Systèmes logiques combinatoires

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Systèmes logiques combinatoires"

Transcription

1 Systèmes logiques combinatoires 1. Introduction Système de commande logique 2. Algèbre de Boole 3. Représentation d une fonction logique 4. Simplification algébrique 5. Simplification graphique 6. Réalisation 7. Utilisation des fonctions universelles

2 Structure d un système automatisé Ensemble des moyens de traitement de l information, assure la commande et coordination des tâches de la PO Agit sur la matière d œuvre

3 Types d information traitée par la partie commande S=1 S=0 Grandeurs physiques prenant une infinité de valeurs avec variation continue Résultat d un codage de l information analogique Signal n admettant que 2 valeurs 1/0, correspondant à 2 états vrai/faux: S = [w(t) > 5]

4 Système de commande logique Variables de type Tout Ou Rien: vrai ou faux, 1 ou 0

5 Système de commande logique Variables de type Tout Ou Rien: vrai ou faux, 1 ou 0 Entrées exprimées à l aide de participes passés Frontière Sorties exprimées à l aide de verbes à l infinitif Système combinatoire: à chaque combinaison des entrées correspond un et seul état de la sortie

6 2. Algèbre de Boole Equation logique : expression algébrique d une fonction logique à l aide des opérateurs logiques de Boole Exemple : S=a.b+c s interprète «a.b+c=0 S=0» et «a.b+c=1 S=1» Table de vérité

7 2. Algèbre de Boole Equation logique : expression algébrique d une fonction logique à l aide des opérateurs logiques de Boole Exemple : S=a.b+c s interprète «a.b+c=0 S=0» et «a.b+c=1 S=1» Algèbre de Boole Ensemble B ={ 0, 1} OUI - Relation d équivalence B B S = a Georges Boole NON - Loi de complémentation B B a S = a OU - Somme logique: B² B (a,b) S = a + b ET - Produit logique: B² B (a,b) S = a. b

8 2. Algèbre de Boole - Propriétés et théorèmes b+a (a+b).(a+c) (a+b) + c a b.a a.b+a.c (a.b).c a a a a = a Le produit ET est prioritaire sur la somme OU Théorème de De Morgan Absorption Identités remarquables

9 3. Représentation d une fonction logique Chaque sortie S j s exprime comme en fonction des entrées e i à l aide d opérateurs logiques S j = f(e i ). Les fonctions logiques expriment les raisons pour lesquelles des actions sont exécutées (causalité) en fonction des informations d entrée, on connait l état de S j à chaque instant t si l on connait l état des entrées e i à chaque instant t. Phrase explicitant la fonction

10 3. Représentation d une fonction logique Chaque sortie S j s exprime comme en fonction des entrées e i à l aide d opérateurs logiques S j = f(e i ) Table de vérité: état de la sortie (ou fonction logique) en fonction des états des variables d entrée Etats des entrées en binaire naturel ou binaire pur nombre ou mot base Chiffre ou digit

11 3. Représentation d une fonction logique Equation logique: expression algébrique d une fonction logique à l aide des opérateurs logiques de Boole 2 formes canoniques : «sommes de produits» et «produits de sommes» Equation logique S = f(a,b,c) a b c S

12 Réalisation d une fonction logique 1- Simplification de la fonction logique 2 - Recomposition de la fonction à l aide de cellules universelles 3 - Réalisation technologique

13 4. Simplification algébrique d une fonction logique

14 5. Simplification par Tableaux de Karnaugh Binaire réfléchi ou code Gray Passage d un nombre au suivant en ne changeant la valeur de qu un seul bit, s obtient par symétrie.

15 Rappel: inconvénient du binaire naturel permet de coder les chiffres décimaux de 0 à 9 sur 4 bits, le codage est optimal. Inconvénient : code peu fiable

16 5. Simplification par Tableaux de Karnaugh Exemple: 1 ligne de la table de vérité 1 case du tableau de Karnaugh On remarque que lorsqu on change de case une seule variable change

17 5. Simplification par Tableaux de Karnaugh Colonnes adjacentes

18 5. Simplification par Tableaux de Karnaugh Exemple:

19 6. Réalisation d une fonction logique Technologie électrique à contacts Schéma à contacts ou LADDER ou schéma à échelle logiciel contact Exemple: S = a+b Bouton poussoir 2 types de contact a

20 6. Réalisation d une fonction logique Technologie électrique à contacts Schéma à contacts ou LADDER ou schéma à échelle

21 6. Réalisation d une fonction logique Technologie pneumatique/électronique Logigramme: technologie à base de cellules normalisées

22 6. Réalisation d une fonction logique Technologie pneumatique/électronique Logigramme: technologie à base de cellules normalisées Technologie pneumatique Cellule NON Cellule OU Cellule ET Technologie électronique À base de transistor (physique PSI) Circuit intégré

23 6. Réalisation d une fonction logique Technologie pneumatique/électronique Logigramme b.c b.c+a a+c (b.c+a).(a+c)

24 6. Réalisation d une fonction logique logiciel logi Logigramme

25 7. Recomposition à l aide de cellules universelles Opérateur universel (ou complet): Opérateur avec lequel on peut réaliser les opérations logiques de base NON, ET, OU Intérêt : On peut alors réaliser n importe quelle fonction à l aide d un unique opérateur logique Exemple: Montrons que l IMPLICATION est une fonction universelle ( a + b )

