[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

Dimension: px
Commencer à balayer dès la page:

Download "[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1"

Transcription

1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F? Exercice 2 [ ] [correctio] Soiet E {1,..., } et F {1,..., } avec N. Combie y a-t-il d alicatios strictemet croissates de E vers F? Exercice 7 [ ] [correctio] Pour N et N, o ote Σ le ombre de ulets (x 1,..., x ) N tels que x x. a) Détermier Σ 0, Σ 1, Σ 2, Σ 1 et Σ 2. b) Etablir N, N, Σ +1 Σ0 + Σ Σ c) E déduire que Σ + 1 Exercice 3 [ ] [correctio] Combie existe-t-il de relatio d ordre total sur u esemble E à élémets? Exercice 4 [ ] [correctio] O trace das u la droites e ositio géérale (i.e. deux d etre elles e sot jamais arallèles i trois d etre elles cocourates). Combie forme-t-o aisi de triagles? Exercice 5 [ ] [correctio] [Formule de Chu-Vadermode] Soiet, q N et [[0, + q]]. Prooser ue démostratio ar déombremet de l égalité + q q Exercice 6 [ ] [correctio] Soiet E et F deux esembles fiis o vides de cardiaux resectifs et. O ote S le ombre de surjectios de E sur F. a) Calculer S 1, S et S our >. b) O suose et o cosidère a u élémet de E. O observat qu ue surjectio de E sur F réalise, ou e réalise as, ue surjectio de E\ {a} sur F, établir S (S S 1 ) c) E déduire que our tout 1 et tout 1 S ( 1) Exercice 8 [ ] [correctio] Soit E u esemble à élémets. a) Soit X ue artie à élémets de E. Combie y a-t-il de arties Y de E disjoites de X? b) Combie y a-t-il de coules (X, Y ) formés de arties disjoites de E? Exercice 9 [ ] [correctio] Soit E u esemble à élémets. Combie y a-t-il de arties X et Y de E telles que X Y? Exercice 10 [ ] [correctio] Soit A ue artie d u esemble E à élémets. O ose CardA. a) Combie y a-t-il de arties X de E coteat A? b) Combie y a-t-il de arties X de E à m {,..., } élémets coteat A? c) Combie y a-t-il de coules (X, Y ) de arties de E tels que X Y A? Exercice 11 [ ] [correctio] Soit E u esemble à élémets. Calculer Card(X) et X E X,Y E Exercice 12 [ ] [correctio] Combie y a-t-il de -cycles das le groue (S, )? Card(X Y ) Diffusio autorisée à titre etièremet gratuit uiquemet - dd

2 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 2 Exercice 13 [ ] [correctio] Soiet, N et E {1,..., }. a) Combie y a-t-il de suites strictemet croissates (x 1,..., x ) d élémets de E? b) Combie y a-t-il de suites croissates au ses large (x 1,..., x ) d élémets de E? c) E déduire le ombre de suites (a 1,..., a ) de aturels vérifiat d) Même questio avec la coditio a a a a Exercice 14 [ ] [correctio] a) Quel est le coefficiet de a 2 b 5 c 3 das le déveloemet de (a + b + c) 10? b) Même questio avec a 1 1 a a das (a 1 + a a ). Exercice 15 [ ] [correctio] Soit N. O ote X l esemble de suites (x 1,..., x ) avec {1,..., }, x 1 ou 1 A chaque suite x (x 1,..., x ) élémet de X o associe la suite (s 0, s 1,..., s ) avec s 0 Z et s s 1 + x our {1,..., } Celle-ci détermie ue lige brisée détermiée ar les oits de coordoées (, s ) comme illustrée ci-dessous exliquer ourquoi il y a autat de chemis joigat (0, s 0 ) à (, m) que de chemis joigat (0, s 0 ) à (, m) et couat l axe des abscisses. d) E déduire le ombre de chemis joigat (0, 1) à (, m) dot tous les oits sot d ordoées strictemet ositives. Exercice 16 [ ] [correctio] O ote d le ombre de ermutatios σ de [[1, ]] vérifiat [[1, ]], σ() O dit σ est u déragemet de [[1, ]]. O coviet d 0 1. a) Etablir N,! d b) E déduire N, d ( 1)! Cette lige brisée défiit u chemi joigat (0, s 0 ) à (, s ). a) O ote le ombre de 1 das la suite x (x 1,..., x ) X. Exrimer e foctio de, et s 0 la valeur de s. b) Etat doée m N, combie existe-t-il de chemi s m? c) O suose s 0 N. E exloitat la figure ci-dessous Exercice 17 [ ] [correctio] O ote S l esemble des ermutatios de [[1, ]] et S () le sous-esemble de S costitué des ermutatios ossédat exactemet [[0, ]] oits fixes. Efi, o ose s () Card(S ()) a) Calculer s () Diffusio autorisée à titre etièremet gratuit uiquemet - dd

3 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 3 b) Soiet, 1. E calculat de deux faços le ombre de coules (s, x) costitués de s S () et x oit fixe de s, établir s () s 1 ( 1) c) E déduire s () s (0) d) Retrouver directemet le résultat récédet. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

4 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Correctios 4 Correctios Exercice 1 : [éocé] Si >, il y a as d ijectios ossibles. Si 0, il y a ue ijectio : l alicatio vide. Si 0 < alors o eut écrire E {x 1,..., x } avec les x i deux à deux disticts. Pour former ue ijectio de E das F : O choisit f(x 1 ) das F : choix. O choisit f(x 2 ) das F \ {f(x 1 )} : 1 choix.... O choisit f(x ) das F \ {f(x 1 ),..., f(x 1 )} : + 1 choix. Au total, il y a ( 1) ( + 1)! ( )! choix. Exercice 2 : [éocé] Ue alicatio f : E F strictemet croissate est etièremet ( détermiée ) ar so image qui est ue artie formée de élémets de F. Il y a arties à élémets das F et doc autat d alicatios strictemet croissates de E vers F. Exercice 3 : [éocé] Ue relatio d ordre total sur E ermet de défiir ue bijectio de {1,..., } vers E et iversemet. Par suite, il y a exactemet! relatios d ordre total ossibles. Exercice 4 : [éocé] Notos t le ombre de triagles formés. t 0 t 1 t 2 0 Pour 3, former u triagle reviet à choisir les trois droites défiissat ses côtés : il y a ossibilités 3 Chacue de ses ossibilités défiit u véritables triagle (car il y a i cocourace, i arallélisme) et les triagles obteus sot deux à deux disticts. Fialemet t 3 Exercice 5 : [éocé] Soit E u esemble à + q élémets séaré e deux arties disjoites E et E de cardiaux et q. + q Il y a exactemet arties à élémets das E. Or our former ue artie à élémet de E, o eut our chaque [[0, ]] ( commecer ) ( ar ) choisir élémets das E avat d e choisir das E. Il y a q ossibilités our chaque [[0, ]] uis au total q ossibilités d où l idetité. Exercice 6 : [éocé] a) Si F est u sigleto, il y a qu ue alicatio à valeurs das F et celle-ci est surjective. S 1 1. Si CardE CardF < + alors les surjectios de E sur F sot aussi les bijectios. Par suite S!. Si CardE < CardF, il existe as de surjectios de E sur F. Aisi S 0. b) Ue surjectio de E sur F telle que sa restrictio à E\ {a} soit surjective eut redre imorte quelle valeurs e a. Il y e a S 1. Ue surjectio de E sur F telle que sa restrictio à E\ {a} e soit as surjective doit redre e a la valeur maquate. Il y a ossibilité our choisir la valeur e a et S 1 1 Au fial surjectios de E\ {a} sur F \ {f(a)}. Au total, il y e a S 1 1. S (S S 1 ) c) Motros la roriété ar récurrece sur N. Pour 1 Si S1 1 1 et ( 1) 1 1 Si > 1 car S 1 0 et ( 1) 1 ( 1) (1 1) Diffusio autorisée à titre etièremet gratuit uiquemet - dd

5 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Correctios 5 Suosos la roriété établie au rag 1 1. Pour S 1 1 et ( 1) 1 1 Pour > 1 1 S (S S 1 ) 1 ( 1) E combiat les deux sommes e exloitat la formule de Pascal 1 S ( 1) 1 1 uis e exloitat o arviet à Récurrece établie. 1 1 S ( 1) ( 1) 1 Pour 1 : o Suosos la roriété établie au rag N, Σ +1 Σ0 + +Σ Récurrece établie. Exercice 8 : [éocé] a) Autat que de arties de E\X : 2 b) 2 (1 + 2) 3. 0 Exercice 9 : [éocé] Pour {0,..., }, il y a arties Y à u élémets das E. Pour ue telle artie ( Y ), il y a 2 arties X icluses das Y. Au total, il y a 2 (1 + 2) 3 coules (X, Y ) (E) 2 tels que X Y. Exercice 7 : [éocé] a) Σ 0 1 : seul le -ulet ul est de somme égale à 0. Σ 1 : les -ulets de somme égale à 1 sot formés d u 1 et de 1 zéros. Σ 2 + ( 1) 2 (+1) 2 : les -ulets de somme égale à 2 sot ou bie formé de 1 deux et de 1 zéros, ou bie de 2 us et de 2 zéros. Σ 1 1 : seul le 1-ulet () est de somme égale à. Σ : les coules de somme égale à sot (0, ), (1, ),..., (, 0). b) Le ombre de + 1 ulets (x 1,..., x, x +1 ) N tels que x x +1 avec x +1 [[0, ]] est Σ. Doc Σ +1 Σ0 + Σ Σ c) Par récurrece sur N, motros N, Σ + 1 Exercice 10 : [éocé] a) Autat que de arties de E\A : 2 b) Autat que de arties de E\A à m élémets :. m c) Ue fois X à m élémets coteat A détermié il y a 2 m choix de Y ossibles ( et doc ) 2 m 2 (1 + 2) 3. m m Exercice 11 : [éocé] Pour {0,..., }, il y a arties X à u élémets das E. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

6 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Correctios 6 Par suite Card(X) X E Card(X) 2 1 Pour {0,..., }, il y a arties Z à élémets das E. Pour ue ( telle) artie Z, les arties X coteat Z ot l {,..., } élémets. Il y a arties X à l élémets coteat Z. l Pour ue telle artie X, ue artie Y telle que X Y Z est ue artie Y détermiée ar Z Y Z C E X. Il y a 2 l arties Y ossibles. Il y a 2 l (1 + 2) 3 l l coules (X, Y ) tels que X Y Z. Par suite Or doc X,Y E Card(X Y ) CardZ X Y Z ((3 + x) ) (3 + x) 1 X,Y E Card(X Y ) 3 x 1 Card(X Y ) Exercice 12 : [éocé] Ue ijectio f de N das N ermet de défiir le -cycle (f(1)... f()). Iversemet, u -cycle de N eut être défiis ar exactemet ijectios différetes. E vertu du ricie des bergers, il y a exactemet! ( )! -cycles das S. Exercice 13 : [éocé] a) Ue suite (x 1,..., x ) strictemet croissate est etièremet détermiée ar le choix de élémets disticts das E (qu il suffit alors d ordoer). Il y a doc autat de suites strictemet croissates que de arties à élémets das u esemble à élémets, soit b) Associos à ue suite (x 1,..., x ) d élémets de E la suite (y 1,..., y ) défiie ar y x + ( 1) Par cette corresodace bijective, o eut associer à ue suite croissate d élémets de E ue suite strictemet croissate d élémets de E {1,..., + 1} et iversemet. Le ombre de suites (x 1,..., x ) croissates d élémets de E est doc + 1 c) A chaque suite (a 1,..., a ) o fait corresodre la suite (x 1,..., x ) avec x a a Par cette corresodace bijective, o associe les suites (a 1,..., a ) vérifiat a a aux suites croissates d élémets de E {0, 1,..., }. Le ombre de suites cherché est doc + d) La coditio a a est remlie si a a, mais as a a 1. Le ombre de suites cherché est doc Exercice 14 : [éocé] a) Das le déveloemet de (a + b + c) 10 (a + b + c)(a + b + c)... (a + b + c) o obtiet u terme a 2 b 5 c 3 e choisissat deux a, ciq b et trois c. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

7 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Correctios 7 10 Il y a choix ossibles our les facteurs dot serot issus les a. 2 8 Ue fois ceux-ci choisis, il y a choix ossibles our les facteurs fourissat 5 les b. Ue fois ces choix faits, les trois facteurs restat fourisset les c. Au total, il y a ! 2 5 2!5!3! 2520 termes a 2 b 5 c 3 aaraissat lors du déveloemet de (a + b + c) 10. b) O rered le même rotocole, our obteir si et 0 sio.! 1! 2!...! Exercice 15 : [éocé] a) Le ombre de 1 est de et doc s s 0 + ( ) s b) Si m (s 0 + ) est as u ombre air, il y a as de chemi solutios. Sio, o itroduit Z our lequel m s Si < 0 ou >, o e ourra trouver de chemi solutios. Si 0, chemis solutios corresodet aux suites x our lesquels o ositioe termes 1 et les autres égaux à 1. Il y a ositios ossibles our les termes 1 et autat de chemis solutios. c) Tout chemi joigat (0, s 0 ) à (, m) et couat l axe des abscisses eut être associé de faço bijective à u chemi joigat (0, s 0 ) à (, m), il suffit our cela de asser à l ooser les termes x 1, x 2,... jusqu au remier our lequel s 0 + x x 0 et e as modifier les autres comme das la figure roosé (ce résultat est cou sous le om de ricie de réflexio). d) Si m 1 + est imair, il y a aucu chemis ossible d aucue sorte. Sio, o eut écrire m avec Z et il y a alors chemis ossibles (ce ombre état ul lorsque < 0 ou > ). Parmi ceux-ci, ( o retire ) ceux couat l axe abscisse qui ar l étude au dessus sot au ombre de. + 1 Fialemet, il y a chemis solutios Exercice 16 : [éocé] a) Pour A [[1, ]], otos + 1 S A {σ S / x A, σ(x) x et x / A, σ(x) x} S est la réuio disjoites des S A our A arcourat P ([[1, ]]). Arès idexatio des élémets de A, ue alicatio de S A eut être idetifiée à u déragemet de [[1, ]] avec CardA. O e déduit CardS A d uis CardS d CardA d A P(E) l0 b) Raisoos ar récurrece forte sur. La roriété éocé est vrai aux rags 0 et 1. Suosos la roriété vraie jusqu au rag 1. Pour [[0, ]], osos d ( 1) l l! l Par hyothèse de récurrece d d our [[0, 1]] et o veut établir l idetité our. Or d d ( 1) l l! l Par échage des deux sommes d l0 l l0 ( 1) l l! l uis glissemet d idice das la deuxième somme l + l d ( 1) l! + l l l0 Diffusio autorisée à titre etièremet gratuit uiquemet - dd

8 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Correctios 8 et exressio factorielle des coefficiets biomiaux l d! l ( 1) ( l)! Or doc l0 l { l ( 1) (1 + ( 1)) l 0 si l > 0 1 si l d! d O e déduit d d uisque l hyothèse de récurrece a fouri les idetificatios d d our [[0, 1]]. Récurrece établie. Exercice 17 : [éocé] a) La somme étudiée déombre les ermutatios de [[1, ]] selo leur ombre de oits fixes s () CardS! b) Pour chaque ermutatio de s de S () il y a oits fixes x ossibles. Le ombre de coules cherché est doc s (). Pour chaque x [[1, ]], ue ermutatio ossédat oits fixes (dot x) est etièremet détermiée ar sa restrictio à [[1, ]] \ {x} qui est ue ermutatio à 1 oits fixes. Aisi, le ombre de coules cherché est aussi s 1 ( 1). c) E itérat la formule ci-dessus obteue s () ( 1)... ( + 1) s (0) ( 1)... 1 s (0) d) Pour détermier ue ermutatio élémet de S (), o choisit l esemble de ses oits fixes (il y a ossibilités) et o costruit ses valeurs sur le comlémetaire de l esemble des oits fixes à artir d ue ermutatio de élémets sas oits fixes (il y a s (0) ossibilités). Au total, il y a s (0) alicatios de la forme voulue. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011 Déombremet ECE Lycée Carot 0 ovembre 2011 Itroductio La combiatoire, sciece du déombremet, sert comme so om l idique à comter Il e s agit bie etedu as de reveir au stade du CP et d aredre à comter sur

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Licence 1 Mathématiques

Licence 1 Mathématiques Licece Mathématiques 204 205 Algèbre et Arithmétique Feuille o 3 : combiatoire. Exercices à savoir faire.. Réuio, itersectio, artitio. Exercice Au mois de javier, Aatole a ris ses reas de midi au Restau

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition :

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition : Probabilités : coditioemet et idéedace Termiale S Déombremet. Pricie O raelle que le cardial d u esemble fii E, oté Card(E), rerésete so ombre d élémets. Si E 0,0 alors Card(E). Notre but est de détermier

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

I - ENSEMBLES FINIS ET CARDINAL

I - ENSEMBLES FINIS ET CARDINAL Séciales PSI LYCÉE BUFFON COURS Probabilités 1 Déombremet I - ENSEMBLES FINIS ET CARDINAL 1 DÉFINITION DÉFINITION 1 U esemble E o vide est dit fii s il existe u etier aturel o ul et ue bijectio de 1, sur

Plus en détail

Coefficients binomiaux

Coefficients binomiaux [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Coefficiets biomiaux Exercice 1 [ 02081 ] [correctio] Motrer que our tout N et tout Z 1 1 Exercice 5 [ 02085 ] [correctio] [Formule de Chu-Vadermode]

Plus en détail

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications.

Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications. Leço 3 : Coefficiets biomiaux, déombremet des combiaisos, formule du biome. Alicatios. Prérequis : Nombres de listes, arragemets. Pricies de la somme et de la multilicatio. Cadre : O cosidèrera das la

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Analyse combinatoire

Analyse combinatoire Mathématiques : Outils our la Biologie Deug SV1 UCBL D. Mouchiroud (10/10/2002) Chaitre 1 Aalyse combiatoire Sommaire 1. Itroductio 2 2. Arragemets..2 2.1. Itroductio..2 2.2. Arragemets avec réétitios

Plus en détail

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1 Statistiques de Base haitre. Aalyse combiatoire e cours est basé sur les otes de cours de D. Mouchiroud Lyo Itroductio L aalyse combiatoire est ue brache des mathématiques qui étudie commet comter les

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Corrigé du Devoir Libre n 2

Corrigé du Devoir Libre n 2 Corrigé du Devoir Libre Exercice 1 : Aagrammes 1. Combie les mots suivats ossèdet-ils d aagramme : a. BRETON U aagramme du mot BRETON est u réarragemet des lettres qui comoset ce mot. Par exemle NORBET

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants Exercices Déombremet Exercice Calcul sur les factorielles ) Simlifier les écritures sas utiliser la calculette. a)! 0! b) 7! 5! c) 6! 5! 5! d) 6 4! 5! e) 7! 5! 0! f) 5! 4 7! g) 6! 3! 3! h) 9! 5! 4! i)

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Chapitre 1. Dénombrement

Chapitre 1. Dénombrement Chapitre Déombremet Itroductio Lorsque l o compte les objets d ue collectio, o attribue à la collectio so cardial, c est à dire le ombre d objets qu elle cotiet. Par exemple u Picasso, u Rembrat et u Degas

Plus en détail

Les symboles Σ et Π. Le binôme de Newton

Les symboles Σ et Π. Le binôme de Newton Les symboles Σ et Π Le biôme de Newto Nous cosacros ici u log chaitre au symbole Σ et au symbole Π A terme, la maîtrise de ce symbole est ue cométece essetielle à acquérir et ous esos qu il faut y cosacrer

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants DERNIÈRE IMPRESSION LE 7 février 07 à 6:47 Déombremet Calcul sur les factorielles EXERCICE Simlifier les écritures sas utiliser la calculette. )! 0! ) 7! 5! 3) 6! 5! 5! 4) 6 4! 5! 5) 7! 5! 0! 6) 7) 8)

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

Concours de l Iscae. Épreuve Commune de Mathématiques (2015)

Concours de l Iscae. Épreuve Commune de Mathématiques (2015) Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Développements limités

Développements limités [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Eocés Développemets limités Calcul de développemets limités Eercice [ 0447 ] [correctio] Détermier les développemets limités suivats : a) DL 3 (π/4)

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p.

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p. MATHÉMATIQUES I Objectifs O se roose, das ce qui suit, de détermier l esemble des solutios d ue équatio différetielle liéaire à coefficiets costats lorsqu elle est homogèe, uis lorsque celle-ci admet u

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Enoncés. Soit n un entier naturel non nul et E un ensemble à n éléments. En utilisant des raisonnements combinatoires:

Enoncés. Soit n un entier naturel non nul et E un ensemble à n éléments. En utilisant des raisonnements combinatoires: Le raisoemet combiatoire Eocés Exercice. Das cet exercice, o evisage des codages biaires (successios de et de ). Pour tout N *, o ote U le ombre de codages biaires à chiffres se termiat par et e comportat

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique Uiversité de Picardie Jules Vere 006-007 Faculté de Mathématiques et d Iformatique Licece metio Mathématiques - Deuxième aée - Semestre 4 Probabilités Elémetaires Exame du ludi 4 jui 007 Durée h00 Documet

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence Chapitre 1 Déombremet Objectifs du chapitre 1. A travers l axiomatisatio de Peao de N, rappeller les pricipes de récurrece forte et faible. 2. Défiir la otio de cardial et les opératios sur les cardiaux.

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Déombremets Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice IT * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 25 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la lus grade imortace à la clarté, à la récisio et à la cocisio de

Plus en détail

Arbres et dérivée d une fonction composée

Arbres et dérivée d une fonction composée Abes et déivée d ue foctio composée Nous allos voi ici commet l o peut epésete les déivées successives d ue foctio composée pa u esemble d abes fiis. f et g désigeot deux foctio idéfiimet déivables, et

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

2. Espace de probabilité fini équilibré

2. Espace de probabilité fini équilibré 36 2. Esace de robabilité fii équilibré Esace de robabilités fii équilibré (résumé)...37 Esace de robabilités fii équilibré (défiitio)...38 Le modèle de Maxwell-Boltzma...39 Les ragemets de objets discerables

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

l équation ax n by n = 1

l équation ax n by n = 1 Uiversité Paris 7 Deis Diderot UFR de Mathématiques Mémoire de Master 2 Sous la directio de Marc Hidry U exemle d alicatio de techiques d aroximatio diohatiee : l équatio ax by = Lioel Poto lioel.oto@gmail.com

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

d après le sujet de math 1, centrale 2010, PC rappels arccos est la fonction réciproque de la restriction de cos à [0; ] : 1. Polynômes de Tchebychev

d après le sujet de math 1, centrale 2010, PC rappels arccos est la fonction réciproque de la restriction de cos à [0; ] : 1. Polynômes de Tchebychev d arès le sujet de math, cetrale, PC raels arccos est la foctio réciroque de la restrictio de cos à [; ] : 8 [; ]; 8y [ ; ], y = cos(), = arccos(y) dager : l équivalece est fausse si o sort du domaie :

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Construire des polygones connaissant les milieux des côtés.

Construire des polygones connaissant les milieux des côtés. Costruire des olygoes coaissat les milieux des côtés Costruire u triagle ABC dot les milieux des côtés soiet trois oits doés I J K deux à deux disticts Aalyse : La symétrie cetrale de cetre le milieu d

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Loi de Bernoulli et loi binomiale, cours, première S

Loi de Bernoulli et loi binomiale, cours, première S Loi de Beroulli et loi biomiale, cours, classe de première S Loi de Beroulli et loi biomiale, cours, première S 1 Loi de Beroulli Déitio : Soit p u ombre réel tel que p [0; 1]. Soit X ue variable aléatoire.

Plus en détail

Terminale S. 1. Divers

Terminale S. 1. Divers Termiale S 1 Divers Bézout 3 Quadratique 4 Divisibilité 5 Equatio diophatiee 6 Equatio diophatiee (, Caracas 01_04) 7 Base de umératio 8 Base de umératio 3 9 Somme des cubes 10 PGCD 11 Somme des diviseurs

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS Ozième Aveture DÉNOMBREMENTS A - PERMUTATIONS Le Père Noël a offert à ma etite cousie Josette u jeu de cubes où sot iscrits les lettres de l alhabet. Très édagogue, je lui doe d abord les trois cubes A,

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

L hebdo Finance de la MACS

L hebdo Finance de la MACS - DU 2 AU 9 OCTOBRE 2006 - Numéro DÉFINITION DE LA SEMAINE : Stock otio Idice boursier DOSSIER DE LA SEMAINE : Simulatio d u rêt immobilier 2 LES COURS DU JOUR Le jeudi 2 octobre 7 L hebdo Fiace de la

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Devoir de Mathématiques numéro 1

Devoir de Mathématiques numéro 1 Lycée La Prat's Classe de PT Pour le Vedredi setembre Devoir de Mathématiques uméro Correctio Eercice CAPES itere 7) Partie Majoratios, mioratios, ecadremets) ) ch ) + et sh ) ) Pour ces deu foctios, le

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail