Champ de Markov couple pour la segmentation d images texturées

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Champ de Markov couple pour la segmentation d images texturées"

Transcription

1 Champ de Markov couple pour la segmentation d images texturées Juliette Blanchet INRIA Rhône-Alpes Equipes Mistis et Lear

2 1 Segmention d images par champ de Markov caché 2 Segmentation de textures 3 Résultats expérimentaux

3 1 Segmention d images par champ de Markov caché 2 Segmentation de textures 3 Résultats expérimentaux

4 Segmentation d images Observations X = (X i ) i S Retrouver la classification Y = (Y i ) i S Y champ de Markov f(x y) = i f(x i y i ) } (X,Y) est un champ de Markov caché avec bruit indépendant (HMF-IN)

5 Champ de Markov : définition Y = {Y i, i S}, discret (Y i [1,..., K]) S spatialement ordonné : N i = {voisins de i S}, C = {cliques} Y est un champ de Markov { P(yi y z, S\{i} ) = P(y i y Ni ) P(y) > 0 y, P(y) = W 1 exp( H(y)) (mesure de gibbs)

6 Champ de Markov : définition Y = {Y i, i S}, discret (Y i [1,..., K]) S spatialement ordonné : N i = {voisins de i S}, C = {cliques} Y est un champ de Markov { P(yi y z, S\{i} ) = P(y i y Ni ) P(y) > 0 y, P(y) = W 1 exp( H(y)) (mesure de gibbs) où : W = exp( H(y)) (constante de normalisation, incalculable) y H(y) = V c (y c ) (fonction d énergie) c C

7 Champ de Markov : exemple Modèle de Potts : H(y) = β i j 1 y i=y j β = 0.3 β = 0.4 β = 0.5 β = 0.6

8 Champ de Markov : exemple Modèle de Potts : H(y) = β i j 1 y i=y j β = 0.3 β = 0.4 β = 0.5 β = 0.6 Modèle de Potts généralisé : H(y) = i j B y i,y j B =( ) B = ( ) B = ( ) B =( )

9 Approximation en champ moyen P(y) incalculable Approche de type Champ moyen pour se ramener à un système de variables indépendantes. Pour un site i : j N(i), y j IE[Y j ] = µ j système de variables indépendantes P(y) i P(y i µ Ni ) P(y) i P(y i y N i )

10 Approximation en champ moyen P(y) incalculable Approche de type Champ moyen pour se ramener à un système de variables indépendantes. Pour un site i : j N(i), y j IE[Y j ] = µ j système de variables indépendantes P(y) i P(y i µ Ni ) P(y) i P(y i y N i ) Algorithme Champ moyen-em (MF-EM) sur (X,Y) : à chaque itération créer le champ des constantes y. appliquer l algorithme EM sur le système factorisé. estimation des paramètres, classification

11 Remarques Y est un champ de Markov et f(x y) = i S f(x i y i ) (X,Y) est un champ de Markov d énergie H(y) + i logf(x i y i )

12 Remarques Y est un champ de Markov et f(x y) = i S f(x i y i ) (X,Y) est un champ de Markov d énergie H(y) + i logf(x i y i ) Généralisation 1 : (X,Y) est un champ de Markov mais f(x y) i f(x i y i ) Approximation en champ moyen à (X,Y) MF-EM reste applicable, mais formules non explicites (descente de gradient)

13 Remarques Y est un champ de Markov et f(x y) = i S f(x i y i ) (X,Y) est un champ de Markov d énergie H(y) + i logf(x i y i ) Généralisation 1 : (X,Y) est un champ de Markov mais f(x y) i f(x i y i ) Approximation en champ moyen à (X,Y) MF-EM reste applicable, mais formules non explicites (descente de gradient) Généralisation 2 : Y non markovien? Ajout d un champ auxiliaire Z tel que : (Y,Z) est un couple markovien et f(x y,z) = i f(x i y i, z i ) MF-EM reste applicable à (X,Y,Z)

14 1 Segmention d images par champ de Markov caché 2 Segmentation de textures 3 Résultats expérimentaux

15 Reconnaissance de textures Apprentissage sur les images de chaque texture : Brique Tissu Sol modèle, paramètres Reconnaissance de nouvelles images :

16 Reconnaissance de textures Apprentissage sur les images de chaque texture : Brique Tissu Sol modèle, paramètres Reconnaissance de nouvelles images :

17 Reconnaissance de textures Apprentissage sur les images de chaque texture : Brique Tissu Sol modèle, paramètres Reconnaissance de nouvelles images : + Dépendance spatiale des données d une image + Données cachées Champ de Markov caché

18 Modélisation Observations X = {X i, i S} Retrouver la texture correspondante Y = {Y i, i S} Une texture = région non homogème plusieurs classes ajout d un champ auxiliaire Z = {Z i, i S} ( sous-classes) tel que : V = (Y, Z) markovien f(x y,z) = i f(x i y i, z i ) } (X,V) champ de Markov caché avec bruit indépendant (HMF-IN)

19 Modélisation Observations X = {X i, i S} Retrouver la texture correspondante Y = {Y i, i S} Une texture = région non homogème plusieurs classes ajout d un champ auxiliaire Z = {Z i, i S} ( sous-classes) tel que : V = (Y, Z) markovien f(x y,z) = i f(x i y i, z i ) } (X,V) champ de Markov caché avec bruit indépendant (HMF-IN) (Y,Z) Y X X

20 Modélisation P(y,z) exp( β 1 yi=y j + i j } {{ } une texture est un bloc i j B yiy j (z i, z j ) ) } {{ } corrélation entre sous-classes

21 Modélisation P(y,z) exp( β 1 yi=y j + i j } {{ } une texture est un bloc i j B yiy j (z i, z j ) ) } {{ } corrélation entre sous-classes (Y,Z) est un champ de Markov

22 Modélisation P(y,z) exp( β 1 yi=y j + i j } {{ } une texture est un bloc i j B yiy j (z i, z j ) ) } {{ } corrélation entre sous-classes (Y,Z) est un champ de Markov Ni Y ni Z ne sont des champs de Markov

23 Modélisation P(y,z) exp( β 1 yi=y j + i j } {{ } une texture est un bloc i j B yiy j (z i, z j ) ) } {{ } corrélation entre sous-classes (Y,Z) est un champ de Markov Ni Y ni Z ne sont des champs de Markov Z y est un champ de Markov

24 Modélisation P(y,z) exp( β 1 yi=y j + i j } {{ } une texture est un bloc i j B yiy j (z i, z j ) ) } {{ } corrélation entre sous-classes (Y,Z) est un champ de Markov Ni Y ni Z ne sont des champs de Markov Z y est un champ de Markov (X,Z y) HMF-IN Apprentissage

25 Modélisation P(y,z) exp( β 1 yi=y j + i j } {{ } une texture est un bloc i j B yiy j (z i, z j ) ) } {{ } corrélation entre sous-classes (Y,Z) est un champ de Markov Ni Y ni Z ne sont des champs de Markov Z y est un champ de Markov (X,Z y) HMF-IN Apprentissage Avec V = (Y,Z), (X,V) HMF-IN Test

26 Apprentissage et Reconnaissance Apprentissage sur le HMF-IN (X,Z y) : P(z y) i P(z i z N i,y) i exp( j N i B yiy j (z i, z j )) Application de MF-EM pour estimer les matrices B et les paramètres Θ des f(. y i, z i ) (gaussiennes)

27 Apprentissage et Reconnaissance Apprentissage sur le HMF-IN (X,Z y) : P(z y) i P(z i z N i,y) i exp( j N i B yiy j (z i, z j )) Application de MF-EM pour estimer les matrices B et les paramètres Θ des f(. y i, z i ) (gaussiennes) Reconnaissance sur le HMF-IN (X,V) avec V = (Y,Z) P(y,z) P(y i, z i y N i,z N i ) exp(β 1 yi=y j + ˆB yiy j (z i, zj )) i i j N i j N i Application de MF-EM pour estimer β, avec ˆB et ˆΘ connus. Classification par MAP ou MPM : P(y x) P(y i, z i y N i,z N i )f(x i y i, z i ) z i i

