Chapitre III : Développer - Factoriser pour résoudre

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre III : Développer - Factoriser pour résoudre"

Transcription

1 Chapitre III : Développer - Factoriser pour résoudre Extrait du programme : I Vocabulaire Définition 1 :Développer, c est transformer un produit de facteurs en somme de termes. Factoriser, c est transformer une somme de termes en un produit de facteurs. Illustration : Exemple : On développe x(5 + y) = 5x + x y On factorise 2x 2 + 4x 7 et 4x + 2 sont des expressions développpées x(9x 5 1) et 5x 2 (x + 1)(x 1) sont des expressions factorisées 7(x 2 1) (1 + 4x)(2x + x) n est ni totalement développée, ni totalement factorisée II Distributivité de la multiplication sur l addition Règles de calcul : a, b, c, d et k sont des nombres réels quelconques. k(a + b) = ka + kb (distributivité simple) (a + b)(c + d) = ac + ad + bc + bd (double distributivité) 1

2 Point-méthode 5 : Développer et réduire une expression Développer et réduire les expressions suivantes : A = x(x 7) B = (5x + 2)(2x 1) C = 4(2x + ) (x + 5)(1 2x) Solution : Lorsqu on développe, il est primordial d être très vigilant avec les signes, notamment si un signe " " est devant une parenthèse A = x (x 7) A = x x x 7 A = x 2 21x On distribue le x en le multipliant à tous les termes de la parenthèse On fait attention à prendre en compte les signes B = (5x +2)(2x 1) On distribue le 5x en le multipliant avec les termes de la 2 e parenthèse, puis on distribue le 2. On fait l hirondelle. B = 5x 2x 5x x 2 1 On est attentif aux signes B = 10x 2 5x + 4x 2 On regroupe les x 2, puis tous les x en ajoutant leurs coefficients B = 10x 2 x 2 C = 4(2x + ) (x + 5)(1 2x) On va développer chacun des deux produits C = 4 2x + 4 (x 1 x 2x x) Comme il y a un devant le 2 e produit, il faut garder des parenthèses. C = 8x + 12 (x 2x x) C = 8x + 12 ( 2x 2 9x+5) On va retirer les parenthèses, mais changer TOUS les signes qui étaient à l intérieur. C = 8x x 2 +9x 5 C = 2x x + 7 III Les identités remarquables Identités remarquables : Pour a et b deux nombres réels quelconques, on a : (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a b)(a + b) = }{{} } a 2 {{ b } 2 Forme factorisée Forme développée Démonstration : Il suffit de développer les membres de gauche. CQFD 2

3 IV Méthodes de factorisation Point-méthode 6 : Factoriser grâce à un facteur commun Factoriser les expressions suivantes : A = 5a 25a B = (2x + 1)(7x ) + (2x + 1)(x + 2) C = (5x 1)(x 7) (5x 1)(5x ) Solution : A = 5a 25a 5a est un facteur commun aux 2 termes. A = 5a a 2 5a 5 On fait apparaître le facteur commun en l entourant en rouge. A = 5a(a 2 5) On place le facteur commun devant une parenthèse qui sera sur le même schéma que l opération de base : ici un terme un terme. Les termes dans la parenthèse sont les morceaux qui ne sont pas en commun. B = (2x + 1)(7x ) + (2x + 1)(x + 2) Ici le terme en commun est un bloc. on déplace tout par bloc B = (2x + 1)[(7x ) + (x + 2)] On retrouve le schéma «un bloc»+ «un bloc»de la 1 re ligne. B = (2x + 1)(7x + x + 2) On retire les parenthèses inutiles, car il n y a que des + B = (2x + 1)(8x 1) On réduit C = (5x 1)(x 7) (5x 1)(5x ) C = (5x 1)[(x 7) (5x )] Le schéma est «un bloc» «un bloc»donc on fait attention C = (5x 1)(x 7 5x+) En enlevant les parenthèses, derrière le, on change les signes C = (5x 1)( 2x 4) Point-méthode 7 : Factoriser grâce à une identité remarquable Factoriser : D = x x + 25 E = 9x 2 24x + 16 F = 9x 2 16 Solution : Lorsqu il n y a pas de facteur commun à TOUS les termes, on cherche si on a la forme d une identité remarquable D = x x + 25 Cette expression n a pas de facteur commun aux termes D = x x Elle est du type a 2 + 2ab + b 2 qui vaut (a + b) 2. D = x x a vaudrait x et b vaudrait 5. On a vérifié que 10x est bien 2ab. D = (x + 5) 2 E = 9x 2 24x + 16 Cette expression est du type a 2 2ab + b 2 qui vaut (a b) 2 E = (x) 2 24x Attention à bien mettre les termes complets au carré. E = (x) 2 2 x a vaut x, b vaut 4. On a vérifié que 24x est bien 2ab. E = (x 4) 2 F = 9x 2 16 ici, il n y a que 2 facteurs, donc du type a 2 b 2 qui vaut (a b)(a + b) F = (x) 2 4š a vaut x (attention aussi au coefficient) et b vaut 4. F = (x 4)(x + 4) Remarque : Une expression algébrique n est pas toujours factorisable! Par exemple, il est impossible de factoriser x

4 V Equations 1 Résolution graphique d équation Une équation peut-être résolue graphiquement ou algébriquement. Pour une résolution graphique, l énonce le stipule clairement en général. Il suffit de trouver les points de la courbe qui nous intéressent. Equation f (x) = k Les solutions sont les abscisses des points de la courbe C f dont l ordonnée est le nombre k La droite horizontale d équation y = k coupe la courbe en deux points, on lit les abscisses : S = {x 1 ; x 2 } Equation f (x) = 0 Les solutions sont les abscisses des points d intersection de la courbe C f avec l axe des abscisses. La courbe coupe l axe des abscisses en trois points ; on lit les asbcisses : S = {x 1 : x 2 ; x } Equation f (x) = g (x) Les solutions sont les abscisses des points d intersection des courbes C f et C g. Les courbes se coupent en trois points ; On lit les abscisses : S = {x 1 ; x 2 ; x } Point-méthode 8 : Résoudre graphiquement une équation Les courbes C f et C g ci-contre représentent deux fonctions f et g définies sur [ ; 6]. 1. Déterminer graphiquement les antécédents de 2 par la fonction f. 2. Résoudre graphiquement l équation f (x) = 2.. Résoudre graphiquement les équations f (x) = 0 et g (x) = Résoudre graphiquement l équation f (x) = g (x). 4

5 Solution : Point-méthode 8 : (suite) 1. On trace une droite horizontale sur y = 2 et on observe le nombre de points d intersections avec la courbe C f. On lit ensuite les abscisses de ces points d intersections. La droite y = 2 coupe la courbe C f en 2 opints d abscisses respectives : 2 et. Donc 2 admet 2 et pour antécédents par f. 2. la recherche de solutions de cette équation est équivalente à la recherche des antécédents! Il faut juste ajouter une conclusion sous forme d ensemble de soultions. D après 1, f (x) = 2 a poru ensemble solution : S = { 2;}.. On cherche les points d intersection de C f et C g avec l axe des abscisses. C f en a 2 (en x = 4 et x = 6), et C g n en a pas. Ainsi : f (x) = 0 : S = {4;6} et g (x) = 0 : S = 4. Les solutions cherchées sont les abscisses des points d intersections des deux courbes. Il y a deux points d intersection donc f (x) = g (x) a pour solutions : S = { 1;}. 2 Equations du premier degré Définition 2 : Soit f une fonction définie sur une partie I de R. Résoudre l équation f (x) = 0 sur I, c est trouver tous les nombres s de I qui vérifient f (s) = 0. x s appelle l inconnue de l équation. Et tout nombre s tel que f (s) = 0 s appelle une solution de l équation. Une équation du premier degré est une équation d inconnue x de la forme : ax + b = 0 avec a 0 Remarque : Ne pas confondre une équation (avec un signe =, comme par exemple, 2x + = 0) avec une expression algébrique (comme par exemple 2x + ). Point-méthode 9 : Résoudre une équation du 1 er degré Résoudre algébriquement les équations suivantes : 1. 4x + 2 = 2x x 1 = 2 (6x + 1). 2x + 4 = 5 (x + 6) Solution : 1. On commence par mettre tous les x à gauche, puis les «pas x»à droite. 4x + 2 = 2x 5 On passe 2x à gauche, en soustrayant 2x de chaque côté 4x 2x + 2 = 5 On soustrait 2 de chaque côté 2x = 5 2 On divise par 2 de chaque côté x = 7 Si le mot résoudre apparait dans l énoncé, la conclusion sera toujours sous la forme d un 2 S =... { S = 7 } x 1 = 2 (6x + 1) On développe d abord toutes les parenthèses en simplifiant en même temps 4x 1 = 4x + 2 On soustrait 4x de chaque côté 1 = 2 S = On arrive à une absurdité, cette équation n a donc pas de solution 5

6 Point-méthode 9 (suite). 2x + 4 = 5 (x + 6) On développe 2x + 4 = 5 x x 5 x = 10 4 On soustrait 5 x et 4 de chaque côté On met tout au même dénominateur du côté où apparait la fraction 6 x 5 x = 6 On additionne les coefficients devant les x 11 x = 6 On multiplie par de chaque côté 11x = 18 On divise par 11 de chaque côté x = 18 { 11 S = 18 } 11 Equations produits Une équation du type (x + 1)(x 5) = 0 est une équation produit. Théorème : règle du produit nul Un produit est nul si et seulement si un de ses facteurs est nul : A B = 0 équivaut à A = 0 ou B = 0 Point-méthode 10 : Résoudre une équation grâce à la factorisation Résoudre les équations suivantes : 1. (x + 6)( 8x) = 0. 4x 2 9 = 0 2. x(x 1) = (x + )x 4. 2(x 2) = 5(x 2) 2 Solution : Pour résoudre une équation qui est fraction avec une inconnue au dénominateur, et qui n est pas du premier degré, il faut : Tout regrouper à gauche (et non pas isoler les x comme pour le 1 er degré) Avoir 0 à droite Factoriser (avec un facteur commun ou une identité remarquable) pour avoir un produit à gauche utiliser la règle du produit nul. 1. (x + 6)( 8x) = 0 déjà sous forme d un produit égal à 0 x + 6 = 0 ou 8x = 0 x = 6 8x = x = { S = 6; } On n oublie pas de conclure 8 8 6

7 Point-méthode 10 (suite) 2. Il faut modifier l expression x(x + 1) = (x )x On passe tout à gauche x(x + 1) (x + )x = 0 On factorise par x x(x 1 (x + )) = 0 On fait TRES attention aux parenthèses avec le x(x 1 x ) = 0 On simplifie la parenthèse 4x = 0 on s est ramené au 1 er degré finalement! On divise tout par 4 x = 0 S = {0}. 4x 2 9 = 0 Tout est à gauche déjà, on factorise. Mais il n y a pas de facteur commun, donc on cherche une identité remarquable. c est la e : a 2 b 2 = (a b)(a + b) 4x 2 9 = 0 (2x) 2 2 = 0 Attention à écrire 4 comme un carré (2x )(2x + ) = 0 On a un produit nul 2x = 0 ou 2x + = 0 2x = 2x = x = 2 x = 2 { } S = 2 ; 2 4. l expression est à modifier 2(x 2) = 5(x 2) 2 On passe tout à gauche 2(x 2) 5(x 2) 2 = 0 On factorise par (x 2). Attention au carré! (x 2)( 2 5(x 2)) = 0 On développe la 2 e parenthèse, attention au (x 2)( 2 5x + 10) = 0 (x 2)( 5x + 8) = 0 On a un produit nul x 2 = 0 ou 5x + 8 = 0 { x = 2 x = 8 S = 2; 8 } Equations quotients Une équation quotient est lorsque l inconnue se trouve au dénominateur, par exemple : 5x + 2x + 5 = 0 Théorème : règle du quotient nul Un quotient est nul si et seulement si son numérateur est nul et son dénominateur est non nul : A = 0 équivaut à A = 0 ET B 0 B Point-méthode 11 : Résoudre une équation quotient Résoudre les équations suivantes : 7 x 1. x + 4 = x = 2 x + 2. (2 + x)( 5x + ) = 0 6x + 4 7

8 Point-méthode 11 (suite) Solution : Pour résoudre une équation avec une inconnue au dénominateur, il faut : Tout mettre à gauche et avoir 0 à droite Mettre tout sur le même dénominateur (sans jamais simplifier par une expression avec du x) Faire 2 colonnes Une pour résoudre le numérateur égal à 0 (équation du 1 er degré ou produit) Une pouré résoudre le dénominateur différent de 0 (ce sont les valeurs interdites) Conclure en confrontant les solutions de la 1 re colonne avec les valeurs interdites de la 2 e x x + 4 = 0 C est un quotient nul 7 x = 0 ET x = x x 4 }{{}}{{} solution potentielle valeur interdite Ici les solutions potentielles sont différentes des valeurs interdites, donc toutes les solutions potientielles sont bien des solutions finales S = {7} Attention, on ne met JAMAIS les valeurs interdites dans l ensemble solutions 2. il faut modifier l expression 1 x 1 x 2 x + 2 = 2 x + 2 On passe tout à gauche, attention au = 0 On met tout sur le même dénominateur (en faisant une multiplication) x + 2 x(x + 2) 2x x(x + 2) = 0 On écrit une seule fraction, attention au à distribuer sur la 2 e comme si c était une parenthèse x + 2 = 0 x + 2 2x x(x + 2) x = x }{{} solution potentielle S = {2} x(x + 2) = 0 On ne développe JAMAIS le dénominateur = 0 c est un quotient nul ET x(x + 2) 0 x 0 x x 2 }{{} valeurs interdites 2 ne fait pas partie des valeurs interdites, donc est bien solution 8

9 Point-méthode 11 (suite). C est un quotient nul. Il ne faut jamais développer un numérateur qui est bien factorisé (2 + x)( 5x + ) = 0 6x + 4 est aussi une valeur interdire, donc elle n est pas dans l en- (2 + x)( 5x + ) = x = 0 OU 5x + = 0 x = 2 x = } {{ 5 } solutions potentielles { } S = La solution potentielle 2 5 semble solution. ET 6x x 4 x 2 }{{} valeur interdite Point-méthode 12 : Résoudre un problème conduisant à une équation ABCD est un carré de côté 20 cm. AMNP est un carré. Où placer le point M sur le segment [AB] pour que l aire de la partie hachurée soit égale à 51cm 2? A P N M B D C Solution : Pour résoudre un problème conduisant à une équation, il faut respecter les quatre étapes suivantes : ➀ Choix de l inconnue. Ensemble de définition de l inconnue. ➁ Mise en équation ➂ Résolution de l équation ➃ Conclusion avec confrontation de l ensemble de définition 9

10 Point-méthode 12 (suite) ➀ Choix de l inconnue-ensemble de définition : Comme on cherche la place du point M, on devra choisir une longueur inconnue avec le point M. Soit x la longueur AM en cm. M [AB] et AB = 20cm donc x [0;20] ➁ Mise en équation : L aire de ABC D est = 400cm 2 L aire de AM N P est de x 2 donc l aire de la partie hachurée est : A (x) = A (ABC D) A (AM N P) A (x) = 400 x 2 Répondre au problème revient donc à résoudre l équation : A (x) = x 2 = 51 ➂ Résolution de l équation : 400 x 2 = 51 pas du 1 er degré, donc on passe tout à gauche 49 x 2 = 0 On factorise grâce à la e identité : a 2 b 2 = (a b)(a + b) (7 x)(7 + x) = 0 Equation produit nul 7 x = 0 ou 7 + x = 0 7 = x x = 7 donc S = { 7;7} ➃ Conclusion : Or x [0; 20] donc la seule solution est x = 7. Ainsi, M doit être situé à 7cm de A. 10

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

CHAPITRE 2 CALCULS ALGEBRIQUES

CHAPITRE 2 CALCULS ALGEBRIQUES Classe de Troisième CHAPITRE CALCULS ALGEBRIQUES UTILISER DES LETTRES... 34 EXPRESSIONS EQUIVALENTES... 36 VOCABULAIRE DU CALCUL LITTERAL... 37 REDUCTIONS D'ECRITURES... 39 DEVELOPPER UN PRODUIT... 40

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements 3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

C H A P I T R E 2 C A L C U L S A L G E B R I Q U E S

C H A P I T R E 2 C A L C U L S A L G E B R I Q U E S Classe de Troisième C H A P I T R E C A L C U L S A L G E B R I Q U E S UTILISER DES LETTRES...4 EXPRESSIONS ÉQUIVALENTES...6 VOCABULAIRE DU CALCUL LITTÉRAL...7 RÉDUCTIONS D'ÉCRITURES...9 DÉVELOPPER UN

Plus en détail

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48 1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles

Plus en détail

Corrections preparation BB 2012

Corrections preparation BB 2012 Corrections preparation BB 2012 Brevet 2007 - Solution Activités numériques 1 Les explications ne sont pas demandées mais nous vous les fournissons tout de même. 1) la bonne réponse est 9x 2 + 30x + 25

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

équations du second degré.

équations du second degré. COURS DE MATHEMATIQUES Fichier.pdf du cours en vidéo du même nom Les équations du second degré Factorisation Ce cours porte exclusivement sur la notion de factorisation relative aux équations du second

Plus en détail

I-ACTIVITÉS NUMÉRIQUES (12 points)

I-ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC 1_DECEMBRE 2011 I-ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 : (4 pts) Soit les expressions 1) Calculer A et B en détaillant les étapes du calcul et écrire le résultat sous la forme d'une

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Programme de 5 ème en mathématiques

Programme de 5 ème en mathématiques Programme de 5 ème en mathématiques 1. PRIORITE DES OPERATIONS ; DISTRIBUTIVITE 3 I. Suite d opérations sans parenthèses 3 II. Suites d opérations avec parenthèses 4 III. Ecritures avec des lettres 5 IV.

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Les Fractions Les exercices d application situés dans le cours ont leurs corrigés en fin de dossier

Les Fractions Les exercices d application situés dans le cours ont leurs corrigés en fin de dossier Les Fractions Les eercices d application situés dans le cours ont leurs corrigés en fin de dossier 1 - Définition d une fraction Une fraction est l écriture d un quotient entre deu nombres entiers : par

Plus en détail

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide 1 Équations du e degré Résoudre dans R les équations suivantes : 1 3 5 = 0 5 + = 0 3 + 6 = 0 4 6 + 9 = 0 5 ( 3) = ( 1) 6 ( )( + 3) = ( )(4 + 1) Équations avec changements de variable Résoudre dans R les

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Accompagnement personnalisé

Accompagnement personnalisé 1 Les fractions Accompagnement personnalisé O. Lader Propriété 1.1. Simplification dans une fraction : a x b x = a b Exemples. 4 6 = 3 = 3, 15 5 = 3 5, 1x x = 1 x. Propriété 1.. Pour tous nombres a, b,

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Division de Polynômes

Division de Polynômes LGL Cours de Mathématiques 00 Division de Polynômes A INTRODUCTION Motivations: * Résoudre des équations d un degré supérieur à * Représenter des fonctions algébriques en se basant et sur des fonctions

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes.

Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie de leurs courbes. www.mathsenligne.com 2N3 - FONCTION CARRE ET SECOND DEGRE COURS (1/6) CONTENUS CAPACITES ATTENDUES COMMENTAIRES Expressions algébriques Transformations d expressions algébriques en vue d une résolution

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h Athénée Royal d'uccle 1 Cours de Mathématique 5 ème année Les bases pour les math 6h A.Droesbeke Version : 015 Table des matières I Algèbre 1 1 Rappel du cours de 3 ème 3 1.1 Les exposants......................................

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

Collège Jean-Baptiste Clément

Collège Jean-Baptiste Clément Collège Jean-Baptiste Clément 5-7, rue Albert Chardavoine 93440 DUGNY réalisés par M. LENZEN. Également disponibles en consultation sur son site internet http://www.capes-de-maths.com/ 01.43.11.11.40 01.48.37.46.59

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Première S Exercices valeur absolue 2010-2011

Première S Exercices valeur absolue 2010-2011 Première S Exercices valeur absolue 2010-2011 Exercice 1 : Résoudre dans Y, les inéquations suivantes : a) 2 < x + 1 < 3 b) 1 x 3 < 4 2 x 3 > 2 c) x + 4 3 Exercice 2 : On souhaite résoudre dans Y l équation

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB Chapitre 3 La notion de vecteurs CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Vecteurs Définition de la translation qui transforme un point A du plan en un point B. Vecteur AB associé. Égalité de deux vecteurs

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Cours de mathématiques. Thomas Rey

Cours de mathématiques. Thomas Rey Cours de mathématiques Thomas Rey Classe de seconde le 29 août 2010 «Ce qui est affirmé sans preuve peut être nié sans preuve.» EUCLIDE D ALEXANDRIE Table des matières 1 Fonctions numériques 5 1.1 Notion

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Cours de mathématiques pour la classe de Seconde

Cours de mathématiques pour la classe de Seconde Cours de mathématiques pour la classe de Seconde Vincent Dujardin - Florent Girod Année scolaire 04 / 05. Externat Notre Dame - Grenoble Table des matières 0 Ensembles de nombres et intervalles de R 3

Plus en détail

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures Mathématiques Contrôle commun de Seconde Mardi 01 mars 011 Durée de l épreuve : heures L usage de la calculatrice est autorisé. Aucun prêt de matériel n est toléré. La qualité de la rédaction et le soin

Plus en détail

Une année de Mathématiques en classe de Première S

Une année de Mathématiques en classe de Première S Une année de Mathématiques en classe de Première S Freddy Mérit Année scolaire 2012-2013 Ce manuel, à destination des élèves de Première S, a été en partie réalisé à partir de la consultation des ouvrages

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Première ES DS1 second degré 2014-2015 S1

Première ES DS1 second degré 2014-2015 S1 1 Première ES DS1 second degré 2014-2015 S1 Exercice 1 : (3 points) Soit la parabole d équation y = 25x² - 10x + 1. On considère cette parabole représentée dans un repère (O ;I,J). 1) Déterminer les coordonnées

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

SYSTEMES EXERCICES CORRIGES

SYSTEMES EXERCICES CORRIGES Exercice n. SYSTEMES EXERCICES CRRIGES Parmi les couples (8,), (,-,5), (,), (5,), lequel est solution du système Exercice n. x+ y = 7x y= 8 Résoudre par substitution : ) ) x 5y = x+ y= 6 x+ y = 6 5x y=

Plus en détail

f (x 2 ) f (x 1 ) x 2 x 1 = a = ax 2+ b ax 1 b x 2 x 1 x 2 x 1 Soit a= 1 5 3+6 = 2 3

f (x 2 ) f (x 1 ) x 2 x 1 = a = ax 2+ b ax 1 b x 2 x 1 x 2 x 1 Soit a= 1 5 3+6 = 2 3 I FONCTION AFFINE ÉFINITION Soit a et b deu réels. La fonction f définie sur R par f() = a + b est une fonction affine. EXEMPLES La fonction f définie surrpar f()= 2 3 est une fonction affine avec a= 2

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Extrait de cours maths 3e. Multiples et diviseurs

Extrait de cours maths 3e. Multiples et diviseurs Extrait de cours maths 3e I) Multiples et diviseurs Multiples et diviseurs Un multiple d'un nombre est un produit dont un des facteurs est ce nombre. Un diviseur du produit est un facteur de ce produit.

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

JMlesMathsFaciles.fr.nf. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT.

JMlesMathsFaciles.fr.nf. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE - NOMBRES 1. NOMBRES ENTIERS, DECIMAUX, COMPARAISON Ex : 1345, 789 est un nombre

Plus en détail

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S b.delap@wanadoo.fr Utiliser un graphique pour résoudre des inéquations à une seule inconnue. 1 er cas : les valeurs sont toutes positives : Sur

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

DOSSIER D APPRENTISSAGE

DOSSIER D APPRENTISSAGE Livret 4 NOMBRES ET CALCULS DOSSIER D APPRENTISSAGE ET/OU DE CONSOLIDATION (Deuxième partie) Ordre dans N N9 Le but de ce dossier est de t aider à trouver le plus petit de deux nombres qui te sont donnés.

Plus en détail

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers Partie numérique Eercice 1 1) Les nombres 88 et sont pairs donc ils sont divisibles par. Ils ne sont donc pas premiers entre eu car leur Plus Grand Commun Diviseur est supérieur ou égal à. ) Pour calculer

Plus en détail

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin.

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin. COLLÈGE LA PRÉSENTATION BREVET BLANC Mai 2013 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Exercice 40 page 142. Résoudre dans R, à l aide d un tableau de signe, les inéquations suivantes : a) (5x 9)(5x 8) 0. b) 9 10x.

Exercice 40 page 142. Résoudre dans R, à l aide d un tableau de signe, les inéquations suivantes : a) (5x 9)(5x 8) 0. b) 9 10x. Exercice 4 page 142 Résoudre dans R, à l aide d un tableau de signe, les inéquations suivantes : a) (5x 9)(5x 8) b) 9 1x 9x 5 > c) 2x+6 2 4x d) ( 3x 9)(7x 8) < a) Résolution de l inéquation (5x 9)(5x 8)

Plus en détail

Cours de mathématiques de cinquième

Cours de mathématiques de cinquième Cours de mathématiques de cinquième Bertrand Carry SOMMAIRE 1. Factorisation, développement... 1 1.1 Quelques règles d écriture de calculs... 1 1.1.1 Parenthèses :... 1 1.1.2 Multiplication :... 1 1.2

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

L essentiel du cours

L essentiel du cours Terminale S et concours L essentiel du cours mathématiques Arithmétique - matrices Jean-Marc FITOUSSI Progress Editions Table des matières Arithmétique 01 LA DIVISIBILITÉ page 6 02 LA DIVISION EUCLIDIENNE

Plus en détail

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd Cours de mathématiques fondamentales 1 année, DUT GEA Mourad Abouzaïd 9 décembre 2008 2 Table des matières Introduction 7 0 Rappels d algèbre élémentaire 9 0.1 Calcul algébrique................................

Plus en détail

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne Exo7 Arithmétique Vidéo partie 1. Division euclidienne et pgcd Vidéo partie 2. Théorème de Bézout Vidéo partie 3. Nombres premiers Vidéo partie 4. Congruences Exercices Arithmétique dans Z Préambule Une

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier maths Seconde Cours de mathématiques 2010-2011 F.Lagrave - Lycée Beaussier cours de mathématiques cours avec exercices T A B L E D E S M A T I È R E S 1 Généralités sur les fonctions 7 1.1 Notion de

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante.

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante. Chapitre : Fonctions de référence I Fonctions affines Définition d'une fonction affine f est une fonction affine si, et seulement si, il existe deux réels a et b tels que pour tout x, f x ( ) = ax + b

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

JMlesMathsFaciles.fr.nf. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT.

JMlesMathsFaciles.fr.nf. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE - NOMBRES 1. NOMBRES ENTIERS, DECIMAUX, COMPARAISON Ex : 1345, 789 est un nombre

Plus en détail

DNB, Métropole, correction, mathématiques

DNB, Métropole, correction, mathématiques DNB, Métropole, correction, mathématiques jeudi 28 juin 2012 Activités numériques, 12 points Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Exercice n o 1 1.

Plus en détail

Cours de mathématiques pour la classe de Sixième

Cours de mathématiques pour la classe de Sixième Cours de mathématiques pour la classe de Sixième Anne Craighero - Florent Girod 1 Année scolaire 2014 / 2015 1. Externat Notre Dame - Grenoble Table des matières 1 Nombres décimaux 4 I lire et écrire des

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

82 exercices de mathématiques pour 2 nde

82 exercices de mathématiques pour 2 nde 4 octobre 05 8 exercices de mathématiques pour nde Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr 4 octobre 05 I Calculs & ordres.................................. I. Calculs divers........................................

Plus en détail

Les droites dans un repère

Les droites dans un repère R.Oppé Chapitre Bac Pro Les droites dans un repère Les apprentissages : Comment construire une droite? Comment trouver l équation d une droite? Les outils et leurs modes d emploi : ( à consulter chaque

Plus en détail