26 ANNEXES Code GRAY symétries Codeur absolu

27

28

29

30

31

32

33 Codeur absolu

34

1 - Les systèmes de Numération

1 - Les systèmes de Numération Les systèmes de Numération 1 - Les systèmes de Numération 1) Calculer l équivalent décimal des nombres 54 8, 587 8, 110 3, 1101 2, AB9 16 2) Calculer l équivalent binaire et octal des nombres décimaux

Plus en détail

LOGIQUE COMBINATOIRE. Sommaire : La logique combinatoire : définition

LOGIQUE COMBINATOIRE. Sommaire : La logique combinatoire : définition LOGIQUE COMBINATOIRE Sommaire : La logique combinatoire : définition Conventions Etats des contacts et des récepteurs Etat d un circuit électrique Définitions Contact NO Contact NC Fonctions logiques Oui

Plus en détail

Chapitre II : Les fonctions logiques

Chapitre II : Les fonctions logiques Chapitre II : Les fonctions logiques I. Introduction Les circuits logiques sont caractérisés par des variables binaires, qui affectent des transitions entre deu états possibles. Ces deu états sont appelés

Plus en détail

LES AUTOMATISMES ALGEBRE LOGIQUE GJC. Lycée L.RASCOL 10,Rue de la République BP ALBI CEDEX

LES AUTOMATISMES ALGEBRE LOGIQUE GJC. Lycée L.RASCOL 10,Rue de la République BP ALBI CEDEX LES AUTOMATISMES ALGEBRE LOGIQUE GJC Lycée L.RASCOL 10,Rue de la République BP 218. 81012 ALBI CEDEX SOMMAIRE BASES DE NUMERATION CORRESPONDANCE ENTRE LES BASES CHANGEMENT DE BASE Passage d une base «B»

Plus en détail

G. Koepfler Numération et Logique Forme normale disjonctive/conjonctive L

G. Koepfler Numération et Logique Forme normale disjonctive/conjonctive L Simplification des FNC La FNC de A est (a b c) (a b c) ( a b c) Il y a 3 termes : pour les termes 1 et 2 : (a b c) (a b c) eq (a c) la formule A est donc équivalente à (a c) ( a b c) Finalement A eq (a

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires Systèmes logiques combinatoires Table des matières 1. Variable binaire...2 2. Fonctions logiques de base...2 2.1. Fonction OUI (YES)...2 2.2. Fonction NON (NOT)...2 2.3. Fonction ET (AND)...3 2.4. Fonction

Plus en détail

I/ Mise en situation Système technique : Radiateur électrique soufflant

I/ Mise en situation Système technique : Radiateur électrique soufflant Chapitre II Leçon n 1 LOGIQUE COMBINATOIRE Système combinatoire I/ Mise en situation Système technique : Radiateur électrique soufflant Présentation : La figure ci-contre représente un radiateur électrique

Plus en détail

REPRESENTATION ET SIMPLIFICATION DES FONCTIONS LOGIQUES COMBINATOIRES

REPRESENTATION ET SIMPLIFICATION DES FONCTIONS LOGIQUES COMBINATOIRES Chapitre 3 REPRESENTATION ET SIMPLIFICATION DES FONCTIONS LOGIQUES COMBINATOIRES 1. OBJECTIFS Etudier la représentation algébrique d une fonction logique, Comprendre la simplification algébrique d une

Plus en détail

RA Circuits logiques

RA Circuits logiques 243-206-RA Circuits logiques Logique combinatoire Systèmes de numérotation représentation et arithmétique binaires. Équations logiques et méthodes de simplification Par: Jean-François Fortier 1 Plan Systèmes

Plus en détail

Systèmes logiques combinatoires exercices

Systèmes logiques combinatoires exercices xercice n 1 Systèmes logiques combinatoires exercices Considérons la fonction booléenne : y = ( a+ b) + ( a. b)c. 1 - Représenter y par un tableau de Karnaugh. 2 - Simplifier l expression par la méthode

Plus en détail

LES SYSTEMES LOGIQUES COMBINATOIRES

LES SYSTEMES LOGIQUES COMBINATOIRES I- C22 ES SYSTEMES OGIQUES COMBINATOIRES CONVENTIONS DE A OGIQUE. Généralités: e traitement des informations se fait sous forme binaire. es informations peuvent sortir d'un capteur T.O.R (Tout Ou Rien),

Plus en détail

IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire:

IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire: IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire: Laurent MURA. 1 SOMMAIRE: 1. Introduction 2. Les fonctions logiques élémentaires 3. La forme algébrique 4 Fonctions logiques OU-NON

Plus en détail

Plan. Les Systèmes de Numération. Fonctions et Circuits Logiques. Simplification des Fonctions Logiques. Les Différents Codes. Logique Combinatoire

Plan. Les Systèmes de Numération. Fonctions et Circuits Logiques. Simplification des Fonctions Logiques. Les Différents Codes. Logique Combinatoire Plan Les Systèmes de Numération Fonctions et Circuits Logiques Simplification des Fonctions Logiques Les Différents Codes -1- Fonctions et Circuits Logiques Définition Algèbre de commutation ou algèbre

Plus en détail

Cours de logique combinatoire

Cours de logique combinatoire Cours de logique combinatoire Eric SIMON Ludovic MACAIRE IUT A Département Génie Mécanique et Productique Janvier 2015 Table des matières Chapitre 1 NUMERATION ET CODAGE...4 1.Introduction...4 2.Les systèmes

Plus en détail

PLAN PLAN 16/10/2016. Faculté des Sciences de Gabes Département d informatique. Cours Circuits Logiques 1. Introduction.

PLAN PLAN 16/10/2016. Faculté des Sciences de Gabes Département d informatique. Cours Circuits Logiques 1. Introduction. CHAPITRE II LOGIQUE COMBINATOIRE Par : Khaled Hassine Khaled.hassine@fsg.rnu.tn Khaled Hassine 1 Khaled Hassine 2 PLAN PLAN Introduction Introduction Conception de circuit combinatoire Conception de circuit

Plus en détail

Recherche et simplification des fonctions logiques combinatoires

Recherche et simplification des fonctions logiques combinatoires Chapitre IV: Recherche et simplification des fonctions logiques combinatoires Introduction: Le fonctionnement d un système logique combinatoire est décrit: - Littéralement: par une ou plusieurs propositions

Plus en détail

PLAN 28/10/2015. Introduction. Conception de circuit combinatoire. Analyse d un logigramme. Quelques circuits combinatoires.

PLAN 28/10/2015. Introduction. Conception de circuit combinatoire. Analyse d un logigramme. Quelques circuits combinatoires. 28/10/2015 Khaled Hassine 1 CHAPITRE II LOGIQUE COMBINATOIRE Par : Khaled Hassine Khaled.hassine@fsg.rnu.tn Khaled Hassine 28/10/2015 2 PLAN Introduction Conception de circuit combinatoire Analyse d un

Plus en détail

INF1500 : Logique des systèmes numériques

INF1500 : Logique des systèmes numériques INF5 : Logique des systèmes numériques Cours 4: Tables de Karnaugh à 2, 3 et 4 variables Sylvain Martel - INF5 Simplification d expressions booléennes par les tables de Karnaugh Une table de Karnaugh est

Plus en détail

Les décodeurs Les transcodeurs

Les décodeurs Les transcodeurs Site Internet : www.gecif.net Discipline : Génie Electrique Les décodeurs Les transcodeurs I Introduction Les circuits combinatoires de transcodage (appelés aussi convertisseurs de code), se répartissent

Plus en détail

Fonctions logiques. Donner les trois opérateurs de base utilisés pour décrire les fonctions logiques :

Fonctions logiques. Donner les trois opérateurs de base utilisés pour décrire les fonctions logiques : A2 Analyser le système Systèmes logiques évenementiels Date : Nom : TP 2 h Ouvrir le Guide des automatismes présent sur le bureau. Sélectionner La partie commande puis cliquer sur le chapitre Fonctions

Plus en détail

1 Représentation de l information

1 Représentation de l information nnée 2010-2011 1ère session Exercices de Logique ombinatoire EN 101 amille LEROUX - Dominique Dallet Filière : TELEOM nnée : 2012-2013 Semestre : 6 SUJET 1 Représentation de l information Exercice 1 Nous

Plus en détail

Logique Combinatoire et Séquentielle

Logique Combinatoire et Séquentielle République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique U n i v e r s i t é A B D E R R A H M A N E M I R A B e j a i a Faculté de Technologie

Plus en détail

Logique combinatoire Sciences de l'ingénieur

Logique combinatoire Sciences de l'ingénieur 1 Représentation binaire Un ordinateur est une machine qui manipule des chiffres binaires. Une variable binaire ne peut prendre que deux valeurs : 0 ou 1. Ces valeurs peuvent représenter : un interrupteur

Plus en détail

Logique combinatoire

Logique combinatoire Logique combinatoire SIN1 - Cours 2 J. Villemejane - julien.villemejane@u-pec.fr IUT Créteil-Vitry Département GEII Université Paris-Est Créteil Année universitaire 2013-2014 1/36 Plan du cours 1 Notions

Plus en détail

Algèbre de Boole. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique.

Algèbre de Boole. Eric Cariou. Université de Pau et des Pays de l'adour Département Informatique. Algèbre de Boole Eric Cariou Université de Pau et des Pays de l'adour Département Informatique Eric.Cariou@univ-pau.fr 1 Algèbre de Boole Système algébrique constitué de l'ensemble { 0, 1 } Variable booléenne

Plus en détail

Le principal objectif de ce cours est de permettre à l étudiant d acquérir des connaissances de base de l électronique numérique.

Le principal objectif de ce cours est de permettre à l étudiant d acquérir des connaissances de base de l électronique numérique. Le principal objectif de ce cours est de permettre à l étudiant d acquérir des connaissances de base de l électronique numérique. Il permet à l étudiant de comprendre le fonctionnement de circuits logiques

Plus en détail

Architecture des ordinateurs : fiche de TD 1

Architecture des ordinateurs : fiche de TD 1 INFO 202 2009/2010 Architecture des ordinateurs : fiche de TD 1 Logique & arithmétique binaire décembre 2009 1 Représentation des nombres Question 1.1 : Combien de nombres peut-on coder sur 4, 8, 16 et

Plus en détail

Logique Combinatoire et Algèbre de BOOLE

Logique Combinatoire et Algèbre de BOOLE Logique Combinatoire et Algèbre de BOOLE Septembre 2017 GOKPEYA NESSEMOU ERIC @ INGÉNIEUR ASSISTANT UVCI 0.0.1 Table des matières I - Objectifs 4 II - Introduction 5 III - Partie I : Les fonctions logiques

Plus en détail

LOGIQUE ET FONCTIONS COMBINATOIRES

LOGIQUE ET FONCTIONS COMBINATOIRES I. Définitions I.1. Variable binaire / Bit LOGIQUE ET FONCTIONS COMBINATOIRES On appelle variable binaire (ou logique), une variable prenant ses valeurs dans l ensemble {0, 1}. Il s'agit d'un bit (Binary

Plus en détail

Systèmes logiques 1. Support de Cours. Slah MHAYA. Classes de 1 ère année Licence Génie Électrique

Systèmes logiques 1. Support de Cours. Slah MHAYA. Classes de 1 ère année Licence Génie Électrique Ministère de l Enseignement Supérieur et de la Recherche Scientifique ***************** Direction Générale des Etudes Technologiques ***************** Institut Supérieur des Etudes Technologiques de Djerba

Plus en détail

Logique combinatoire, algèbre de Boole

Logique combinatoire, algèbre de Boole Logique combinatoire, algèbre de oole n électronique numérique les tensions prennent des valeurs extrêmes, soit volt soit 5 volts par exemple Il est alors plus simple de considérer ces tensions comme des

Plus en détail

Chapitre 5 Algèbre booléenne

Chapitre 5 Algèbre booléenne L'informatique au lycée Chapitre 5 http://ow.ly/2wysz Chapitre 5 Algèbre booléenne George Boole (1815-1864) 5.1. L'algèbre de Boole L'algèbre de Boole, ou calcul booléen, est la partie des mathématiques

Plus en détail

OPÉRATEURS LOGIQUES DE BASE

OPÉRATEURS LOGIQUES DE BASE Page OPÉRTEURS OGIQUES DE BSE I/ QUEQUES DÉFINITIONS Définition : On nomme VRIBE BINIRE tout phénomène qui ne peut prendre que deux états : 'état logique peut être associé à une affirmation fausse : absence

Plus en détail

ELECTRICITE : PNEUMATIQUE : RESSOURCES MEI

ELECTRICITE : PNEUMATIQUE : RESSOURCES MEI Page : 1/8 Documents de références : Aucuns Définitions : Aucunes Modifications : Ind.: Date : Nature de la modification : A 21/01/03 Création B 01/10/08 Modification de la page 5/8 C D E F Rédacteur :

Plus en détail

ELECINF 102 : Processeurs et Architectures Numériques De la logique combinatoire à l arithmétique

ELECINF 102 : Processeurs et Architectures Numériques De la logique combinatoire à l arithmétique ELECINF 102 : Processeurs et Architectures Numériques De la logique combinatoire à l arithmétique Tarik Graba tarik.graba@telecom-paristech.fr Objectifs du cours Appréhender les concepts suivants : les

Plus en détail

I. INTRODUCTION CONTEXTUALISATION : L INFORMATION

I. INTRODUCTION CONTEXTUALISATION : L INFORMATION - I. INTRODUCTION CONTEXTUALISATION : L INFORMATION 1.1. Introduction Vous avez eu une introduction aux 3 différents types d informations. Nous allons étudier dans ce cours les systèmes nécessitant un

Plus en détail

Logique Combinatoire. Note de Cours

Logique Combinatoire. Note de Cours Logique Combinatoire Note de Cours Cahier étudiant Électromécanique Robert Choquette Septembre 2015 page 1 Logique Combinatoire Introduction : Les circuits logiques ou circuits digitaux sont de plus en

Plus en détail

Soit un circuit combinatoire à 5 lignes d entrée et 3 lignes de sorties, comme le montre la figure ci-dessous. , E 1 , E 2 , E 3

Soit un circuit combinatoire à 5 lignes d entrée et 3 lignes de sorties, comme le montre la figure ci-dessous. , E 1 , E 2 , E 3 1 of 7 10/12/2013 16:26 Exercice-4.1 Soit un circuit combinatoire à 5 lignes d entrée et 3 lignes de sorties, comme le montre la figure ci-dessous. Le fonctionnement est le suivant : - Lorsqu une seule

Plus en détail

UNIVERSITE DE CAEN TRAVAUX PRATIQUES DE LOGIQUE COMBINATOIRE

UNIVERSITE DE CAEN TRAVAUX PRATIQUES DE LOGIQUE COMBINATOIRE 2009 UNIVERSITE DE CAEN TRAVAUX PRATIQUES DE LOGIQUE COMBINATOIRE Rotation des travaux pratiques : 1 : Fonctions logique Combinatoire Elémentaires. 2 : Circuits logiques. 3 : Réalisation d additionneurs.

Plus en détail

COURS L1 Année Isabelle Sirot

COURS L1 Année Isabelle Sirot Information numérique COURS L1 Année 2007-2008 Isabelle Sirot 2 Plan du document Chapitre 1 : La représentation de l information : codage numérique... 5 1) Les systèmes de numération... 5 2) Conversion

Plus en détail

Simplification OU-exclusive

Simplification OU-exclusive Simplification OU-exclusive Opérateur OU-exclusif Additionneur Circuit itératif andre.stauffer@epfl.ch Opérateur OU-exclusif La transformation d une forme canonique en une expression comportant des sommes

Plus en détail

Cours de logique combinatoire et séquentielle

Cours de logique combinatoire et séquentielle Cours de logique combinatoire et séquentielle Introduction : On distingue de nombreuses familles de circuits. La famille 74 d'origine fonctionne en 5V. Les 74LS utilisent la technologie TTL. Les 74HC utilisent

Plus en détail

Chapitre 3 :Algèbre de Boole

Chapitre 3 :Algèbre de Boole hapitre 3 :lgèbre de oole. Introduction Les machines numériques sont constituées d un ensemble de circuits électroniques. haque circuit fournit une fonction logique bien déterminée ( addition, comparaison,.).

Plus en détail

ÉLECTRONIQUE DES CIRCUITS INTÉGRÉS ÉLECTRONIQUE LOGIQUE ET NUMÉRIQUE DOCUMENT DE SYNTHÈSE

ÉLECTRONIQUE DES CIRCUITS INTÉGRÉS ÉLECTRONIQUE LOGIQUE ET NUMÉRIQUE DOCUMENT DE SYNTHÈSE ÉLECTRONIQUE DES CIRCUITS INTÉGRÉS ÉLECTRONIQUE LOGIQUE ET NUMÉRIQUE DOCUMENT DE SYNTHÈSE Ressources pédagogiques: http://cours.espci.fr/site.php?id=37 Forum aux questions : https://iadc.info.espci.fr/bin/cpx/mforum

Plus en détail

Leçon 3 : Définitions et mises en équation des fonctions combinatoires complexes

Leçon 3 : Définitions et mises en équation des fonctions combinatoires complexes Leçon 3 : Définitions et mises en équation des fonctions combinatoires complexes GOKPEYA NESSEMOU ERIC @ INGENIEUR UVCI Septembre 2017 0.0.1 Légende Entrée du glossaire > Abréviation Référence Bibliographique

Plus en détail

LOGIQUE. Logique des propositions Algèbre de Boole Méthodes de simplification des fonctions booléennes

LOGIQUE. Logique des propositions Algèbre de Boole Méthodes de simplification des fonctions booléennes LOGIQUE Logique des propositions Algèbre de Boole Méthodes de simplification des fonctions booléennes OBJECTIFS Traiter formellement les notions de vérité et de fausseté Formaliser ce qu on appelle le

Plus en détail

CIRCUITS LOGIQUES COMBINATOIRES

CIRCUITS LOGIQUES COMBINATOIRES IRUITS LOGIQUES OMBINTOIRES hap-ii: lgèbre de Boole IRUITS LOGIQUES OMBINTOIRES lgèbre de Boole ttention! e produit pédagogique numérisé est la propriété exclusive de l'uvt. Il est strictement interdit

Plus en détail

CODAGE ET REPRÉSENTATION DES DONNÉES Le binaire

CODAGE ET REPRÉSENTATION DES DONNÉES Le binaire CHAPITRE 1 CODAGE ET REPRÉSENTATION DES DONNÉES 1.1 Le binaire Les ordinateurs et avant les calculateurs numériques ont été conçus autour des propriétés de la logique booléenne. La logique booléenne ou

Plus en détail

Polycopie de cours d électronique numérique (Circuits Combinatoires et séquentiels)

Polycopie de cours d électronique numérique (Circuits Combinatoires et séquentiels) République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE HOUARI BOUMEDIENE Faculté d Electronique

Plus en détail

La numération. Introduction. Les opérateurs de base. Algèbre binaire ou algèbre de Boole de David DUBOIS

La numération. Introduction. Les opérateurs de base. Algèbre binaire ou algèbre de Boole de David DUBOIS Table des Matières La logique... 2 La numération... 3 Introduction... 3 Les opérateurs de base... 3 Le Codage... 5 Définition de la numération... 5 Codage binaire... 5 Codage octal... 7 Codage hexadécimal...

Plus en détail

Q.C.M. D EVALUATION A : ELECTRONIQUE NUMERIQUE

Q.C.M. D EVALUATION A : ELECTRONIQUE NUMERIQUE I- SYSTEMES E NUMERATION Q.C.M. EVALUATION A : ELECTRONIQUE NUMERIQUE I- Le nombre binaire s écrit en décimal: 4 mille cent onze 5 I-2 Le nombre «5A7» est écrit en: Octal Hexadécimal écimal I-3 Le nombre

Plus en détail

Electronique numérique

Electronique numérique Electronique numérique Seatech - 3A Université de Toulon (UTLN) Plan du Chapitre introductif 1 Les nombres Le système binaire Codes numériques 2 Algèbre de Boole Fonctions logiques Implantation 3 Mémorisation

Plus en détail

Travaux Dirigés d Electronique Numérique

Travaux Dirigés d Electronique Numérique Travaux Dirigés d Electronique Numérique Licence d Electronique Hiver 27 TD : Algèbre de Boole. Algèbre de Boole Démontrer les lois de l algèbre de Boole suivantes en vous aidant des autres lois de cet

Plus en détail

Architecture des ordinateurs première partie des annales

Architecture des ordinateurs première partie des annales rchitecture des ordinateurs première partie des annales rnaud Giersch, enoît Meister et Frédéric Vivien TD : rithmétique des ordinateurs et codage. Donner la valeur décimale des entiers suivants, la base

Plus en détail

TD - Fonctions de base

TD - Fonctions de base Chapitre 9 TD - Fonctions de base Ce TD traite de la logique combinatoire et comprend les exercices suivants : 1. 9.1 : Simplification algébrique d équations. 2. 9.2 : Simplification d équations par tableau

Plus en détail

Logique combinatoire. Chapitre 5

Logique combinatoire. Chapitre 5 Chapitre 5 Logique combinatoire Il existe deux types de circuits logiques : combinatoires, et séquentiels. Les circuits combinatoires sont créés à partir de portes logiques dont la sortie dépend seulement

Plus en détail

I. Aiguillage automatique pour le tri de pièces codées Le système présenté ci-dessous doit permettre de faire le tri de pièces codées.

I. Aiguillage automatique pour le tri de pièces codées Le système présenté ci-dessous doit permettre de faire le tri de pièces codées. 1/6 I. Aiguillage automatique pour le tri de pièces codées Le système présenté ci-dessous doit permettre de faire le tri de pièces codées. Ces pièces sont reconnaissables par leur forme supérieure. En

Plus en détail

Codage de l INFORMATION

Codage de l INFORMATION SSI SCIENCES DE L INGENIEUR FICHE DE COURS Codage de l INFORMATION V. Chassilian St Jo Avignon De nombreux systèmes de numération sont utilisés en technologie numérique. Ils permettent d adapter l information

Plus en détail

La logique est utile dans beaucoup de domaines :

La logique est utile dans beaucoup de domaines : Introduction La logique est utile dans beaucoup de domaines : Conception de circuits. Preuves de programmes. Programmation logique. Simulation de raisonnements en intelligence artificielle.... Nous n utiliserons

Plus en détail

La conversion des données (Chap 9)

La conversion des données (Chap 9) La conversion des données (Chap 9)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. Définition: La conversion des données consiste à convertir des grandeurs analogiques en grandeurs numériques,

Plus en détail

Recueil d'exercices sur les propriétés des variables. et fonctions logiques

Recueil d'exercices sur les propriétés des variables. et fonctions logiques Recueil d'exercices sur les propriétés des variables 1. Énoncé des exercices et fonctions logiques Exercice 1 Établir les tables de vérité des fonctions suivantes, puis les écrire sous les deux formes

Plus en détail

Système binaire. Algèbre booléenne

Système binaire. Algèbre booléenne Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser

Plus en détail

Chapitre III : Les circuits logiques combinatoires

Chapitre III : Les circuits logiques combinatoires Chapitre III : Les circuits logiques combinatoires I. Introduction La transmission de données nécessite fréquemment des opérations de conversion, de transpostage et d aiguillage. On utilise pour cela des

Plus en détail

Portes logiques et algèbre de Boole

Portes logiques et algèbre de Boole Unité: ase de systèmes logiques (SysLog) Portes logiques et algèbre de oole E. Messerli & R. Mosqueron septembre 27 This work is licensed under a Creative Commons ttribution-noncommercial-sharelike 3.

Plus en détail

La Numération Systèmes pondérés

La Numération Systèmes pondérés La Numération Numération La numération traite de la dénomination et de la représentation des nombres Elle pose la question de savoir comment représenter tous les nombres (il y en a une infinité) à l aide

Plus en détail

Série d exercices N 1

Série d exercices N 1 GENIE ELECTRIQUE Série d exercices N 1 Prof : Mr Raouafi Abdallah Exercice n 1 : «Logique combinatoire» Niveau : 4 ème Sc.Technique (Rappel) Compléter le tableau correspond pour additionner ou soustracter

Plus en détail

Introduction à l informatique industrielle et aux automatismes

Introduction à l informatique industrielle et aux automatismes Chapitre I Introduction à l informatique industrielle et aux automatismes I/ Les automatismes industriels: Automatiser une tâche consiste à enchaîner les diverses opérations nécessaires à sa réalisation

Plus en détail

Informatique Générale

Informatique Générale Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) guillaume.hutzler@ibisc.univ-evry.fr Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html

Plus en détail

Question 1 Algèbre de Boole (6 pts 20 minutes) Sachant que A, B, C et D sont des variables booléennes.

Question 1 Algèbre de Boole (6 pts 20 minutes) Sachant que A, B, C et D sont des variables booléennes. ELE1300 Automne 2012 - Examen intra 1/13 Question 1 Algèbre de Boole (6 pts 20 minutes) Sachant que A, B, C et D sont des variables booléennes. a) En utilisant exclusivement l algèbre booléenne, démontrez

Plus en détail

DEVOIR N 1. $FFFF Le symbole $ placé devant un nombre signifie héxadécimal. ex: $7000 équivaut à 7000 en

DEVOIR N 1. $FFFF Le symbole $ placé devant un nombre signifie héxadécimal. ex: $7000 équivaut à 7000 en DEVOIR N Afin d effectuer le transfert d un grafcet et de son langage à contact associé sur un API de capacité mémoire RAM 4Ko a priori, on utilise comme logiciel de programmation PL7- implanté sur un

Plus en détail

Principes de la logique combinatoire

Principes de la logique combinatoire hapitre 3 Principes de la logique combinatoire La logique combinatoire est la logique où la sortie dépend seulement des entrées. L autre type de logique, la logique séquentielle, est celle où la sortie

Plus en détail

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques. Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.

Plus en détail

Donnez le nombre maximal d ordinateurs que l on peut raccorder sur ce réseau ?

Donnez le nombre maximal d ordinateurs que l on peut raccorder sur ce réseau ? Adressage IP : La numération binaire est utilisée pour «numéroter» les ordinateurs connectés sur le réseau internet. Cette «adresse» contenant le numéro du réseau ainsi que le numéro de la machine est

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR PREMIÈRE ANNÉE : MPSI

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR PREMIÈRE ANNÉE : MPSI I - OBJECTIFS DE FORMATION FINALITES SCIENCES INDUSTRIELLES POUR L INGÉNIEUR PREMIÈRE ANNÉE : MPSI Les sciences industrielles pour l ingénieur en classes préparatoires marocaines renforcent l interdisciplinarité

Plus en détail

TP LOGIQUE ADDITIONNEUR BINAIRE

TP LOGIQUE ADDITIONNEUR BINAIRE TP LOGIQUE DDITIONNEUR BINIRE PROBLEME POSE : On se propose dans la dernière partie du TP de réaliser un additionneur 2 bits par câblage électrique sur un logiciel de simulation. Pour aborder les difficultés

Plus en détail

Développer les expressions suivantes en utilisant une des identités remarquable A = (X 2)² A = (X +2)(X 2) B = (5 X)² B = (5 X)(5 + X) C = (1 3X)²

Développer les expressions suivantes en utilisant une des identités remarquable A = (X 2)² A = (X +2)(X 2) B = (5 X)² B = (5 X)(5 + X) C = (1 3X)² EXERCICE 1 A = (x + 2)² B = (3 + x)² C = (x + 5)² D = (2x + 1)² E = (1 + 3x)² F = (3x + 2)² G = (5x + 3)² H = (x² + 1)² I = (3 + 4x)² J = (3x² + 4)² Développer les expressions suivantes en utilisant une

Plus en détail

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

Algèbre de BOOLE. Système binaire:

Algèbre de BOOLE. Système binaire: Algèbre de BOOLE 5V Sstème binaire: Un sstème binaire (signal, circuit, etc ) est un sstème qui ne peut eister que dans deu états autorisés. fermé : v 0 = 0v ouvert: v 0 = 5v R Notations: numérique : et

Plus en détail

Fonction booléennes et portes logiques

Fonction booléennes et portes logiques ISN- semaine16 Fonction booléennes et portes logiques I Portes logiques de base 1.Porte logique OUI C'est la porte la plus basique qui soit, et aussi la plus simple à comprendre. En effet, la sortie de

Plus en détail

Niveau logique bas (V IL max) 0.8 VDC Niveau logique Haut (V IH min) 2.0 VDC. Tension de sortie

Niveau logique bas (V IL max) 0.8 VDC Niveau logique Haut (V IH min) 2.0 VDC. Tension de sortie Logique combinatoire I - Rappels 1.1 Niveaux logiques et niveaux de tensions: 1.1.1 - Cas de la logique TTL : La logique TTL abréviation de Transistor, Transistor logic est une famille de composants électroniques

Plus en détail

Architecture des ordinateurs Corrigé du TD 3 : Algèbre de Boole

Architecture des ordinateurs Corrigé du TD 3 : Algèbre de Boole rchitecture des ordinateurs Corrigé du TD 3 : lgèbre de Boole rnaud Giersch, Benoît Meister et Frédéric Vivien. Montrer comment l opérateur et peut être obtenu à partir des opérateurs ou et non. De même

Plus en détail

Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen

Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen Lycée Maximilien Sorre Année 2015-2016 BTS SIO 1 Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen 1 Calcul des propositions 1.1 Propositions, valeurs de vérité

Plus en détail

CI 11 I6 Afficheur 7 segments

CI 11 I6 Afficheur 7 segments AFFICHEUR 7 SEGMENTS (Logigrammes) Problématique Comment convertir un code binaire (ou BCD) afin de l afficher sur un afficheur 7 segments? Situation Pédagogique Centres d intérêt Savoirs 1 2 3 4 5 6 7

Plus en détail

Informatique UE 102. Jean-Yves Antoine. Architecture des ordinateurs et Algorithmique de base. UFR Sciences et Techniques Licence S&T 1ère année

Informatique UE 102. Jean-Yves Antoine. Architecture des ordinateurs et Algorithmique de base. UFR Sciences et Techniques Licence S&T 1ère année UFR Sciences et Techniques Licence S&T ère année Informatique UE 2 Architecture des ordinateurs et Algorithmique de base Jean-Yves Antoine http://www.info.univ-tours.fr/~antoine/ UFR Sciences et Techniques

Plus en détail

Plan. Les Systèmes de Numération. Fonctions et Circuits Logiques. Simplification des Fonctions Logiques. Les Différents Codes. Logique Combinatoire

Plan. Les Systèmes de Numération. Fonctions et Circuits Logiques. Simplification des Fonctions Logiques. Les Différents Codes. Logique Combinatoire Plan Les Systèmes de Numération Fonctions et Circuits Logiques Simplification des Fonctions Logiques Les Différents Codes -1- Les Différents Codes Code DCB (Décimal Codé Binaire) Code Gray ou Binaire Réfléchi

Plus en détail

Du transistor à la logique CMOS

Du transistor à la logique CMOS Du transistor à la logique CMOS Mise en perspective Eloi de Chérisey, Sylvain Guilley 1 / 35 25 octobre 2016 ENS - Systèmes numériques Du transistor à la logique CMOS Table des matières Introduction Le

Plus en détail

Circuits Logiques الدارات النطقية

Circuits Logiques الدارات النطقية Module: rchitecture des ordinateurs ère MI S2 Circuits Logiques الدارات النطقية Taha Zerrouki Taha.zerrouki@gmail.com Module: rchitecture des ordinateurs ère MI S2 Circuits Logiques الدارات النطقية Taha

Plus en détail

Notions d électronique numérique

Notions d électronique numérique Notions d électronique numérique Les portes logiques de base Introduction En 1854 Georges Boole propose une algèbre basée sur 2 états s excluant mutuellement : États logiques : 1 ou, vrai ou faux, H ou

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR PREMIÈRE ANNÉE : MPSI

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR PREMIÈRE ANNÉE : MPSI I - OBJECTIFS DE FORMATION FINALITES SCIENCES INDUSTRIELLES POUR L INGÉNIEUR PREMIÈRE ANNÉE : MPSI Les sciences industrielles pour l ingénieur en classes préparatoires marocaines renforcent l interdisciplinarité

Plus en détail

Introduction Les Opérateurs logiques les lois de la logique Utilisation en informatique. La logique É.FAVIER. Master SIG

Introduction Les Opérateurs logiques les lois de la logique Utilisation en informatique. La logique É.FAVIER. Master SIG La logique É.FAVIER Master SIG Année universitaire 2007-2008 Sommaire 1 Introduction Définition algèbres de Boole binaires 2 Les Opérateurs logiques 3 les lois de la logique 4 Utilisation en informatique

Plus en détail

Théorie des ensembles

Théorie des ensembles SUPINFO Academic Dept Séances LABS Théorie des ensembles Activités pratiques Version 10 Last update: 04/08/2014 Use: Students/Staff Author: Laurent GODEFROY SOMMAIRE 1 PREAMBULE 4 11 OBJECTIFS DE CES SEANCES

Plus en détail

LOGIQUE & AUTOMATIQUE

LOGIQUE & AUTOMATIQUE Année Universitaire 2004/2005 UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE Unité de Formation et de Recherche Informatique Electronique Electrotechnique & Automatique LICENCE S.T.A Mention SPI et PC

Plus en détail

Conversion de nombres décimaux fractionnaires en binaire, donner N2 avec 5 chiffres après la virgule. e) N10 = 135,739 N2 =...

Conversion de nombres décimaux fractionnaires en binaire, donner N2 avec 5 chiffres après la virgule. e) N10 = 135,739 N2 =... Exercice 1 : a) Ecrire en binaire les 4 nombres qui suivent chaque fois les nombres B'0100, B'1001 et B'11 b) Ecrire en hexadécimal les 8 nombres qui suivent chaque fois les nombres H'57, H'1B et H'B9.

Plus en détail

Diagramme d état. 1.1 Exemple : commande d un moteur. 1.2 Etats

Diagramme d état. 1.1 Exemple : commande d un moteur. 1.2 Etats Systèmes à événements discrets Les systèmes comportent souvent une commande numérique réalisée par des circuits logiques de type FPGA (Field-Programmable Gate Array)( circuits intégrés reprogrammables)

Plus en détail

Électronique Numérique

Électronique Numérique Électronique Numérique Plan de Cours http://flemarchand.perso.egim-mrs.fr/ 1 Circuits électroniques numériques: introduction Analogique/ numérique Technologie des transistors Transistor a effet de champ

Plus en détail

Additionneur 4 bits. Additionneur soustracteur. Comparateur.

Additionneur 4 bits. Additionneur soustracteur. Comparateur. - Additionneur 4 bits. Additionneur soustracteur. Comparateur. 1. Additionneur 4 bits: 1-1.introduction: Un additionneur sur 4 bits est un circuit qui permet de faire l addition de deux nombres A et B

Plus en détail

Algèbre de Boole - Fonctions Booléennes

Algèbre de Boole - Fonctions Booléennes Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Algèbre de Boole - Fonctions Booléennes jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture

Plus en détail

NUMERATION. Sommaire : I- Introduction. Différentes bases Base 10 Base 2 Base 16. Correspondance

NUMERATION. Sommaire : I- Introduction. Différentes bases Base 10 Base 2 Base 16. Correspondance PRE NUMERATION Sommaire : I- Introduction II- III- IV- Différentes bases Base Base Base 6 Correspondance Conversion décimal -> binaire binaire -> décimal hexadécimal -> binaire hexadécimal -> décimal décimal

Plus en détail

PSI/MP TD Logique combinatoire Lycée Paul Valéry 2008/2009

PSI/MP TD Logique combinatoire Lycée Paul Valéry 2008/2009 PSI/MP TD Logique combinatoire Lycée Paul Valéry 8/9 Exercice : Soit une intersection entre une route principale (E - O) et une route secondaire (N - S). Des capteurs de présence de voitures sont placés

Plus en détail

Systèmes de Numérotation - Codage

Systèmes de Numérotation - Codage Hiver 25 Systèmes de Numérotation - Codage Forme Polynomiale Tout nombre peut s'exprimer sous sa forme polynomiale : n N?? a? b i? i i 2 Cours : Logique combinatoire Hiver 25 Forme Polynomiale Dans cette

Plus en détail