28 1 Segmention d images par champ de Markov caché 2 Segmentation de textures 3 Résultats expérimentaux

29 Echantillon des textures Brique Moquette Tissu Sol 1 Sol 2 Marbre Bois 7 10 = 70 images

30 Données : descripteurs locaux Niveaux de gris : information faible En vision : descripteurs locaux données multidimentionnelles (128) en des points significatifs, irrégulièrement espacés description plus compacte et complète, structure locale graphe de voisinage de Delaunay

31 Données : descripteurs locaux Niveaux de gris : information faible En vision : descripteurs locaux données multidimentionnelles (128) en des points significatifs, irrégulièrement espacés description plus compacte et complète, structure locale graphe de voisinage de Delaunay

32 Données : descripteurs locaux Niveaux de gris : information faible En vision : descripteurs locaux données multidimentionnelles (128) en des points significatifs, irrégulièrement espacés description plus compacte et complète, structure locale graphe de voisinage de Delaunay

33 Données : descripteurs locaux Niveaux de gris : information faible En vision : descripteurs locaux données multidimentionnelles (128) en des points significatifs, irrégulièrement espacés description plus compacte et complète, structure locale graphe de voisinage de Delaunay

34 Données : descripteurs locaux Niveaux de gris : information faible En vision : descripteurs locaux données multidimentionnelles (128) en des points significatifs, irrégulièrement espacés description plus compacte et complète, structure locale graphe de voisinage de Delaunay

35 Données : descripteurs locaux Niveaux de gris : information faible En vision : descripteurs locaux données multidimentionnelles (128) en des points significatifs, irrégulièrement espacés description plus compacte et complète, structure locale graphe de voisinage de Delaunay

36 Résultats 2 modèles : modèle indépendant modélisation par champ de Markov couple caché 70 images uni-textures, 68 multi-textures. f(. y i, z i ) = gaussienne de matrice de covariance diagonale (Σ diag ) ou paramétrée pour la grande dimension (Σ hdim ) [cf C.Bouveyron] Mod. Cov. Brique Moq. Tissu Sol1 Sol2 Marbre Bois Ind. Σ diag Ind. Σ hdim Mark. Σ diag Mark. Σ hdim

37 Un exemple...

38 Perspectives Pour l instant, V = (Y, Z) est markovien d énergie H et f(x v) = i f(x i v i ) exp( i 1 2σ 2 v i (x i m vi ) 2 ) Généraliser au cas du bruit non indépendant : f(x v) i f(x i v i ) mais le couple (X,V) reste markovien. P(x,v) exp( i 1 2σv 2 (x i m vi ) 2 + q viv j (x i m vi )(x j m vj )+H(v)) i i j Approximation en champ moyen de P(x, v) MF-EM reste applicable

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Rapport de Stage : Analyse d images aériennes de haute résolution du département de Haute Savoie

Rapport de Stage : Analyse d images aériennes de haute résolution du département de Haute Savoie Rapport de Stage : Analyse d images aériennes de haute résolution du département de Haute Savoie Jean Fortin 30 mai au 22 juillet 2005 Stage de licence effectué au laboratoire MAP-ARIA, à l école d architecture

Plus en détail

Modèles markoviens et extensions pour la classification de données complexes

Modèles markoviens et extensions pour la classification de données complexes Modèles markoviens et extensions pour la classification de données complexes THÈSE présentée par Juliette BLANCHET réalisée sous la direction de Cordelia Schmid et Florence Forbes Mercredi 10 octobre 2007

Plus en détail

Modèles de Markov Couples et Triplets et quelques applications

Modèles de Markov Couples et Triplets et quelques applications Modèles de Markov Couples et Triplets et quelques applications F. Salzenstein Université De Strasbourg Laboratoire ICube, équipe IPP Sommaire 1 chaînes de Markov Algorithme d inférence général Chaînes

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Stéréoscopie par minimisation d'énergie Frédéric Devernay d'après le cours de Richard Szeliski Mise en correspondance stéréo Quels algorithmes possibles? mettre en correspondance

Plus en détail

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Segmentation non supervisée d images par chaîne de Markov couple

Segmentation non supervisée d images par chaîne de Markov couple Segmentation non supervisée d images par chaîne de Markov couple Stéphane Derrode 1 et Wojciech Pieczynski 2 1 École Nationale Supérieure de Physique de Marseille, Groupe Signaux Multidimensionnels, laboratoire

Plus en détail

Chaînes de Markov Cachées Floues et Segmentation d Images

Chaînes de Markov Cachées Floues et Segmentation d Images Introduction Chaînes de Markov Cachées Floues et Segmentation d Images Cyril Carincotte et Stéphane Derrode Équipe GSM Groupe Signaux Multi-dimensionnels Institut Fresnel (UMR 6133) EGIM Université Paul

Plus en détail

Formes et Optimisation en Vision par Ordinateur. Renaud Keriven Ecole des Ponts / ENS

Formes et Optimisation en Vision par Ordinateur. Renaud Keriven Ecole des Ponts / ENS Formes et Optimisation en Vision par Ordinateur Renaud Keriven Ecole des Ponts / ENS Journées Images et Modélisations Mathématiques Rennes, décembre 2006-1- Contexte (i) Snakes [Kass et al. 88] Contours

Plus en détail

Support Vector Machines

Support Vector Machines Support Vector Machines Séparateurs à vaste marge Arnaud Revel revel.arnaud@gmail.com Plan 1 Introduction 2 Formalisation 3 Utilisation des noyaux 4 Cas multi-classes 5 Applications des SVM 6 Bibliographie

Plus en détail

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans Introduction aux CRF via l annotation par des modèles graphiques Isabelle Tellier LIFO, Université d Orléans Plan 1. Annoter pour quoi faire 2. Apprendre avec un modèle graphique 3. Annnoter des chaînes

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Régression logistique

Régression logistique Régression logistique Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Régression logistique p. 1 Introduction Objectifs Le classifieur de Bayes est basé sur la comparaison des probabilités

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes CNES Paris - 22/05/2003 Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes Michel DHOME LASMEA UMR 6602CNRS/UBP Clermont-Ferrand Etat de l art (communauté vision artificielle)

Plus en détail

Polytech Paris-Sud Département informatique Formation par Apprentissage, 3ème année

Polytech Paris-Sud Département informatique Formation par Apprentissage, 3ème année 1 / 20 Polytech Paris-Sud Département informatique Formation par Apprentissage, 3ème année Cours : Jérôme Azé Université Paris-Sud LRI 2009-2010 2 / 20 Outline 1 Présentation de A q Algorithme Défauts

Plus en détail

SCIENCES DE L INGÉNIEUR

SCIENCES DE L INGÉNIEUR N o d ordre: THÈSE présentée à L UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS pour obtenir le titre de DOCTEUR EN SCIENCES Spécialité SCIENCES DE L INGÉNIEUR par Zoltan KATO Sujet de la thèse: Modélisations markoviennes

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Le suivi des caractéristiques faciales en temps réel

Le suivi des caractéristiques faciales en temps réel Le suivi des caractéristiques faciales en temps réel ABDAT FAIZA Encadrée par : A.Pruski C.Maaoui Laboratoire d Automatique des Systèmes Coopératifs Université de METZ 25 Mars 2008 Plan Objectif 1. Détection

Plus en détail

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28 MIXMOD Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD F. Langrognet () MIXMOD Avril 2012 1 / 28 PLAN 1 La classification des données 2 MIXMOD, ensemble logiciel de classification

Plus en détail

Apprentissage par méthodes à noyaux en reconnaissance d images

Apprentissage par méthodes à noyaux en reconnaissance d images Apprentissage par méthodes à noyaux en reconnaissance d images Alberto Bietti Table des matières Introduction 2 1 Apprentissage par méthodes à noyaux 2 1.1 Position du problème et motivation..........................

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Segmentation de maillages 3D à l aide de méthodes basées sur la ligne de partage des eaux

Segmentation de maillages 3D à l aide de méthodes basées sur la ligne de partage des eaux Segmentation de maillages 3D à l aide de méthodes basées sur la ligne de partage des eaux Sébastien Delest Thèse dirigée par Hubert Cardot et Romuald Boné Université François Rabelais de Tours 26 novembre

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Informatique visuelle - Vision par ordinateur. Pré-traitement d images

Informatique visuelle - Vision par ordinateur. Pré-traitement d images Informatique visuelle - Vision par ordinateur Pré-traitement d images Elise Arnaud elise.arnaud@imag.fr cours inspiré par X. Descombes, J. Ros, A. Boucher, A. Manzanera, E. Boyer, M Black, V. Gouet-Brunet

Plus en détail

De la Séparation de Sources à l Analyse en Composantes Indépendantes. Christian JUTTEN, PIERRE COMON

De la Séparation de Sources à l Analyse en Composantes Indépendantes. Christian JUTTEN, PIERRE COMON De la Séparation de Sources à l Analyse en Composantes Indépendantes Christian JUTTEN, PIERRE COMON version 1.2, janvier 2005 Approche bayésienne en séparation de sources Avant de détailler l utilisation

Plus en détail

Cours brique ISAT Filtrage et extraction de caractéristiques sur les images RSO Florence Tupin Année 2005-2006

Cours brique ISAT Filtrage et extraction de caractéristiques sur les images RSO Florence Tupin Année 2005-2006 Cours brique ISAT Filtrage et extraction de caractéristiques sur les images RSO Florence Tupin Année 2005-2006 1 Plan Filtrage des images radar Rappels sur les statistiques Maximisation a posteriori Minimisation

Plus en détail

Mesure agnostique de la qualité des images.

Mesure agnostique de la qualité des images. Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire

Plus en détail

Filtre de Wiener. Analyse en Composantes Principales

Filtre de Wiener. Analyse en Composantes Principales Filtre de Wiener Analyse en Composantes Principales Guillaume Obozinski LIGM/Ecole des Ponts - ParisTech Traitement de l information et vision artificielle Ecole des Ponts Filtre de Wiener Norbert Wiener

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Détecteurs et descripteurs

Détecteurs et descripteurs Détecteurs et descripteurs GIF-4105/7105 Photographie Algorithmique Jean-François Lalonde Merci à D. Hoiem et A. Efros pour les slides Comment aligner deux images? Déterminer une transformation globale

Plus en détail

Evaluation de performance en Sûreté de Fonctionnement

Evaluation de performance en Sûreté de Fonctionnement Groupe SdF Midi-Pyrénées Toulouse 5 juin 2015 Evaluation de performance en Sûreté de Fonctionnement - Andre.cabarbaye Plan Introduction Types de performances Finalité des analyses Attentes du donneur d

Plus en détail

Initiation à la fouille de données et à l apprentissage automatiq

Initiation à la fouille de données et à l apprentissage automatiq Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/

Plus en détail

Optimisation de la géométrie du voisinage pour la segmentation d images texturées

Optimisation de la géométrie du voisinage pour la segmentation d images texturées Optimisation de la géométrie du voisinage pour la segmentation d images texturées Pierre Beauseroy & André Smolarz Institut des Sciences et Technologies de l Information de Troyes (FRE 73) Université de

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires CHAPITRE I. SIMULATION DE VARIABLES ALÉATOIRES 25 Chapitre I Simulation de variables aléatoires La simulation informatique de variables aléatoires, aussi complexes soient elles, repose sur la simulation

Plus en détail

Analyse et modélisation de visages

Analyse et modélisation de visages Analyse et modélisation de visages Pascal Bourdon Laboratoire XLIM-SIC (UMR CNRS 7252) / Université de Poitiers pascal.bourdon@univ-poitiers.fr Analyse et modélisation de visages Plan Introduction Outils

Plus en détail

Classification markovienne automatique d'images aériennes de haute résolution

Classification markovienne automatique d'images aériennes de haute résolution Classification markovienne automatique d'images aériennes de haute résolution Xavier Marsault* Matthieu Aubry** Jean Fortin*** Lamiae Azizi**** * Laboratoire MAP-ARIA, ENSAL de Lyon UMR MAP 694 du CNRS

