BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I. Durée : 3 heures Coefficient : 2 ÉPREUVE OBLIGATOIRE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I. Durée : 3 heures Coefficient : 2 ÉPREUVE OBLIGATOIRE"

Transcription

1 BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I Durée : heures Coeffcent : 2 ÉPREUVE OBLIGATOIRE Le (la) canddat (e) dot trater tous les eercces. La qualté de la rédacton, la clarté et la précson des rasonnements entreront pour une part mportante dans l'apprécaton des copes. L'usage des calculatrces est autorsé. Le formulare offcel de mathématque est jont au sujet. EXERCICE N (5 ponts) Dans un ensemble E mun d une structure d algèbre de Boole, on consdère l epresson A = ab c + a b c + a b c +ab c + a b c. ) a) Représenter A dans un tableau de Karnaugh. En dédure une smplfcaton de A. b) Retrouver par le calcul le résultat précédent. 2 ) On consdère l opérateur «mplcaton», noté, défn par : ( y) = + y. a) Calculer : ( 0). b) Démontrer que : + y = ( 0) y pus que : y (( ) y) = 0 0. c) Dédure des questons précédentes une écrture de A à l ade des varables a, b, c, de la constante 0 et du seul opérateur «mplcaton» [les opérateurs +,., complémentaton, sont eclus]. Page /

2 EXERCICE N 2 (8 ponts) Parte A On consdère la foncton f de varable réelle défne sur l ntervalle [ ; 0] par : f ( ) On désgne par ( C ) la courbe représentatve de f dans un repère orthogonal ( untés graphques : cm sur l ae des abscsses ; 0,05 cm sur l ae des ordonnées). 7 = + e 2 ) Justfer le sgne de la dérvée de f sur l ntervalle [ ; 0], pus dresser le tableau de varaton de f sur cet ntervalle. ) Démontrer que, pour tout réel, on a f ' + 6 ) Détermner une équaton de la tangente (T) à la courbe ( C ) au pont A d abscsse 2. ) Tracer la drote ( T ) et la courbe ( C ) dans le repère donné = e. Parte B Avant la commercalsaton d un nouveau système d alarme, la socété SECUPRO réalse une enquête auprès des entreprses de la régon Rhône-Alpes afn de détermner le nombre d acheteurs potentels du logcel en foncton de son pr de vente. Les résultats de cette enquête sont donnés dans le tableau suvant : : pr en centane d euros y : nombre d acheteurs potentels L allure du nuage de ponts de la sére (, ) y condut à poser z = ln y. ) Compléter après l avor reprodut le tableau suvant, en arrondssant les valeurs de z au mllème le plus proche : z = ln y 2 ) Donner la valeur arronde à 0 - près du coeffcent de corrélaton lnéare de la sére. Un ajustement affne est-l justfé? ) Détermner une équaton de la drote de régresson de z en, sous la forme z = a + b, a sera arrond au centème le plus proche et b arrond à l enter le plus proche. BTS INFORMATIQUE DE GESTION E2 MATHÉMATIQUES Page 2/

3 ) Dédure, du résultat obtenu à la queston précédente, une epresson de y en foncton de. Utlser cette epresson pour estmer le nombre d acheteurs potentels du logcel s le pr de vente est de 000 euros. Parte C Le pr de revent d un système d alarme est de 00 euros. On suppose dans cette parte, qu une estmaton du nombre d acheteurs potentels est le pr de vente eprmé en centane d euros. + 6 y = e, où est ) Justfer que la foncton f, étudée dans la parte A, donne une estmaton du bénéfce réalsé par la socété SECUPRO en foncton du pr de vente untare proposé pour le système d alarme. 2 ) A quel pr la socété dot-elle proposer le système d alarme pour que ce bénéfce sot mamum? Quel est alors ce bénéfce à 00 euros près? EXERCICE N (7 ponts) Une usne fabrque en grande sére des pèces susceptbles de présenter deu défauts notés a et b. Une étude statstque de la producton condut au résultats suvants : 5 % des pèces présentent le défaut a, % des pèces présentent le défaut b, % des pèces présentent les deu défauts. On prélève au hasard une pèce dans la producton. On note A l événement : «la pèce présente le défaut a», B l événement : «la pèce présente le défaut b». Parte A ) a) Les évènements A et B sont-ls ndépendants? b) Calculer la probablté de l évènement A sachant que B est réalsé. 2 ) a) Calculer la probablté de l événement : C : «La pèce prélevée présente au mons un défaut». b) Sot D l événement : «La pèce prélevée ne présente aucun défaut». Montrer que la probablté de l événement D est 0,92. BTS INFORMATIQUE DE GESTION E2 MATHÉMATIQUES Page /

4 Parte B On prélève au hasard un lot de 00 pèces dans la producton. On assmle ce prélèvement à un trage avec remse. Sot X la varable aléatore qu, à chaque prélèvement de 00 pèces, assoce le nombre de pèces du lot ne présentant aucun défaut. Dans cette parte, on donnera les valeurs décmales arrondes à 0 près des probabltés demandées. ) a) Justfer que la lo de probablté suve par la varable X est une lo bnomale dont on précsera les paramètres. b) Calculer la probablté d avor eactement une pèce présentant au mons un défaut dans un lot. 2 ) On décde d approcher la lo de la varable aléatore X par la lo normale de paramètres m = 92 et d écart type σ = 2,7. On note Y la varable aléatore suvant la lo normale de paramètres 92 et 2,7. a) Justfer le cho des paramètres m et σ. b) Calculer la probablté pour qu un lot de 00 pèces contenne au plus 86 pèces sans défaut, c està-dre P (Y 86,5). c) Calculer la probablté pour qu un lot de 00 pèces contenne au mons 90 % de pèces sans défaut, c est-à-dre P (Y ³ 89,5). BTS INFORMATIQUE DE GESTION E2 MATHÉMATIQUES Page /

5 Eercce I Eercce II CORRIGE DU SUJET : A BTS INFORMATIQUE DE GESTION SESSION 2002 EPREUVE DE MATHEMATIQUES E2 Queston Correcton Barème )a) a a b b proposé c c c )a) On lt : A = a b + c. )b) A = a b c + a b c + a b c + a b c + ab c = c + c a b + a + a b c + a b c = b c + b a + a c = b c + b a + a a + c = b c + b a + b c = b a + c.,5 0 = + 0 =. 2)a) 2)b) ( 0 y) = ( y) = + y = + y. (( ) ) ( ) 2)c) = (((( a ) b) ) ( c )) A)) On a : A)2) A)2) 0 y 0 = + y 0 = + y = y. A é æ öù æ ö æ ö f ' = e ê + - ç - e e ú= ç - + = ç - + ë è øû è ø è ø 7 f ' ³ 0 Û - + ³ 0 Û ³ 0 Û 7. La dérvée de f est postve sur l ntervalle [ ; 7], négatve sur [7 ; 0]. 7 0 f '( ) f ( ) 7 e. 27e A)) 7 y = f '( 2) ( - 2) + f ( 2) = - ( - 2) + 2 L équaton cherchée est : 7 sot : y = A)) Vor dessn B)) z 5,298,605,92 2,996 2,0,609 B)2) On trouve r = - 0,999, valeur arronde à 0 - près : cette valeur, très vosne de, permet d affrmer qu un ajustement affne est à pror justfé. B)) On trouve, pour l équaton de la drote de régresson de z en, sous la forme demandée : z = - 0, BTS Informatque de Geston Sesson 2002 Corrgé de l épreuve de mathématques E2 Sujet A Page sur

6 B)) On trouve, avec les égaltés z = ln y et z = - 0, : y = e. Le nombre d acheteurs potentels, pour un pr de 000 euros, peut être estmé à car : 6- Eercce III C)) C)2) 0 6,5 e - + = e» (on a remplacé par 0 dans la relaton précédente donnant y en foncton de ). Les ventes correspondent à la somme (en centanes d euros) : retrancher le pr de revent total (estmé) : e. Le bénéfce (montant estmé) de la socété s élève donc à : e e = ( - ) e. On retrouve l epresson de la foncton f étudée dans la parte A. 6 e - + à laquelle l faut On a trouvé (pour la foncton f ) un mamum égal à e pour = 7 : cela sgnfe que la socété dot proposer, pour son système d alarme, un pr de 700 euros pour espérer un bénéfce mamal, égal dans ce cas à = A))a) On peut résumer les données en écrvant : P A = 0,05, P B = 0,0, P A Ç B = 0,0. A))b) Les événements A et B sont ndépendants s P A Ç B = P A P B e euros à 00 euros près. Or P A P B = 0,002 et 0,002 ¹ 0,0 : les deu événements A et B ne sont donc pas ndépendants. La probablté demandée correspond au calcul : ( ) P A B 0, 0 PB A = = = 0, 25. P A 0, 0 A)2)a) La probablté demandée correspond au calcul : P A È B = P A + P B - P A Ç B = 0,05 + 0,0-0,0 = 0,08. On a donc : P( C) = 0,08. A)2)b) D est l événement contrare de C, donc P( D) = - P( C) = 0,92. B))a) On répète 00 fos, de manère ndépendante, la même epérence, n ayant que deu ssues possbles : «la pèce prélevée ne présente aucun défaut» avec une probablté p = 0,92 «la pèce prélevée présente au mons un défaut» avec une probablté q = p. On reconnaît un schéma de Bernoull, la varable X sut la lo bnomale b ( 00, 0,92 ). B))b) 99 La probablté demandée est : C à 0 - près par défaut P X=99 = 0,92 0,08 = 0,002, résultat donné B)2)a) On sat que lorsqu une varable aléatore suvant la lo bnomale ( n, p) par une varable aléatore suvant la lo normale n ( m, σ ) avec B)2)b) b est approchée m = n p = 00 0,92 = 92 et σ = npq = 7,6 = 2,7 à 0 près. æy ,5-92ö P Y 86,5 Pç P T 2,0 2,0 è 2,7 2,7 ø ( ) = = ( - ) = - Π - = 0, 02 à 0 près par défaut. B)2)c) - On trouve de même P Y ³ 89,5 = P T 0,92 = 0,82 à 0 près par défaut BTS Informatque de Geston Sesson 2002 Corrgé de l épreuve de mathématques E2 Sujet A Page 2 sur

7 TRACE DE LA COURBE QUESTION EXERCICE 2 : A)) Jo I BTS Informatque de Geston Sesson 2002 Corrgé de l épreuve de mathématques E2 Sujet A Page sur

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

CHAPITRE 2. La prévision des ventes

CHAPITRE 2. La prévision des ventes CHAPITRE La prévson des ventes C est en foncton des prévsons de ventes que l entreprse détermne la producton, les achats et les nvestssements nécessares. La prévson des ventes condtonne l ensemble de la

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

TES - Accompagnement: Probabilités conditionnelles,, variable aléatoire et loi binomiale

TES - Accompagnement: Probabilités conditionnelles,, variable aléatoire et loi binomiale TS - ccompagnement: Probabltés condtonnelles,, varable aléatore et lo bnomale xercce 1 'asthme est une malade nflammatore chronque des voes respratores en constante augmentaton. n France, les statstques

Plus en détail

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution.

Exercice 1. Enoncé 1. Nombre de jours d absences. Nombre d étudiants. 1 ) Représenter graphiquement cette distribution. Républque Tunsenne Présdence du Gouvernement Ecole Natonale d Admnstraton 4, Avenue du Dr Calmette Mutuelle-vlle 08 Tuns Tél. (+6) 848 00 Fa (+6) 794 88 www.ena.nat.tn STATISTIQUE ET CALCUL DE PROBABILITE

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Exercices de révision pour examen #1

Exercices de révision pour examen #1 Exercces de révson pour examen #1 Queston 1. Questons théorques. a) Nommez les courants qu exstent quand une dode est en équlbre. Courants de dffuson et de drft. b) Dessnez la structure physque réelle

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Exercices sur la géométrie plane

Exercices sur la géométrie plane Eercces sur la géoétre plane Sot un trangle équlatéral et M un pont ntéreur au trangle n note H, K, L les projetés orthogonau respectfs de M sur les tros côtés éontrer que la soe MH + MK + ML est constante

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type EAME FIAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSIO 1 - Correcton - Exercce 1 : 1) Questons à Chox Multples (QCM). Cochez la bonne réponse Classer ces statstques selon leur nature (ndcateur de poston

Plus en détail

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles

La fourniture de biens et facteurs publics en présence de ménages et d entreprises mobiles La fournture de bens et facteurs publcs en présence de ménages et d entreprses mobles Pascale Duran-Vgneron évrer 007 Le modèle On suppose un pays drgé par un gouvernement central ayant compétence sur

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite.

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite. www.mathsenlgne.com 2G3 - EQUATINS DE DRITES CURS (1/5) CNTENUS CAPACITES ATTENDUES CMMENTAIRES Drote comme courbe représentatve d une foncton affne. - Tracer une drote dans le plan repéré. - Interpréter

Plus en détail

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM.

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM. Exercce n 1 Cet exercce propose de détermner l équlbre IS/LM sur la base d une économe dépourvue de présence étatque. Pour ce fare l convent, dans un premer temps de détermner la relaton (IS) marquant

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Evaluation des actions

Evaluation des actions Akrem ISCAE archés nancers : Evaluaton des actons Evaluaton des actons Secton I : Dénton hypothèses et notatons I-- La noton d un act nancer -a- Dénton Un act nancer est tout ben qu un nvestsseur désre

Plus en détail

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr

Modélisations du risque en assurance automobile. Michel Grun-Rehomme Université Paris 2 et Ensae Email: grun@ensae.fr Modélsatons du rsque en assurance automoble Mchel Grun-Rehomme Unversté Pars 2 et Ensae Emal: grun@ensae.fr 1 Modélsatons du rsque en assurance automoble La snstralté est mesurée en terme de fréquence

Plus en détail

Exercices Électrocinétique

Exercices Électrocinétique ercces Électrocnétque alculs de tensons et de courants -21 éseau à deu malles Détermner, pour le crcut c-contre, l ntensté qu 1 2 traverse la résstance 2 et la tenson u au bornes de la résstance 3 : 3

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation)

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation) GENESS - Generalzed System for mputaton Smulatons (Système généralsé pour smuler l mputaton) GENESS est un système qu permet d exécuter des smulatons en présence d mputaton. L utlsateur fournt un ensemble

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 3 UNIVERSITE MONTESQUIEU BORDEAUX IV Lcence 3 ère année Econome - Geston Année unverstare 2006-2007 Semestre 2 Prévsons Fnancères Travaux Drgés - Séances n 3 «Les Crtères Fondamentaux des Chox d Investssement»

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

par Ph. Bois, Ch. Obled et I. Zin

par Ph. Bois, Ch. Obled et I. Zin Insttut Natonal Polytechnque de Grenoble ENS d'hydraulque et Mécanque de Grenoble ENSHMG INTRODUCTION au TRAITEMENT de DONNEES en HYDROLOGIE par Ph Bos, Ch Obled et I Zn Professeurs et Maître de Conférences

Plus en détail

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7

Première partie. Proportionnalité. 1 Reconnaître des situations de proportionnalité... 7 Premère parte Proportonnalté 1 Reconnaître des stuatons de proportonnalté....... 7 2 Trater des stuatons de proportonnalté en utlsant un rapport de lnéarté........................ 8 3 Trater des stuatons

Plus en détail

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010.

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010. Master 1ère année de Mathématques Analyse Numérque - Projet A rendre au plus tard le jour de l examen fnal, en Janver 2010. CMI, Unversté de Provence Année 2009-2010 Ce qu vous est demandé : Rédger les

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

éléments d'analyse statistique

éléments d'analyse statistique éléments danalse statstque applcaton à lhdrologe deuxème édton D. Ther octobre 989 R 30 73 EAU 4S 89 BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES SERVICES SOL ET SOUS-SOL Département Eau B.P. 6009-45060

Plus en détail

Chapitre 5. Menu de SUPPORT

Chapitre 5. Menu de SUPPORT 155 Chaptre 5. Menu de SUPPORT Ce que vous apprendrez dans ce chaptre Ce chaptre vous présentera des routnes supplémentares susceptbles de vous ader dans les analyses de données présentées dans le chaptre

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Chapitre 1 : Images données par une lentille mince convergente

Chapitre 1 : Images données par une lentille mince convergente Chaptre 1 : Images données par une lentlle mnce convergente Termnale S Spécalté Chaptre 1 : Images données par une lentlle mnce convergente bectfs : - Constructon graphque de l mage d un obet plan perpendculare

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

publicitaires Section 4. Oligopole et stratégie publicitaire 1) Dépenses publicitaires et stratégie concurrentielle 3) Oligopole et dépenses d

publicitaires Section 4. Oligopole et stratégie publicitaire 1) Dépenses publicitaires et stratégie concurrentielle 3) Oligopole et dépenses d Secton 4. Olgopole et stratége publctare 1) Dépenses publctares et stratége concurrentelle 2) Monopole et dépenses d publctares 3) Olgopole et dépenses d publctares 1) Dépenses publctares et stratége concurrentelle

Plus en détail

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné.

(a) Déterminer la probabilité que le chocolat choisi soit blanc et garni de praliné. Eercice / 5 points Une boîte de chocolats contient 50 % de chocolats au lait, 30 % de chocolats noirs et 0 % de chocolats blancs. Tous les chocolats de la boîte sont de même forme et d emballage identique.

Plus en détail

À partir de la demi-période comprise entre les points C et D de la figure 2, mesurer u L, de la bobine. calculer et en déduire la valeur de L.

À partir de la demi-période comprise entre les points C et D de la figure 2, mesurer u L, de la bobine. calculer et en déduire la valeur de L. se 2004 ÉTUD XPÉIMNTL D'UN BOBIN (6 ponts) 1.5. On néglge dans la sute le terme fasant ntervenr r dans l'expresson de u L ans que les arronds des crêtes de l'ntensté. 1 - Détermnaton expérmentale de l'nductance

Plus en détail

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005)

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005) EXERCICES SUR LES STATISTIQUES Exercce 1 Un commerçant effectue des lvrasons de fuel pour les chaudères. La répartton des volumes dstrbués à chaque lvrason s effectue selon le tableau suvant : Volumes

Plus en détail

Ajustement affine par les moindres carrés

Ajustement affine par les moindres carrés 1. Nveau Termnales STG et ES Ajustement affne par les mondres carrés 2. Stuaton-problème proposée Introducton à la méthode des mondres carrés. 3. Support utlsé Tableur et calculatrce. 4. Contenu mathématque

Plus en détail

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003 DEA d physqu subatomqu Corrgé d l xamn d analys statstqu ds donnés t d modélsaton ssson d févrr - anné 22-23 Jérôm Baudot sur 45 ponts I- Errur sur la msur d un asymétr avant-arrèr ponts I-a La formul

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

Chapitre 2 : Energie potentielle électrique. Potentiel électrique

Chapitre 2 : Energie potentielle électrique. Potentiel électrique 2 e BC 2 Energe potentelle électrque. Potentel électrque 12 Chaptre 2 : Energe potentelle électrque. Potentel électrque 1. Traval de la orce électrque a) Expresson mathématque dans le cas du déplacement

Plus en détail

1 ère S. «Thème 3 / L énergie et ses transferts» Livret 1 / Les TP

1 ère S. «Thème 3 / L énergie et ses transferts» Livret 1 / Les TP 1 ère S «Thème 3 / L énerge et ses transferts» Lvret 1 / Les TP Sommare Page 3 : Page 5 : Page 6 : Page 7 : Page 8 : Page 9 : TP/ Chaleur latente de fuson de la glace TP/ Détermnaton d une énerge de combuston

Plus en détail

Information mutuelle et partition optimale du support d une mesure de probabilité

Information mutuelle et partition optimale du support d une mesure de probabilité Informaton mutuelle et partton optmale du support d une mesure de probablté Bernard Coln et Ernest Monga Département de Mathématques Unversté de Sherbrooke Sherbrooke JK-R (Québec) Canada bernard.coln@usherbrooke.ca

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Notes de cours. Échantillonnage STT-2000. David Haziza Département de mathématiques et de statistique Université de Montréal

Notes de cours. Échantillonnage STT-2000. David Haziza Département de mathématiques et de statistique Université de Montréal otes de cours Échantllonnage STT-000 Davd Hazza Département de mathématques et de statstque nversté de Montréal Automne 008 PRÉFACE Ces notes de cours ont été rédgées pour le cours STT-000 (Échantllonnage)

Plus en détail

V2- Montage de chimie n 3 : Définition et mesure de ph. Titrages

V2- Montage de chimie n 3 : Définition et mesure de ph. Titrages V2- Montage de chme n 3 : Défnton et mesure de ph. Ttrages Nveau concerné : Term S oblgatore (ensegn. spé. auss mas non présenté dans cet eposé) Prérequs : noton d acde et de base au sens de Brönsted,

Plus en détail

TABLE DES MATIERES. Cours d économie général 2009-2010

TABLE DES MATIERES. Cours d économie général 2009-2010 TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. Equlbre en économe fermée...2 I.1 L équlbre sur le marché des produts : la courbe IS...2 I.2 L équlbre sur le marché de la monnae : la courbe

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 1. Quadrimestre 1-2. Pondération 5. Nombre de crédits 5

Informations de l'unité d'enseignement Implantation. Cursus de. Intitulé. Code. Cycle 1. Bloc 1. Quadrimestre 1-2. Pondération 5. Nombre de crédits 5 Informatons de l'unté d'ensegnement Implantaton ECAM Cursus de Bacheler en Scences ndustrelles Informatque et communcaton B1030 Cycle 1 Bloc 1 Quadrmestre 1-2 Pondératon 5 Nombre de crédts 5 Nombre d heures

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

Résumé : I- Introduction :

Résumé : I- Introduction : Applcaton de l analyse de frontère stochastque à l estmaton de l effcence technque des entreprses algérennes: effet de la forme de proprété Résumé : Nabl, Al BELOUARD Doctorant à l École Natonale Supéreure

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

I. Fonctionnalités du tableur

I. Fonctionnalités du tableur Olver Coma Macro MRP pour Excel Decembre 1999 I. Fonctonnaltés du tableur I.1. Feulle «Nomenclature «Le tableur propose pluseurs optons à l ouverture du fcher. Cnq boutons apparassent à drote de la feulle

Plus en détail

Le raisonnement incertain

Le raisonnement incertain 1 Plan général 2 Le rasonnement ncertan dans les systèmes experts I- Introducton aux systèmes experts II- Fondements : organsaton et fonctonnement des SE III- Le rasonnement ncertan Introducton Antone

Plus en détail

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle Mrors spérques Doptres spérques Nous allons mantenant aborder des systèmes optques un peu plus complexes, couramment utlsés pour produre des mages. Nous allons commencer par étuder un mror spérque de façon

Plus en détail

NATHALIE RODRIGUEZ mars 2014

NATHALIE RODRIGUEZ mars 2014 Ä ÒÒ Ð Ù ÌË Å Ø Ñ Ø ÕÙ Áº º Ô٠˺ÁºÇº NATHALIE RODRIGUEZ mars 2014 IREM PARIS XIII - GROUPE «ENSEIGNEMENTS TECHNOLOGIQUES» Sommaire 1 I.G. Nouvelle-Calédonie, novembre 2000 13 Exercice 1 (5 pts) : calcul

Plus en détail

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS Le cabnet Enetek nous démontre les mpacts négatfs de la multplcaton des stocks qu au leu d amélorer le taux de servce en se rapprochant du clent, le dégradent

Plus en détail

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle»

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle» Evaluaton des projets et estmaton des coûts Le budget d un projet est un élément mportant dans l étude d un projet pusque les résultats économques auront un mpact sur la réalsaton ou non et sur la concepton

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

10.1 Inférence dans la régression linéaire

10.1 Inférence dans la régression linéaire 0. Inférence dans la régresson lnéare La régresson lnéare tente de modeler le rapport entre deux varables en adaptant une équaton lnéare avec des données observées. Chaque valeur de la varable ndépendante

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : heures Coefficient : Dès que le sujet lui

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

Banque d exercices pour le cours de "mise à niveau" de statistique de M1 AgroParisTech

Banque d exercices pour le cours de mise à niveau de statistique de M1 AgroParisTech Banque d exercces pour le cours de "mse à nveau" de statstque de M1 AgroParsTech Instructons pour les exercces 1. Lorsque ren n est précsé, on suppose que la dstrbuton étudée est gaussenne. Pour les exercces

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES Émle Garca, Maron Le Cam et Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle porte sur les méthodes de

Plus en détail

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs Combnason de dres d'experts en élctaton de los a pror. Applcaton à un modèle doseréponse pour Lstera chez la sours. Exposé ApplBugs ISABELLE ALBERT 8 / / 03 INTRODUCTION Cet exposé présente une parte du

Plus en détail

NATHALIE RODRIGUEZ avril 2014

NATHALIE RODRIGUEZ avril 2014 Ä ÒÒ Ð Ù ÌË Å Ø Ñ Ø ÕÙ º ºÇº NATHALIE RODRIGUEZ avril 2014 IREM PARIS XIII - GROUPE «ENSEIGNEMENTS TECHNOLOGIQUES» Sommaire 1 C.G.O. métropole, mai 2002 9 Exercice 1 : suite géométrique, fonction exponentielle,

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

- donc n explique pas très bien le commerce entre pays industrialisés en particulier le commerce intraeuropéen

- donc n explique pas très bien le commerce entre pays industrialisés en particulier le commerce intraeuropéen Le commerce nternatonale en stuaton de concurrence mparfate: ros problèmes essentels des modèles théorques Rcardo, HOS, Standard: - fondés sur la CPP: le commerce n augmente pas la concurrence - pas d

Plus en détail

5- Analyse discriminante

5- Analyse discriminante 5. ANALYSE DISCRIMINANTE... 5. NOTATION ET FORMULATION DU PROBLÈME... 5. ASPECT DESCRIPTIF...3 5.. RECHERCHE DU VECTEUR SÉPARANT LE MIEUX POSSIBLE LES GROUPES...4 5.. Cas partculer de deu groupes...7 5.3

Plus en détail

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité Comparason de méthodes d ajustement d une dstrbuton de Webull à 3 paramètres sur une base de données de mesures de ténacté M. Marquès, N. Pérot, N. Devctor Laboratore de Condute et Fablté des Réacteurs

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficient : 2 Dès que le sujet

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

ET INCERTITUDES DE MESURE

ET INCERTITUDES DE MESURE LGCIE - Hdrologe Urbane Mater «Géne Cvl» Cour de Tronc Commun «Epérmentaton et modélaton» CAPTEURS, ETALONNAGES ET INCERTITUDES DE MESURE Jean-Luc BERTRAND-KRAJEWSKI Edton 7 Avertement Ce note de cour

Plus en détail

Grandeurs de réaction et de formation

Grandeurs de réaction et de formation PSI Brzeux Ch. hermochme 1 : grandeurs de réacton et de formaton 1 C H A P I R E 1 r a p p e l s e t c o m p l é m e n t s ) Grandeurs de réacton et de formaton 1. RAPPELS 1.1. Phases et consttuants Donnons

Plus en détail

Prérequis de Mathématiques pour GMP

Prérequis de Mathématiques pour GMP Prérequs de Mathématques pour GMP V. Nolot Sommare. Rappels sur les vecteurs La noton de foncton. Foncton et graphe de foncton..................... Nombre dérvé et foncton dérvée.................. 3.3

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

Le Potentiel chimique

Le Potentiel chimique 44 Le Potentel chmque PIERRE DUHEM (1861 1916) 44.1 Grandeurs molares partelles 44.1.1 Varables de Gbbs Système polyphasé Nous étuderons dans la sute un système thermodynamque formé de pluseurs phases

Plus en détail

Bac ES La Réunion juin 2009

Bac ES La Réunion juin 2009 Bac ES La Réunion juin 2009 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces

Plus en détail

Sujets des projets. Informatique de Base Université Pierre et Marie Curie

Sujets des projets. Informatique de Base Université Pierre et Marie Curie 1 Sujets des projets Informatque de Base Unversté Perre et Mare Cure D Bernard, F Hecht, N Segun Master I / sesson 2004/2005 Table des matères 1 Sujet : Recherche rapde d un trangle contenant un pont dans

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail