première S

Chapitre 3 Analyse statistique de données Première S Chatre Analyse statstque de données Premère S Le vocabulare relatf au statstques La statstque est la scence qu consste à réunr des données chffrées, à les analyser, à les crtquer Une étude statstque se

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

Utilisation des fonctions B-splines pour modéliser la survie relative non proportionnelle

Utilisation des fonctions B-splines pour modéliser la survie relative non proportionnelle Ulsaon des foncons -splnes pour modélser la surve relave non proporonnelle Roch Gorg Laboraore d Ensegnemen e de Recherche sur le Traemen de l Informaon Médcale Faculé de médecne de Marselle - Unversé

Plus en détail

Intégrateur. v e. 20log T 0

Intégrateur. v e. 20log T 0 G. Pnson - Physque Applquée Foncons négraon e dérvaon - A22 / A22 - Foncons négraon e dérvaon τ = = τ ( )d éponse à un échelon (réponse ndcelle) Inégraeur : = E < : = = E τ E -a. éponse en fréquence =

Plus en détail

ANNEXE I TRANSFORMEE DE LAPLACE

ANNEXE I TRANSFORMEE DE LAPLACE ANNEE I TRANSFORMEE DE LAPLACE Perre-Smon Lalace, mahémacen franças 749-87. Lalace enra à l unversé de Caen a 6 ans. Très ve l s néressa aux mahémaques e fu remarqué ar d Alember. En analyse, l nrodus

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

VITESSE DE RÉACTION I. INTRODUCTION II. VITESSE DE RÉACTION POUR UN SYSTÈME FERMÉ

VITESSE DE RÉACTION I. INTRODUCTION II. VITESSE DE RÉACTION POUR UN SYSTÈME FERMÉ VITESSE DE ÉCTION I. INTODUCTION I. Équlbre e évoluon vers l équlbre On consdère une réacon chmque noée de façon générale : ν + ν +... + ν ν ' ' + ν ' ' +... + ν ' '. P P On peu la noer égalemen : ν +

Plus en détail

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique,

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique, Plan Défnon, Régresson Lnéare Mulple Massh-Réza Amn Technques d Analyse de Données e Théore de l Informaon Maser M IAD Parcours Recherche amn@polea.lp6.fr Hsorque, Inerpréaon géomérque de la soluon, Len

Plus en détail

La transformée de Laplace

La transformée de Laplace a ransformée de alace Méhode mahémaique ayan our objecif: Conourner la difficulé de résoluion des équaions différenielles Offrir une résoluion algébrique Très bien adaée à l élecronique Commen le cours

Plus en détail

2 LES DIPOLES PASSIFS ELEMENTAIRES

2 LES DIPOLES PASSIFS ELEMENTAIRES ES DPOES PASSFS EEMENTAES. nroducon es composans ulsés en élecronque présenen des bornes élecrques ou pôles permean leur connexon dans un réseau. On dsngue : - les dpôles ( pôles) comme les réssances,

Plus en détail

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure TP SdF N 25 Modélisaion e opimisaion de la mainenance prévenive e correcive d un maériel soumis à usure Ce TP complèe le TP N 22 sur la modélisaion e l opimisaion de la mainenance d un maériel réparable

Plus en détail

Philippe BIENAIME Actuaire I.S.F.A., GPA Laboratoire de Sciences Actuarielle et Financière, I.S.F.A., Université Claude Bernard Lyon 1

Philippe BIENAIME Actuaire I.S.F.A., GPA Laboratoire de Sciences Actuarielle et Financière, I.S.F.A., Université Claude Bernard Lyon 1 SYSTEMES BOUS-MALUS Phlppe BIEAIME Acuare I.S.F.A., GPA Laboraore de Scences Acuarelle e Fnancère, I.S.F.A., Unversé Claude Bernard Lyon ahale RICHARD GPA Laboraore de Scences Acuarelle e Fnancère, I.S.F.A.,

Plus en détail

Série d exercices N 5

Série d exercices N 5 GENIE ELECTRIQUE Sére d exercces N 5 Prof : Mr Raouaf Abdallah PARTIE N 1 : «A.L.I en mode lnéare» «Amplfcaeur Lnéare Inégré» Nveau : 4 ème Sc.Technque Mode lnéare :... L ALI es déal donc = = e =... Exercce

Plus en détail

Amplification Linéaire à Transistor Bipolaire

Amplification Linéaire à Transistor Bipolaire UFM Préparaon APT Géne lerque Amplfaon néare à Transsor polare Sruure énérale d un ru d amplfaon : Snal à amplfer (as neau) X X Amplfaeur are (Hau neau) Soure de pussane (Fourne par ) X amplfaon ne onerne

Plus en détail

Hacheur série. 1. Présentation. 2. Principe de fonctionnement. Le hacheur est un convertisseur statique continu-continu. Symbole synoptique :

Hacheur série. 1. Présentation. 2. Principe de fonctionnement. Le hacheur est un convertisseur statique continu-continu. Symbole synoptique : Termnale STI hacheur sére Hacheur sére. Présenaon e hacheur es un conersseur saque connu-connu Symbole synopque : Tenson connue fxe Tenson connue réglable Ou plus exacemen : enson oujours de même sgne,

Plus en détail

MATHEMATIQUES FINANCIERES II

MATHEMATIQUES FINANCIERES II Formaion Ouvere e A Disance LIVRET 52 BIS : MATHEMATIQUES FINANCIERES II LES ANNUITES Page 1 INTRODUCTION : FOAD mahémaiques financières II Exemple 1 : Une personne veu acquérir une maison pour 60000000

Plus en détail

ICCM3E, Novembre 2009 Simulation numérique de l écoulement du vent autour d un bâtiment cubique

ICCM3E, Novembre 2009 Simulation numérique de l écoulement du vent autour d un bâtiment cubique ICCM3E, Novembre 009 Smulaon numérque de l écoulemen du ven auour d un bâmen cubque Hafda.Daaou Nedar 1, Mohamed Sagh² 1 Cenre de développemen des énerges renouvelables, BP6 roue de l observaore Bouzaréah

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

Examen Final EL40. Durée : 1H40. Calculatrice non autorisée car inutile. Aucun document personnel n'est autorisé.

Examen Final EL40. Durée : 1H40. Calculatrice non autorisée car inutile. Aucun document personnel n'est autorisé. NOM : Examen Final EL4 Noe : Durée : H4. Calcularice non auorisée car inuile. Aucun documen ersonnel n'es auorisé. Pour chaque réonse, on exliquera la démarche qui condui au résula roosé. Les exressions

Plus en détail

UNE POLITIQUE DE MAINTENANCE PREVENTIVE ASSOCIEE A UNE DEGRADATION ACCUMULATIVE BIVARIEE OBSERVEE CONTINUMENT

UNE POLITIQUE DE MAINTENANCE PREVENTIVE ASSOCIEE A UNE DEGRADATION ACCUMULATIVE BIVARIEE OBSERVEE CONTINUMENT UNE POITIQUE DE AINTENANE PREVENTIVE ASSOIEE A UNE DEGRADATION AUUATIVE BIVARIEE OBSERVEE ONTINUENT A PREVENTIVE AINTENANE POIY ASSOIATED WITH A ONTINUOUSY OBSERVED UUATIVE BIVARIATE DETERIORATION Ha Ha

Plus en détail

Concours Pascal (9 Sec. III)

Concours Pascal (9 Sec. III) Concours canadien de mahémaiques Une acivié du Cenre d'éducaion en mahémaiques e en informaique, Universié de Waerloo, Waerloo, Onario e Concours Pascal (9 Sec. III) Le mercredi 21 février 2001 Avec la

Plus en détail

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π edressemen monophasé commandé C.P.G.E-SI-SAFI edressemen monophasé commandé Inroducon : Un monage redresseur commandé perme d obenr une enson connue réglable à parr d une enson alernave snusoïdale. L ulsaon

Plus en détail

PONDÉRATIONS LONGITUDINALES

PONDÉRATIONS LONGITUDINALES PONDÉRATIONS LONGITUDINALES DANS L ENQUÊTE EMPLOI DE L INSEE Pascal Ardlly Insee, Déparemen des méhodes sasques Conexe e objecfs Source Enquêe Emplo rmesrelle en France Objecf Sur une pérode donnée, esmer

Plus en détail

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores Classe de Terminale S Physique Thème abordé : Ondes sonores Poin Cours Exercice Pour ou l exercice, on considère la célérié v du son dans l air, à 2 C, égale à 34 m.s. Les rois paries de l exercice son

Plus en détail

Correction des exercices du TD2

Correction des exercices du TD2 orrecto des exercces du TD Rael : des ades vous sot foures sur le ste «www.utc.fr /~mt/» à la f des fchers acrés aux chatre de cours. N héste as à les ulter our refare les exercces avat de regarder la

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C...

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C... égme ransore Table des maères 1 Crc C sére soms à n échelon de enson 2 1.1 chelon de enson............................. 2 1.2 Charge d n condensaer......................... 2 1.2.1 Condons nales.........................

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Amplificateurs différentiels et opérationnels

Amplificateurs différentiels et opérationnels UNIVESITE MOHAMMED V Faculé des Scences, aba Amplfcaeurs dfférenels e opéraonnels Chapre 3 1 Amplfcaeur dfférenel L amplfcaeur dfférenel, pare à couplage par les émeeurs (BJT) (pare à couplage par les

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Etude numérique de l effet de température d entrée du fluide sur l établissement du régime turbulent dans un échangeur coaxial

Etude numérique de l effet de température d entrée du fluide sur l établissement du régime turbulent dans un échangeur coaxial Revue de géne ndusrel 2012, 8, 24-31 Revue de Géne Indusrel ISSN 1313-8871 hp://www.revue-gene-ndusrel.nfo Eude numérque de l effe de empéraure d enrée du flude sur l éablssemen du régme urbulen dans un

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Les dispositifs de commutation

Les dispositifs de commutation Les dsposfs de commuaon 1. Les dsposfs de commuaon élecronques des sgnaux Les dsposfs élecronques de commuaon des sgnaux fonconnen en mode «ou ou ren» (mode bnare). Les deux éas possbles du composan son

Plus en détail

S5 Info-MIAGE 2011-2012 Mathématiques Financières Compléments sur les intérêts composés

S5 Info-MIAGE 2011-2012 Mathématiques Financières Compléments sur les intérêts composés Universié de Picardie Jules Verne Année 2011-2012 UFR des Sciences Licence menion Informaique parcours MIAGE - Semesre 5 Mahémaiques Financières COMPLEMENTS SUR LES INTERETS COMPOSES Les inérês considérés

Plus en détail

Équations différentielles du premier ordre

Équations différentielles du premier ordre Équaions différenielles du premier ordre Vous rouverez ici de brefs résumés e exemples sur les applicaions concrèes des équaions différenielles du premier ordre : variaion de empéraure désinégraion radioacive

Plus en détail

Chapitre 4 : Ecoulement adiabatique avec frottement «Ecoulement de Fanno»

Chapitre 4 : Ecoulement adiabatique avec frottement «Ecoulement de Fanno» Cours : Dynamque des gaz. Unversté de ed Boudaf sla Année Unverstare 06/07 Faculté des echnologes Opton : Energétque Département de Géne écanque aster ère Année Chaptre 4 : Ecoulement adabatque avec frottement

Plus en détail

PREMIERE PARTIE. Remarques préliminaires importantes : il est rappelé aux candidat(e)s que

PREMIERE PARTIE. Remarques préliminaires importantes : il est rappelé aux candidat(e)s que Le problème, consacré à la propagaon gudée de la lumère, compore deux pares ndépendanes : fbres opques e opque géomérque (premère pare), approche élecromagnéque e onde évanescene (deuxème pare) Remarques

Plus en détail

La méthodologie d étude d évenement : Une méthode et des outils à s approprier en finance

La méthodologie d étude d évenement : Une méthode et des outils à s approprier en finance evue des Scences Humanes Unversé Mohamed Khder Bskra No :9 La méhodologe d éude d évenemen : Une méhode e des ouls à s approprer en fnance Unversé de Skkda ésumé: Les éudes d événemens son largemen applquées,

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

INF135 Travail Pratique #1 Remise le 16 octobre 2012

INF135 Travail Pratique #1 Remise le 16 octobre 2012 École de Technologe Supéeue Pa : Fancs Boudeau, ÉcThé Révson : Aïda Ouangaoua INF35 Taval Paque # Remse le 6 ocobe 0 Inaon à la pogammaon en géne mécanque Taval ndvduel. Objecfs - Mee en applcaon des noons

Plus en détail

II. Observation d une seule courbe à l oscilloscope

II. Observation d une seule courbe à l oscilloscope PC - Lycée Dumon D Urville TP 1 : uilisaion de l oscilloscope numérique I. Compéences à acquérir Les compéences évaluées au cours de ce TP son: - Uiliser un GBF - Uiliser un oscilloscope : Afficher des

Plus en détail

LES ONDULEURS Convertisseurs DC/AC

LES ONDULEURS Convertisseurs DC/AC Chapire VI - Les onduleurs - LES ONDULEURS Converisseurs DC/AC I- Inroducion : L éude va porer sur les onduleurs : monophasés, de ension :Source d enrée (DC) = Source de Tension Source de sorie (AC) =

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Secion : S Opion : Sciences de l ingénieur Discipline : Génie Elecrique Caracérisiques des signaux élecriques Domaine d applicaion : raiemen du signal ype de documen : Cours Classe : Première Dae : I Définiion

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

Introduction aux simulations numériques à l échelle atomique en science des matériaux

Introduction aux simulations numériques à l échelle atomique en science des matériaux Inroducon aux smulaons numérques à l échelle aomque en scence des maéraux GDR MECANO Ecole Thémaque Mécanque des Nano-objes Aurans, 15-19 Mars 2010 Franços WILLAIME Servce de Recherches de Méallurge Physque

Plus en détail

Le système à étudier (connu) = Un ensemble des éléments. Associer un modèle de connaissance au système

Le système à étudier (connu) = Un ensemble des éléments. Associer un modèle de connaissance au système PGE A Marrakech Les sysèes asseris Traail roosé ar :LAAMIMI Dans cee conribuion, j ai résené deux séries d exercices our illusrer cerains conces héoriques concernan la hase de odélisaion des sysèes asseris

Plus en détail

Modélisation de l atomisation d un jet liquide

Modélisation de l atomisation d un jet liquide nversé de Rouen Modésaon de aomsaon d un e qude Appcaon au sprays Dese Par Perre-Arnaud Beau CoRIA Écoe Docorae de nversé de Rouen nversé de Rouen nversé de Rouen CoRIA Cee hèse nuée : Modésaon de aomsaon

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

Gestion des Stocks et File d'attente

Gestion des Stocks et File d'attente Geson des oks e Fle d'aene Guy Aé TANONKOU ndusal Engneeng & oue ene NRA-Loane le du auly, Bâ.A GM 5745 Mez ede Fane hone offe : 33 3 87 54 7 97 Eal : anonkou@loa.f / anonkou@asal-sene.og Table des aèes.

Plus en détail

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i)

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i) Esaces vecorels eucldes Groue orhogoal ESPACES VECTORIELS EUCLIDIENS GROUPE ORTHOGONAL Produ scalare Défo O aelle esace euclde ou coule ( E, φ, où E es u esace vecorel réel de dmeso fe e φ ue forme bléare

Plus en détail