1 ère S Fonctions de référence

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "1 ère S Fonctions de référence"

Transcription

1 ère S Fonctons de référence Cette méthode est dffcle à mettre en œuvre pour certanes fonctons ; nous étuderons un ben melleur moyen cette année. 4 ) Tableau de varaton (pour mémore) bectfs : - Revor et compléter l étude des fonctons de référence vues en seconde. - Sgnaler en partculer quelques proprétés géométrques de leurs courbes représentatves et reler ces proprétés à des proprétés algébrques des fonctons. - Revor dverses notons sur les fonctons (notatons, vocabulare, ensemble de défnton, varatons, courbes ) notamment en utlsant les cadres habtuels : algébrque-numérque, fonctonnel, géométrquegraphque. - Revor les technques d études du sens de varaton d une foncton. - Revor et compléter les connassances d algèbre sur les denttés remarquables Varatons de f Lorsqu une foncton n est pas défne en un réel, on met une double barre. 5 ) Dfférence entre foncton crossante et foncton strctement crossante Prélmnare : rappels sur le sens de varaton d une foncton ) Défntons f est une foncton défne sur un ntervalle I de. Foncton crossante Foncton décrossante f est crossante sur I sgnfe que pour tous réels u et v de I tels que u v, f u f v. f est strctement crossante sur I sgnfe que pour tous réels u et v de I tels que u v f u f v., f est décrossante sur I sgnfe que pour tous réels u et v de I tels que u v, f u f v. f est strctement décrossante sur I sgnfe que pour tous réels u et v de I tels que u v f u f v., Foncton monotone Une foncton est monotone sur I s elle est crossante sur I ou décrossante sur I. ) Remarques Les défntons sont données sous formes de phrases quantfées («pour tous» ). n ne parle de fonctons crossantes ou décrossantes que sur un ntervalle. Les mots qu marchent ensemble : n dot touours précser «foncton crossante sur», «foncton décrossante sur», «foncton monotone sur» (et non pas crossante tout court). ) Comment étuder le sens de varaton d une foncton (pour mémore) Une méthode générale : Pour étuder le sens de varaton d une foncton f sur un ntervalle I, on prend deu réels quelconques u et v dans I tels que u < v ; on compare f (u) et f (v) (par eemple, en utlsant la technque de la dfférence). I. Fonctons affnes ) Défnton f : a + b (a et b coeffcents réels) D f ) Cas partculers a = 0 f : b foncton constante b = 0 f : a foncton lnéare ) Tableau de varaton (a 0) Le sens de varaton de f est donné par le sgne de a. a 0 + Var. de f Foncton crossante Foncton strctement crossante a 0 + Var. de f

2 f est strctement crossante sur. f est strctement décrossante sur. f est strctement décrossante sur ; 0 et strctement crossante sur 0 ;.* Le mnmum de f sur est 0 ; l est obtenu pour = 0. Prncpe de démonstraton : n prend deu réels quelconques u et v tels que u < v. n dot comparer f (u) et f (v). f ( u) f ( v) au b av b au b av b au av a u v. n effectue la dfférence u v < 0 et on regarde le sgne de a. 4 ) Représentaton graphque La représentaton graphque de la foncton f : a + b est la drote d équaton rédute y a + b. coeffcent drecteur (pente s le repère est orthonormé) ordonnée à l orgne * f est strctement crossante sur l ntervalle [0 ; + [ et strctement décrossante sur l ntervalle] ; 0]. n nclut 0 dans les deu ntervalles. Prncpe de démonstraton pour le sens de varaton sur 0 ; : n prend deu réels quelconques u et v dans 0 ; tels que u < v. n effectue la dfférence f u f v u v u vu v u v 0 et u v 0 donc f u f v 0 sot f u f v Même prncpe sur ; 0. ) Représentaton graphque (au mons 5 valeurs). d où le résultat Tracé ou ponts pont et le coeffcent drecteur C f : y 5 ) Formule du coeffcent drecteur a f f II. La foncton «carré» ) Défnton f : D f (on peut calculer le carré de n mporte quel réel) ) Tableau de varaton 0 + n devrat mettre des flèches pour montrer que la courbe conserve la même allure hors de la zone de la représentaton. C f est une parabole de sommet qu admet l ae des ordonnées pour ae de symétre dans un repère orthogonal. La courbe prend une forme arronde en ; elle vent «coller» l aes des abscsses autour du pont. n dt que C f est tangente à l ae des abscsses en (nous reverrons cette noton plus tard). 4 ) Justfcaton de la symétre Var. de f 0 sot f f. 4

3 n dt que la foncton «carré» est pare. n dt qu une foncton f défne sur est pare lorsque f f. Les ponts M et M d abscsses respectves et ont la même ordonnée et sont symétrques par rapport à (y). N.B. : S le repère n est pas orthogonal, on a une symétre oblque d ae (y) de drecton (). ) Représentaton graphque 6 valeurs 0 III. La foncton «nverse» ) Défnton f : C f : y D f \ 0 * (on ne peut pas calculer l mage de 0) ) Tableau de varaton 0 + Var de f f est strctement décrossante sur chacun des ntervalles 0 ; et ; 0. Prncpe de démonstraton pour le sens de varaton sur 0 ; : n prend deu réels quelconques u et v dans 0 ; tels que u < v. v u n effectue la dfférence f u f v. u v uv v u 0 et uv 0 donc f u f v 0 f u f v d où le résultat. Même prncpe sur ; 0. sot Attenton : la foncton «nverse» n est pas strctement décrossante sur *. En effet, prenons un contre-eemple. f f f f. n a : n devrat mettre des flèches pour montrer que la courbe conserve la même allure hors de la zone de la représentaton. C f est une hyperbole consttuée de branches symétrques par rapport à l orgne du repère. (La courbe est en deu morceau ; on dt c que la courbe de la foncton nverse est consttuée de deu branches. n trace séparément ces deu branches sachant qu elles sont symétrques par rapport à l orgne. n met le nom de la courbe seulement sur l une des deu). 4 ) Justfcaton de la symétre * * sot f ( ) f ( ). n dt que la foncton «nverse» est mpare. n dt qu une foncton f défne sur * est mpare lorsque * f f. Les ponts M et M d abscsses respectves et ont des ordonnées opposées et sont symétrques par rapport au pont. 5 6

4 IV. La foncton «cube» ) Défnton f : D f (on peut calculer le cube de n mporte quel réel) ) Tableau de varaton C f : y f est strctement crossante sur. 0 + Var. de f 0 Démonstraton pour le sens de varaton sur [0 ; + [ : n prend deu réels quelconques u et v dans [0 ; + [ tels que u < v. n sat que comme la foncton «carré» est crossante sur [0 ; +[ on a : u v (). Comme les négaltés () et () ne comportent que des nombres strctement postfs, on peut les multpler membre à membre. n obtent u v f u f v. Par sute, f est strctement crossante sur [0 ; +[. sot Même prncpe sur ] ; 0]. La courbe est symétrque par rapport à l orgne. ) Représentaton graphque (au mons 5 valeurs) ) Justfcaton de la symétre sot f f. n dt que la foncton «cube» est mpare. n dt qu une foncton f défne sur est mpare lorsque f f. Les ponts M et M' d abscsses respectves et ont des ordonnées opposées et sont symétrques par rapport à. V. La foncton «racne carrée» ) Défnton f : 7 D f 0 ; (on peut calculer la racne carrée de n mporte quel nombre postf ou nul ; 0 este et 0 0) Rappel de la défnton de la racne carrée d un réel postf ou nul : La racne carrée d un réel postf ou nul est l unque réel postf ou nul dont le carré est égal à. 8

5 Eemples : f v v La racne carrée de 4 est égale à : 4. La racne carrée de est égale à :. La racne carrée de 0 est égale à 0 : 0 0. La racne carrée de n este pas. ) Tableau de varaton f u f v u v u v u v u v u u v v (on complque pour trouver le sgne) 0 + Var. de f f est strctement crossante sur +. Le mnmum de f sur + est 0 ; l est obtenu pour 0. Démonstraton pour le sens de varaton sur 0 ; : n prend deu réels quelconques u et v dans 0 ; tels que u v. n effectue la dfférence 0 u v u v u v u v u v f ( u) f ( v) u v. u v u v u v n analyse le sgne de ce quotent : u v 0 et u v 0 Par sute, f u f v. donc f u f v 0. Cette technque d étude du sens de varaton ne sera plus utlsée cette année. n aura d autres technques beaucoup plus effcaces. ) Représentaton graphque Au mons 4 ponts : y n multple le numérateur et le dénomnateur par u v qu est la quantté conuguée de u v. En général, on utlse plutôt ce genre de technque afn de se «débarrasser» d une racne carrée au dénomnateur. C est le contrare que l on fat c : on met des racnes carrées au dénomnateur alors qu l n y en avat pas ; on complque l écrture mas cela nous smplfe la recherche du sgne de f ( u) f ( v). n a : u v 0 et u v 0 donc f ( u) f ( v) 0 sot f ( u) f ( v) d où le résultat. C f : y Une remarque pour commencer : n ne peut prendre valeurs. n est oblgé de travaller en lttéral. n prend «valeurs» de : u et v avec u v, avec u et v. n compare f u u f u et f v. Dans le plan mun d un repère orthonormé, on obtent C f en utlsant la représentaton de la foncton «carré» sur + et en utlsant la symétre d ae la ère bssectrce du repère (d équaton y = ). C f est une dem-parabole de sommet. La courbe C f est «collée» à l ae des ordonnées au vosnage du pont (elle «part vertcalement» à partr du pont ). n dt que C f est tangente à l ae des ordonnées au pont. 9 0

6 VI. La foncton «valeur absolue» ) Défnton f : D f ) Justfcaton de la symétre sot f ( ) f ( ). n dt que la foncton «valeur absolue» est pare. Les ponts M et M d abscsses respectves et ont la même ordonnée et sont symétrques par rapport à (y). s 0 s 0 VII. Comparason d un réel strctement postf avec son carré, son cube, sa racne carrée Il s agt de comparer, ) Proprété,, où est un réel strctement postf. ) Représentaton graphque est un réel quelconque strctement postf. n trace les drotes S 0, alors. : y = 0 4 : y = 0 4 S, alors S, alors.. y 0 4 y 0 4 C f : y ) Illustraton graphque Sur un même graphque, on représente les courbes représentatves des fonctons «carré», «cube», «racne carrée» ans que la drote d équaton y (pour 0). C f est la réunon de deu dem-drotes fermées d orgne (V de valeur absolue). La foncton «valeur absolue» est une foncton «affne par ntervalles». C f est symétrque par rapport à l ae des ordonnées. Sur la calculatrce, touche Abs sur le claver ; snon, sur certanes calculatrces, aller dans le catalogue. n observe alors les postons relatves de ces courbes sur l ntervalle ]0 ; +[ c est-à-dre que l on cherche comment elles se postonnent les unes par rapport au autres.

7 Pour décrre la poston d une courbe par rapport à une autre, on utlse un langage concret «proche» du langage courant en utlsant les mots «au-dessus», «au-dessous», «sécants». Par contre, on bannt les mots «nféreure» et «supéreure» (qu restent attachés au cadre algébrquenumérque). ) Démonstraton algébrque Méthode n est oblgé de fare une démonstraton générale. Un, deu, tros,, mlle eemples ou plus ne suffsent pas pour démontrer la proprété. Il s agt d une proposton quantfée unversellement valable pour tout réel strctement postf. Lorsque, on va démontrer les négaltés successvement dans chaque cas. Par eemple lorsque, 0, on va démontrer que, pus et enfn (peu mporte l ordre). er cas : 0 < < () () donne (en applquant la foncton «racne carrée» à chaque membre de l négalté, le sens de l négalté est conservé car la foncton «racne carrée est strctement crossante sur l ntervalle 0 ; ) sot. n notera l epresson «en applquant la foncton "racne carrée"». n pourrat être tenté de dre «en multplant par la foncton "racne carrée" les deu membres de l négalté» ce qu serat fau. C est ben le verbe «applquer» qu convent c. n peut multpler les deu membres de l négalté par. n obtent alors. En multplant les deu membres de l négalté () par ( > 0), on obtent. En multplant les deu membres de l négalté () par ( 0), on obtent. Fnalement, on peut écrre. n aurat auss pu démontrer d abord que, pus que et enfn que en applquant la foncton «racne carrée» au deu membres de l négalté précédente. VIII. Appendce : denttés remarquables ) Identtés du second degré a et b sont des réels quelconques. a b a ab b a b a ab b a ba b a b termes rectangles N.B. : Dans les deu premères denttés remarquables, on parle de - termes carrés ; - doubles produts ou de termes rectangles. Ces termes peuvent s eplquer par l llustraton graphque des denttés remarquables par les ares dans un carré. Chaque terme apparaît comme l are d un rectangle ou d un carré. a, b, c sont des réels quelconques. a b c a b c ab bc ca ) Identtés du trosème degré a et b sont des réels quelconques. a b a a b ab b a b a a b ab b a b a b a ab b a b a b a ab b e cas : > () n procède de la même manère que dans le er cas. e cas : = () Ce cas est évdent. ) Démonstratons a b a ba b a ab ba b a ab b a b a ab b a ba b a ab ab b a b 4

8 a b a ba b a ba ab b a a b ab ba ab b a a b ab b a b a ba b a ba ab b a a b ab b a b a ab b a a b ab ba ab b a b a b a ab b a a b ab ba ab b N.B. : a b a b a b a b a b À partr de l eposant 4, on utlse le trangle de Pascal. Eemple : Pour développer 5 a b, on utlse la lgne du trangle de Pascal avec les coeffcents : Les monômes qu consttuent le développement sont dans l ordre des pussances décrossantes de a et crossantes de b : 5 0 a b 4 a b 0 r b et b a b b. a b 4 a b 5 b n écrt le développement cherché en prenant les monômes dans l ordre affectés des coeffcents trouvés dans le trangle de Pascal a b a 5a b 0a b 0a b 5ab b a b. Il faut ben avor conscence que l on ne peut pas aller plus lon dans le développement de 5 4 ) Utlsaton Développements et factorsatons. Eemple : (Vor eercces) 5 ) Complément : le trangle de Pascal IX. Appendce : racne cubque d un réel postf ou nul ) Défnton a est un réel postf ou nul. Nous admettrons qu l este un unque réel postf ou nul tel que Ce réel est appelé la racne cubque de a. Ce réel est noté a. ) Eemple a a b 0 a b a b a b a ab b a b a a b ab b n dot retenr les denttés remarquables usqu au cube. 8 car 0 8 ) Utlsaton de la calculatrce n peut détermner une valeur approchée de à l ade de la calculatrce. - Sur TI, pour calculer, l y a deu méthodes : math MATH 4 ou ( : ) EXE 5 6

9 - Sur CASI Graph 5+, on a une touche : pour cela, fare SHIFT. n peut démontrer que est un nombre rratonnel. 7 8

10 À lre : les nveau de grs Commentares : Sur les cadres : «pour des fonctons qu fonctonnent» Cadre numérque-algébrque Cadre fonctonnel Cadre géométrque-graphque Foncton «carré» f : ae de symétre Prélmnare : Fonctons et symboles >, < et = Vor document d accompagnemet Cycle Termnal sére L sommet Défnton de la courbe représentatve de la foncton «carré» Deu formulatons : La courbe C de la foncton carré est l ensemble des ponts M de coordonnées, lorsque décrt. La courbe C de la foncton carré est l ensemble des ponts M de coordonnées, y tels que y lorsque décrt. Notaton : C : y «a pour équaton» Les deu ponts veulent dre «a pour équaton». L équaton (une équaton) de la courbe est «y». 9 0

11 C : f on n écrra pas cela sur un graphque Foncton «nverse» asymptote vertcale La foncton carré est strctement crossante sur [0 ; +[. La foncton est strctement crossante sur [0 ; +[. La foncton est strctement crossante sur [0 ; +[. Attenton, on ne dra pas que n dra que la foncton est strctement crossante sur [0 ; +[. est strctement crossante sur [0 ; +[. La foncton carré n est pas monotone sur. Équvalence des formulatons suvantes (où C désgne la parabole représentant la foncton «carré») : Cadre numérque-algébrque : «Un carré est touours postf». Cadre fonctonnel : «La foncton «carré» est postve sur». centre de symétre asymptote horzontale Cadre géométrque-graphque : «C est tout entère au-dessus de l ae des abscsses». 0 +

12 Foncton «cube» Foncton «racne carrée» Une notaton à connaître : ordonnées J centre de symétre I abscsses n peut dre que la courbe de la foncton racne carrée est présente dans le er quadrant. + ou Pont d arrêt en. n peut dre auss que la courbe de la foncton «racne carrée» part «perpendcularement» à l ae des abscsses. 0 + Var. de f 0 4

13 Poston d un pont par rapport à une courbe C : y = f () ( D) Les fonctons «carré», «nverse», «cube», «racne carrée», «valeurs absolue» ne sont pas des fonctons affnes n lnéares. La courbe de la foncton «carré» tout comme la courbe de la foncton «nverse» et celles des autres fonctons de référence étudées dans ce chaptre n est pas une drote. Meu elles ne contennent aucun segment de drote. M(a, b) (a D) M «au-dessus» de C M «au-dessous» de C M est «sur» la courbe C cadres : cadre algébrque cadre géométrque-graphque Représenter l ensemble des ponts du plan vérfant les négaltés : y y y y Illustratons géométrques des denttés remarquables : cadre algébrque cadre géométrque-graphque - Ste de Danel Mentrard a b ) - Ste de Thérèse Evelleau Mathématques magques (belle anmaton sur l dentté C est un problème qu ntervent fréquemment. Poston relatve de deu courbes D parte de centrée en zéro. Fonctons pares - mpares : 5 6

14 Foncton pare : D f( ) = f() Foncton mpare : D f( ) = f() Eemples :, 4,, n (n),,, n (n) Symétres des courbes Parté cadres : - algébrque-numérque - fonctonnel - géométrque-graphque 7

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Chapitre 1 : Images données par une lentille mince convergente

Chapitre 1 : Images données par une lentille mince convergente Chaptre 1 : Images données par une lentlle mnce convergente Termnale S Spécalté Chaptre 1 : Images données par une lentlle mnce convergente bectfs : - Constructon graphque de l mage d un obet plan perpendculare

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

Exercices sur la géométrie plane

Exercices sur la géométrie plane Eercces sur la géoétre plane Sot un trangle équlatéral et M un pont ntéreur au trangle n note H, K, L les projetés orthogonau respectfs de M sur les tros côtés éontrer que la soe MH + MK + ML est constante

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite.

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite. www.mathsenlgne.com 2G3 - EQUATINS DE DRITES CURS (1/5) CNTENUS CAPACITES ATTENDUES CMMENTAIRES Drote comme courbe représentatve d une foncton affne. - Tracer une drote dans le plan repéré. - Interpréter

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

N - ANNEAUX EUCLIDIENS

N - ANNEAUX EUCLIDIENS N - ANNEAUX EUCLIDIENS Dans ce qu sut A est un anneau untare, mun de deux opératons notées addtvement et multplcatvement. Le neutre de l addton est noté 0, celu de la multplcaton est noté e. On pose A

Plus en détail

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN

V FORMATION DES IMAGES DANS L EXEMPLE DU MIROIR PLAN Chaptre V page V-1 V FORMTION DES IMGES DNS L EXEMPLE DU MIROIR PLN Le but de ce chaptre est d ntrodure la noton d mage { travers l exemple du mror plan. Vous vous êtes sûrement déjà regardé(e) dans un

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010.

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010. Master 1ère année de Mathématques Analyse Numérque - Projet A rendre au plus tard le jour de l examen fnal, en Janver 2010. CMI, Unversté de Provence Année 2009-2010 Ce qu vous est demandé : Rédger les

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes Snthèse de cours PanaMaths (Termnale S) L ensemble des nombres complees Défntons n pose tel que = 1 { } L ensemble des nombres complees, noté, est l ensemble : z /(, ) = + Le réel est appelé «parte réelle

Plus en détail

Ajustement affine par les moindres carrés

Ajustement affine par les moindres carrés 1. Nveau Termnales STG et ES Ajustement affne par les mondres carrés 2. Stuaton-problème proposée Introducton à la méthode des mondres carrés. 3. Support utlsé Tableur et calculatrce. 4. Contenu mathématque

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

Chapitre 2 : Energie potentielle électrique. Potentiel électrique

Chapitre 2 : Energie potentielle électrique. Potentiel électrique 2 e BC 2 Energe potentelle électrque. Potentel électrque 12 Chaptre 2 : Energe potentelle électrque. Potentel électrque 1. Traval de la orce électrque a) Expresson mathématque dans le cas du déplacement

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

L'INDUCTION ON5WF (MNS)

L'INDUCTION ON5WF (MNS) 'IDUCTIO ème parte / O5WF (MS) Dans la ère parte de cet artcle, nous avons vu qu'un courant électrque donnat leu à un champ magnétque (expérence d'oersted). ous avons ensute vu comment Faraday, après avor

Plus en détail

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle Mrors spérques Doptres spérques Nous allons mantenant aborder des systèmes optques un peu plus complexes, couramment utlsés pour produre des mages. Nous allons commencer par étuder un mror spérque de façon

Plus en détail

Exercices de révision pour examen #1

Exercices de révision pour examen #1 Exercces de révson pour examen #1 Queston 1. Questons théorques. a) Nommez les courants qu exstent quand une dode est en équlbre. Courants de dffuson et de drft. b) Dessnez la structure physque réelle

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3 UNIVERSITE MONTESQUIEU BORDEAUX IV Lcence 3 ère année Econome - Geston Année unverstare 2006-2007 Semestre 2 Prévsons Fnancères Travaux Drgés - Séances n 3 «Les Crtères Fondamentaux des Chox d Investssement»

Plus en détail

Les nombres premiers ( Spécialité Maths) Terminale S

Les nombres premiers ( Spécialité Maths) Terminale S Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document de

Plus en détail

Prérequis de Mathématiques pour GMP

Prérequis de Mathématiques pour GMP Prérequs de Mathématques pour GMP V. Nolot Sommare. Rappels sur les vecteurs La noton de foncton. Foncton et graphe de foncton..................... Nombre dérvé et foncton dérvée.................. 3.3

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM DEFINITIONS ET PRINCIPES FONDMENTUX DE L RDM 1 OJET DE L RDM PRINCIPES DE L STTIQUE.1 Défnton de l équlbre statque.1.1 Epresson du torseur des actons, moment d une force.1. Sstèmes de forces dvers 3. Les

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

10.1 Inférence dans la régression linéaire

10.1 Inférence dans la régression linéaire 0. Inférence dans la régresson lnéare La régresson lnéare tente de modeler le rapport entre deux varables en adaptant une équaton lnéare avec des données observées. Chaque valeur de la varable ndépendante

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type EAME FIAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSIO 1 - Correcton - Exercce 1 : 1) Questons à Chox Multples (QCM). Cochez la bonne réponse Classer ces statstques selon leur nature (ndcateur de poston

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM.

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM. Exercce n 1 Cet exercce propose de détermner l équlbre IS/LM sur la base d une économe dépourvue de présence étatque. Pour ce fare l convent, dans un premer temps de détermner la relaton (IS) marquant

Plus en détail

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution.

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution. Républque Tunsenne Présdence du Gouvernement Ecole Natonale d Admnstraton 4, Avenue du Dr Calmette Mutuelle-vlle 08 Tuns Tél. (+6) 848 00 Fa (+6) 794 88 www.ena.nat.tn STATISTIQUE ET CALCUL DE PROBABILITE

Plus en détail

Calcul de tableaux d amortissement

Calcul de tableaux d amortissement Calcul de tableaux d amortssement 1 Tableau d amortssement Un emprunt est caractérsé par : une somme empruntée notée ; un taux annuel, en %, noté ; une pérodcté qu correspond à la fréquence de remboursement,

Plus en détail

I. Fonctionnalités du tableur

I. Fonctionnalités du tableur Olver Coma Macro MRP pour Excel Decembre 1999 I. Fonctonnaltés du tableur I.1. Feulle «Nomenclature «Le tableur propose pluseurs optons à l ouverture du fcher. Cnq boutons apparassent à drote de la feulle

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles La fournture de bens et facteurs publcs en présence de ménages et d entreprses mobles Pascale Duran-Vgneron évrer 007 Le modèle On suppose un pays drgé par un gouvernement central ayant compétence sur

Plus en détail

CHAPITRE 2. La prévision des ventes

CHAPITRE 2. La prévision des ventes CHAPITRE La prévson des ventes C est en foncton des prévsons de ventes que l entreprse détermne la producton, les achats et les nvestssements nécessares. La prévson des ventes condtonne l ensemble de la

Plus en détail

Sous-groupes additifs de rangs dénombrables dans un corps séparablement clos

Sous-groupes additifs de rangs dénombrables dans un corps séparablement clos Sous-groupes addtfs de rangs dénombrables dans un corps séparablement clos Thomas Blosser 25 novembre 2010 Résumé Pour tout enter n, on construt des sous-groupes, nfnment défnssables de rang de Lascar

Plus en détail

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 1. Quadrimestre 1-2. Pondération 5. Nombre de crédits 5

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 1. Quadrimestre 1-2. Pondération 5. Nombre de crédits 5 Informatons de l'unté d'ensegnement Implantaton ECAM Cursus de Bacheler en Scences ndustrelles Informatque et communcaton B1030 Cycle 1 Bloc 1 Quadrmestre 1-2 Pondératon 5 Nombre de crédts 5 Nombre d heures

Plus en détail

La décomposition en valeurs singulières: un outil fort utile

La décomposition en valeurs singulières: un outil fort utile La décomposton en valeurs sngulères: un outl fort utle Références utles: 1- Sonka et al.: sectons 3.2.9 et 3.2.1 2- Notes manuscrtes du cours 3- Press et al: Numercal recpes * Dernère révson: Patrck Hébert

Plus en détail

Méthode de Vogel Modifiée pour la résolution du problème de transport simple

Méthode de Vogel Modifiée pour la résolution du problème de transport simple Appled Mathematcal Scences, Vol. 5, 2011, no. 48, 2373-2388 Méthode de Vogel Modfée pour la résoluton du problème de transport smple Salmata G. Dagne Département de Mathématques Unversté Chekh Anta Dop,

Plus en détail

Installation du dispositif Cisco TelePresence MX200 - Support de table

Installation du dispositif Cisco TelePresence MX200 - Support de table 1a Déballage du système vdéo MX200 oîte du support de table MX200 La boîte du support de table MX200 content le support de table équpé d un pvot et un cache arrère. Placez le support de table sur une surface

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés Electrcté II : égmes snusoïdaux et transtores and transent crcut analyss Fasccule d'exercces de Travaux Drgés 5 cours / Séances de TD / 5 séances de TP égmes snusoïdaux Nombre de séances de TD prévues

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (!

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (! Courant alternatf Dr F. Raemy La tenson alternatve et le courant alternatf ont la représentaton mathématque : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Une résstance dans un crcut à courant

Plus en détail

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE

C Notice technique K-Réa v3 C. NOTICE TECHNIQUE C. NOTICE TECHNIQUE C.1. Introducton et grands prncpes... 5 C.1.1. Objet du calcul et champ d applcaton... 5 C.1.2. Introducton aux méthodes de calcul et vérfcatons proposées... 6 C.1.2.1. Présentaton

Plus en détail

1 ère S. «Thème 3 / L énergie et ses transferts» Livret 1 / Les TP

1 ère S. «Thème 3 / L énergie et ses transferts» Livret 1 / Les TP 1 ère S «Thème 3 / L énerge et ses transferts» Lvret 1 / Les TP Sommare Page 3 : Page 5 : Page 6 : Page 7 : Page 8 : Page 9 : TP/ Chaleur latente de fuson de la glace TP/ Détermnaton d une énerge de combuston

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique

MGA802. Analyse fonctionnelle. Chapitre 1. S. Antoine Tahan, ing. Ph.D. Département de génie mécanique Analyse fonctonnelle Chaptre S. Antone Tahan, ng. Ph.D. Département de géne mécanque Ma 009 Manuel : Métrologe MEC66 Auteur : Antone Tahan, ng., Ph.D. atahan@mec.etsmtl.ca ère édton : novembre 004 ème

Plus en détail

MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES

MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES MODELISATION ET SIMULATION NUMERIQUE DES SYSTEMES ANALOGIQUES Hervé MOREL Drecteur de Recherche - CNRS Herve.Morel@nsa-lyon.fr AMPERE - INSA de LYON mard 2 octobre 24 Modélsaton et smulaton des systèmes

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

éléments d'analyse statistique

éléments d'analyse statistique éléments danalse statstque applcaton à lhdrologe deuxème édton D. Ther octobre 989 R 30 73 EAU 4S 89 BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES SERVICES SOL ET SOUS-SOL Département Eau B.P. 6009-45060

Plus en détail

Amélioration d une reconstruction 3D par voxels ( Visual Hull ) à l aide de la stéréo-vision

Amélioration d une reconstruction 3D par voxels ( Visual Hull ) à l aide de la stéréo-vision Améloraton d une reconstructon 3D par voxels ( Vsual Hull ) à l ade de la stéréo-vson Erc Nowak DEA IARFA 2002/2003 Rapport de stage de DEA Leu du stage : INRIA de Rocquencourt Projet : MIRAGES Responsable

Plus en détail

Editions ENI. Excel 2010. Collection Référence Bureautique. Extrait

Editions ENI. Excel 2010. Collection Référence Bureautique. Extrait Edtons ENI Excel 2010 Collecton Référence Bureautque Extrat Tableau crosé dynamque Tableau crosé dynamque Excel 2010 Créer un tableau crosé dynamque Un tableau crosé dynamque permet de résumer, d analyser,

Plus en détail

Electronique TD1 Corrigé

Electronique TD1 Corrigé nersté du Mane - Faculté des Scences! etour D électronque lectronque D1 Corrgé Pour un sgnal (t) quelconque : 1 $ (t) # MOY! (t) dt 1 FF! (t) dt (t) MX MOY mpltude crête à - crête mpltude Mn Pérode t emarque

Plus en détail

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003 DEA d physqu subatomqu Corrgé d l xamn d analys statstqu ds donnés t d modélsaton ssson d févrr - anné 22-23 Jérôm Baudot sur 45 ponts I- Errur sur la msur d un asymétr avant-arrèr ponts I-a La formul

Plus en détail

Paramétrer le diaporama

Paramétrer le diaporama PowerPont 2013 - Fonctons avancées Daporama Daporama PowerPont 2013 - Fonctons avancées Paramétrer le daporama Le daporama est la projecton de la présentaton à l écran. Ouvrez la présentaton à projeter.

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes)

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes) Interprétaton crstallne de l somorphsme de Delgne-Illuse (cas des courbes) C. Huyghe et N. Wach 6 avrl 23 Abstract In 987, Delgne and Illuse proved the degeneraton of the spectral sequence de Hodge vers

Plus en détail

Tableau croisé dynamique

Tableau croisé dynamique Tableau crosé dynamque Tableau crosé dynamque Excel 2010 Créer un tableau crosé dynamque Un tableau crosé dynamque permet de résumer, d analyser, d explorer et de présenter des données de synthèse. S la

Plus en détail

CHAPITRE 2 LA SPECTROMETRIE RMN

CHAPITRE 2 LA SPECTROMETRIE RMN .J. Ducauze et D.N. Rutledge groparstech PITRE L SPETRMETRIE RMN «Spectrométre RMN» veut dre qu on s ntéresse aux nformatons qu apportent les spectres, c est-à-dre à un ensemble d observatons effectuées

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informatons de l'unté d'ensegnement Implantaton Cursus de ECAM Insttut Supéreur Industrel Bacheler en Scences ndustrelles Electronque applquée B2150 Cycle 1 Bloc 2 Quadrmestre 2 Pondératon 4 Nombre de

Plus en détail

VENTILATION DANS LES SILOS-TOURS CONVENTIONNELS À FOURRAGE

VENTILATION DANS LES SILOS-TOURS CONVENTIONNELS À FOURRAGE VENTILATION DANS LES SILOS-TOURS CONVENTIONNELS À FOURRAGE A. Bahloul a, R. Gravel a, B. Roberge a et N. Goyer a M. Chavez b et M. Reggo b a Insttut de Recherche Robert-Sauvé en Santé et Sécurté du Traval

Plus en détail

SEPTEMBRE 2009 RC-POS

SEPTEMBRE 2009 RC-POS SEPTEMBRE 2009 RC-POS (09_POS_131) (mn.) RAPPORT DE MINORITE DE LA COMMISSION THEMATIQUE DE LA SANTE PUBLIQUE chargée d'examner l'objet suvant: Postulat Fabenne Despot et consorts demandant à qu profte

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Modélisation des Réseaux Ad hoc par Graphes

Modélisation des Réseaux Ad hoc par Graphes SETIT 009 5 th Internatonal Conference: Scences of Electronc, Technologes of Informaton and Telecommuncatons March -6, 009 TUNISIA Modélsaton des Réseaux Ad hoc par Graphes M hamed Abdelmadd ALLALI et

Plus en détail

4.2.1. Le fondement analytique : le tarif douanier

4.2.1. Le fondement analytique : le tarif douanier 4.2.1. Le fondement analytque : le tarf douaner Le lbre-échange procure des bénéfces à tous les pays. Pourtant, durant des décennes, la plupart des natons ont cherché à contrôler leurs échanges en nstaurant

Plus en détail

Soutien : Modèle de Potts mars 2015

Soutien : Modèle de Potts mars 2015 Année 04 05 Physque Statstque hors équlbre et transtons de phase Souten : Modèle de Potts mars 05 On onsdère une varante du modèle d Isng, dte de Potts, dans laquelle les N degrés de lberté (qu on appellera

Plus en détail

7. Marché monétaire Partie 1

7. Marché monétaire Partie 1 7.1. Pourquo la monnae? 7.1.1. éfnton de l argent ou de la monnae 7. Marché monétare Parte 1! Mankw, chaptre 27 et chaptre 28 (sauf du bas de la page 76 au bas de la page 764) Réalsaton : Natacha Glson

Plus en détail

Partie I: Différences finies avec centrage partiel

Partie I: Différences finies avec centrage partiel U. PARIS VI et ÉCOLE POLYTECHNIQUE 7 anver 04 Spécalté Probablté et Fnance du Master de Scences et Technologe EXAMEN DU COURS ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES EN FINANCE verson 03/0/04

Plus en détail

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX *

LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * LES DIMENSIONS DANS LA PERCEPTION DES INTERVALLES MUSICAUX * "W.J.M. LEVELT et R. PLOMP (Insttute for Percepton R.V.O.-T.N.O., SOESTERBERG, PAYS-BAS) Introducton Il est ntéressant de savor de quelle manère

Plus en détail

Ecran tactile Instruction de montage

Ecran tactile Instruction de montage Instructon de montage Art. No.: 2071 xx 1. Consgnes de sécurté La mse en place et le montage d apparels électrques dovent oblgatorement être effectués par un électrcen spécalsé. Les prescrptons en matère

Plus en détail

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3.

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3. Chaptre 3 : Incerttudes CHAPITRE 3 INCERTITUDES Lgnes drectrces 2006 du GIEC pour les nventares natonaux de gaz à effet de serre 3.1 Volume 1 : Orentatons générales et établssement des rapports Auteurs

Plus en détail

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA)

MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) MASTER ECONOMETRIE ET STATISTIQUE APPLIQUEE (ESA) Unversté d Orléans Econométre des Varables Qualtatves Chaptre 3 Modèles à Varable Dépendante Lmtée Modèles Tobt Smples et Tobt Généralsés Chrstophe Hurln

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

Installation du dispositif Cisco TelePresence MX200 - Sur pied

Installation du dispositif Cisco TelePresence MX200 - Sur pied 1a Déballage du système vdéo MX200 oîte de la base du ped de support MX200 La boîte de la base du ped de support MX200 content la colonne du ped de support, deux caches et la base du ped de support, ans

Plus en détail