Plus en détail

Détection automatique de fissures dans des images de chaussée par modélisation markovienne. Hanan Salam

Détection automatique de fissures dans des images de chaussée par modélisation markovienne. Hanan Salam Détection automatique de fissures dans des images de chaussée par modélisation markovienne Hanan Salam Résumé : Ce travail présente une méthode de détection automatique de fissures dans des images de chaussées

Plus en détail

Apprentissage Automatique Numérique

Apprentissage Automatique Numérique Apprentissage Automatique Numérique Loïc BARRAULT Laboratoire d Informatique de l Université du Maine (LIUM) loic.barrault@lium.univ-lemans.fr 16 septembre 2015 1/42 Problème classique Automatique Autre

Plus en détail

Suivi multi-objets dans des séquences d'images par méthodes de Monte-Carlo

Suivi multi-objets dans des séquences d'images par méthodes de Monte-Carlo Suivi multi-objets dans des séquences d'images par méthodes de Monte-Carlo Christelle Garnier Télécom Lille / LAGIS UMR CNRS 829 Contexte Utilisation accrue de caméras dans de nombreux domaines d application

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

Maintien des personnes âgées à domicile

Maintien des personnes âgées à domicile Maintien des personnes âgées à domicile Enjeux scientifiques et technologiques liés à la vision par ordinateur Christian Wolf http://liris.cnrs.fr/christian.wolf Introduction Sommaire Les données et les

Plus en détail

CarrotAge, un logiciel pour la fouille de données agricoles

CarrotAge, un logiciel pour la fouille de données agricoles CarrotAge, un logiciel pour la fouille de données agricoles F. Le Ber (engees & loria) J.-F. Mari (loria) M. Benoît, C. Mignolet et C. Schott (inra sad) Conférence STIC et Environnement, Rouen, 19-20 juin

Plus en détail

PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES

PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES Nathalie GORRETTA MONTEIRO 1 1 UMR Information et Technologies pour les Agro-Procédés, Cemagref Montpellier, France Présentée le 25 Février

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Table des matières 1 Graph Kernels for Molecular Structure-Activity Relationship Analysis

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification

Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification et Philippe LERAY, Laboratoire LITIS, Rouen. Rencontres Inter-Associations La classification

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Introduction aux Méthodes de Monte Carlo

Introduction aux Méthodes de Monte Carlo Méthodes de Monte Carlo pour la Modélisation et le Calcul Intensif Applications à la Physique Numérique et à la Biologie Séminaire CIMENT GRID Introduction aux Méthodes de Monte Carlo Olivier François

Plus en détail

Prototypes et k plus proches voisins (kppv (knn))

Prototypes et k plus proches voisins (kppv (knn)) Prototypes et k plus proches voisins (kppv (knn)) Université Grenoble 1 - Lab. Informatique Grenbole / MRIM Learning Vector Quantization (1) Algorithme en ligne (on-line) dans lequel des prototypes sont

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Université de Rennes 1 Master Recherche SISEA

Université de Rennes 1 Master Recherche SISEA Université de Rennes 1 Master Recherche SISEA Examen du cours UE S3-2 Filtre de Kalman et modèles de Markov cachés Jeudi 28 janvier 2010, 10:00 à 12:00 Problème : L objectif de ce problème est d établir

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Simulations de Monte-Carlo pour un modèle de dynamique forestière

Simulations de Monte-Carlo pour un modèle de dynamique forestière Journées MAS de la SMAI - 29 août 2008 - Rennes Simulations de Monte-Carlo pour un modèle de dynamique forestière F. Campillo, N. Desassis, V. Rossi ARC MICR - Projet MERE - INRIA Plan Contexte et objectifs

Plus en détail

Statistiques fonctionnelles pour l imagerie hyperspectrale

Statistiques fonctionnelles pour l imagerie hyperspectrale Statistiques fonctionnelles pour l imagerie hyperspectrale Laurent Delsol Cécile Louchet MAPMO 17e journée CASCIMODOT 6 décembre 2012 Plan Introduction Modélisation des spectres via les statistiques fonctionnelles

Plus en détail

Indexation d'images. Cours Master IA&D. Techniques du traitement d'images. Antoine Manzanera - ENSTA /Unité d'électronique et d'informatique

Indexation d'images. Cours Master IA&D. Techniques du traitement d'images. Antoine Manzanera - ENSTA /Unité d'électronique et d'informatique Indexation d'images Cours Master IA&D Techniques du traitement d'images Antoine Manzanera - ENSTA /Unité d'électronique et d'informatique Indexation - Introduction Le sujet de ce cours est la recherche

Plus en détail

Cours IFT6266, Apprentissage Non-Supervisé de Variétés

Cours IFT6266, Apprentissage Non-Supervisé de Variétés Cours IFT6266, Apprentissage Non-Supervisé de Variétés L Apprentissage Non-Supervisé L apprentissage non-supervisé vise à caractériser la distribution des données, et les relations entre les variables,

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Détection Multi-Utilisateurs

Détection Multi-Utilisateurs Détection Multi-Utilisateurs 3 ème année Télécom-Réseaux année 007-008 Martial COULON INP-ENSEEIHT Position du Problème Obectif : concevoir et analyser la démodulation numérique en présence d interférences

Plus en détail

L imagerie vue par un mathématicien

L imagerie vue par un mathématicien L imagerie vue par un mathématicien Li-Thiao-Té Sébastien LAGA UMR 7539, Université Paris 13 Plan Généralités Images Modèles Qu est-ce qu une image? des coordonnées spatiales des mesures pour chaque position

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Bases du traitement des images. Détection de contours

Bases du traitement des images. Détection de contours Détection de contours Dominique.Bereziat@lip6.fr Contributions: N. Thome, D. Béréziat, S. Dubuisson Octobre 2015 1 / 76 Introduction Rôle primordial de la détection de contours en vision 1 Réduction d

Plus en détail

Évaluation de la classification et segmentation d'images en environnement incertain

Évaluation de la classification et segmentation d'images en environnement incertain Évaluation de la classification et segmentation d'images en environnement incertain EXTRACTION ET EXPLOITATION DE L INFORMATION EN ENVIRONNEMENTS INCERTAINS / E3I2 EA3876 2, rue F. Verny 29806 Brest cedex

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Couple de variables aléatoires - Notion d indépendance.

Couple de variables aléatoires - Notion d indépendance. Couple de variables aléatoires - Notion d indépendance. Préparation au Capes - Université Rennes 1 On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07 Reconstruction et Animation de Visage Charlotte Ghys 15/06/07 1 3ème année de thèse Contexte Thèse CIFRE financée par Orange/France Telecom R&D et supervisée par Nikos Paragios (Ecole Centrale Paris) et

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema. Filtrage et EDP Philippe Montesinos EMA/LGI2P - Site EERIE Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.fr 1 Plan 1. Rappels: - Les analyses multi-échelles. - Méthodes

Plus en détail

Nouvelles de l AS fouille d images. Émergence de caractéristiques sémantiques

Nouvelles de l AS fouille d images. Émergence de caractéristiques sémantiques Nouvelles de l AS fouille d images Émergence de caractéristiques sémantiques Patrick GROS Projet TEXMEX IRISA - UMR 6074, CNRS, université de Rennes 1, INSA Rennes, INRIA L AS fouille d images Qu est-ce

Plus en détail

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en

Plus en détail

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Laurent Denis STATXPERT Journée technologique "Solutions de maintenance prévisionnelle adaptées à la production" FIGEAC,

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Géométrie discrète Chapitre V

Géométrie discrète Chapitre V Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Segmentation basée sur les vecteurs propres : vue unifiée

Segmentation basée sur les vecteurs propres : vue unifiée Segmentation basée sur les vecteurs propres : vue unifiée Papier Y. Weiss : Segmentation using eigenvectors: a unifying view Proceedings IEEE International Conference on Computer Vision p. 975-982 (1999)

Plus en détail

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0 Chapitre 1 Modélisation markovienne 11 Introduction Un processus aléatoire est un phénomène dont une partie de l évolution temporelle est aléatoire On rencontre ces processus dans divers domaines de la

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail